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Situational awareness is the key to safe navigation and operation in autonomous air and
ground systems. Multi-sensor scene segmentation can facilitate situational awareness for au-
tonomous navigation. In this work, we introduce an alternative to learning-based approaches
for scene segmentation based on dynamical systems theory. The streaming dynamic mode de-
composition (DMD) algorithm is tailored to isolate moving foreground objects from stationary
background objects in the scene. We show that LiDAR point cloud data can be transformed
into a cylindrical depth map that is amenable to analysis within the DMD framework. We
further extend the streaming DMD algorithm to adapt to changes in the scene by introducing
a forgetting factor that weights the relative importance of past versus present information
in the data stream. The proposed streaming DMD methods are applied for on-the-fly scene
segmentation of video and LiDAR data streams from the KITTI Dataset. We find that the
approach is able to distinguish between stationary background and moving foreground objects
in a consistent and reliable manner across various scenes.

I. Introduction
Autonomous systems operating in urban environments face several challenges in detecting and identifying surrounding

objects. Situational awareness is paramount for autonomous systems, especially when operating in tandem with humans.

A large number of sensors, such as vision, infrared, and sound navigation and ranging (SONAR), have been used to help
improve situational awareness in cluttered and dynamically evolving environments. Gaining situational awareness from
rich data streams from multiple on-board sensors is of great importance. The advent of low-cost light detection and
ranging (LiDAR) sensors has enabled 360° scene reconstruction with precise distance measurements. LiDAR facilitates
simultaneous localization and mapping (SLAM), object detection, and range measurement. Due to their small size
and precise ranging capabilities, LIDAR sensors are now ubiquitous in a variety of autonomous systems, including
unmanned aerial and ground vehicles.

Despite its advantages, LiDAR introduces difficulties when used for object detection, isolation, and identification.

In contrast to information from vision systems, where the image obtained is the pixel intensity for every spatial location
in the field of view (FOV) on a fixed grid, LiDAR sensors predominantly obtain range and intensity of reflections from
every point on which the light impinges. Despite obtaining high resolution and precise range information, working
with LiDAR sensors poses an inherent challenge: These sensors generate large amounts of data from each scan—the
number of points is generally ~ O(10°). These large point clouds are sensitive to aspects like the angle of incidence and
reflection of beams, distance from the scanner, and lack of texture information. Since processing and interpreting large
3D point cloud data can be challenging, many processing strategies rely upon a projection of the 3D point cloud onto a
2D plane. This facilitates processing LiDAR information by leveraging existing and well-established techniques from
the vision systems community [1}2]]. Apart from size and robustness challenges, LiDAR point cloud data also present
processing challenges for object registration and moving object detection.

An essential precursor to many of the feature recognition, object tracking, and object classification methods is the
separation of a dynamic scene into stationary background and moving foreground components. Isolating background
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and foreground information from video and LiDAR point cloud data can facilitate these higher-level tasks by isolating
dynamically relevant features for further processing and interpretation. Numerous approaches have been proposed for
background/foreground separation, with robust principal component analysis (RPCA) being a state-of-the-art method
in video processing applications [3]]. Recently, Grosek et al. proposed a data-driven dynamical systems approach
for dynamic scene segmentation that performs competitively with RPCA in video applications [4]. The approach
leverages a sliding window formulation of the dynamic mode decomposition (DMD) algorithm to distill time-sequences
of snapshot data—video frames in this case—into dynamically relevant spatio-temporal modes in the scene [} 16]]. In
doing so, moving foreground and stationary background can be distinguished from one another unambiguously.

Motivated by the demonstrated utility of DMD-based approaches for scene segmentation in video processing
applications, the present study aims to extend such capabilities to the multi-sensor setting. LiDAR point cloud data,
in particular, is fundamentally different in nature to pixel-based RGB data. Raw LiDAR point cloud data are not
suitable for scene segmentation within the DMD framework. To overcome this issue, we propose transforming the
3D point cloud data into a 2D depth map over a cylindrical surface with a 360° field of view (FOV). The 2D depth
map is analogous to grayscale image data from a vision system, thereby enabling the dynamic scene segmentation
of LiDAR data using DMD-based methods. Since real-time processing is an important consideration for operational
autonomy, we propose an adaptive streaming DMD algorithm to facilitate “on-line” scene segmentation. The proposed
approach extends the streaming DMD algorithm proposed in [7] to better adapt to changes in the environment, as
needed in autonomous navigation applications. The streaming DMD approach is an excellent fit for scene segmentation
applications in autonomous systems, as it enables the extraction of dynamical scene information from incoming data
streams in real-time. The streaming DMD perspective also provides a flexible alternative to the sliding window DMD
approach proposed in [4]. Finally, we show that DMD-based algorithms for scene segmentation in the multi-sensor
setting of video and LiDAR provide complementary perspectives of the same segmented scene, which can be used to
inform higher-level tasks. The proposed algorithms are analyzed and demonstrated on vision and LiDAR data from the
KITTI Dataset [8]].

The paper is organized as follows: In Section[[I] we provide background on dynamic scene segmentation and discuss
previous works that have leveraged DMD for such tasks in video processing applications. Preparation of both video and
LiDAR data for DMD-based scene segmentation is detailed in Section[ITI} In Section we introduce the original
streaming DMD algorithm and a more versatile adaptive streaming DMD algorithm. We investigate and discuss the
scene segmentation performance of each streaming DMD method in Section [V} Finally, conclusions are provided in
Section [V1l

I1. Background and previous work

Object detection and classification can benefit from dynamic scene segmentation algorithms, in which objects with
distinct dynamics are differentiated from one another. Generally, dynamic models are designed using learning-based
approaches; however, learning the dynamics of objects in a scene can be very challenging. To this end, many studies
have used unsupervised learning approaches. For example, exemplar-based unsupervised learning has been proposed for
classifying dynamic objects [9]. Further, much of the work on supervised and unsupervised learning has been performed
on vision-based systems [10,[11]]. Although effective techniques have been developed for learning information from
LiDAR sensors [2, [12H14]], the resources required for implementing such approaches can be unwieldy. For video
applications, existing classifiers can be leveraged and extended for a specific application with relative ease. In contrast,
obtaining data and training classifiers for LIDAR-based machine learning approaches currently requires a significant
upfront cost in terms of time and effort.

An attractive alternative to these learning-based approaches is to leverage data-driven dynamical systems theory to
extract dynamically relevant information in the scene on-the-fly. Indeed, scene information from registered LiDAR and
vision sensors can be interpreted as being generated by a dynamical system. This dynamical systems interpretation
of a scene is advantageous because it allows objects in the scene to be differentiated according to their dynamics,
without the upfront costs associated with training that are requisite of learning-based approaches. The dynamic
mode decomposition (DMD) is one such approach whose utility in background and foreground separation has been
demonstrated within the context of video data [4]. DMD is a data-driven “batch-processing” technique that has been
widely used in the fluid dynamics community to extract spatio-temporal modes from complex and dynamically evolving
datasets [5, 6]. In their study of DMD-based video scene segmentation, Grosek et al. partition the video data into
smaller batches before performing DMD. This results in an on-line “sliding window” approach that can be used to
distill dynamical information from video streams [4]. This sliding-window DMD approach is proposed as a competitive
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alternative to other state-of-the-art background and foreground separation methods. For example, the DMD approach
compares favorably with robust principal component analysis (RPCA)—a convex optimization approach [3[]—for
vision-based scene segmentation.

DMD operates on empirical snapshot data to extract rich dynamical information that can be used to segment a scene
according to its underlying dynamics. For video applications, the snapshots would simply be RGB data from individual
frames of the video feed. Denoting the snapshot at time #; as x(#;) € R”, DMD approximates the eigenvectors and
eigenvalues of a linear dynamical system A that maps x(#; ) to X(¢x+1) (i.e., A advances one frame of the video to the next
in the sequence). The DMD eigenvectors provide information about the spatial character of a mode, while the DMD
eigenvalues provide information about the temporal behavior of that same mode. Since DMD assumes a linear dynamical
system, each mode exhibits simple temporal dynamics that can be characterized by a single frequency and a single
growth/decay rate [15,[16]]. It was shown in [6] that the linear map A is simply the minimum-norm/least-squares solution
to AX =Y, where X := [x(to) x(r) ... X(tm_l)] eR™ and Y := [x(tl) x(3) ... X(tm)] € R™™_ DMD
determines the eigenvalues and eigenvectors of this linear map in an efficient manner by leveraging a reduced singular
value decomposition (SVD) of X. Specifically, if X = UZV*, then a lower-dimensional proxy system A = U* AU can be
formed, where U contains the leading r left singular vectors of X and A € R"™". Then, the eigendecomposition of this
low-dimensional proxy system Awy, = wi A can be related to the eigenvectors ¢ = Uwy and non-zero eigenvalues Ay
of A. Further details of the DMD algorithm and interpretation of its outputs can be found in [6} |15} [16].

Since DMD eigenvalues reveal temporal information in the makeup of a scene, the information regarding the
background and foreground can be found by examining the frequency of each DMD mode wy; = ZAi /27 At, where
At is the sampling interval between snapshots. As suggested in [4], the DMD modes with wy; = O correspond to
slowly time-varying—approximately stationary—background information that makes up the “low-rank” component
L in the scene. To obtain the low-rank component, we select |wy| < € < 1, where € is some threshold value that is
application-specific. Similarly, the foreground information comprises a “sparse” component S in the scene. This sparse
foreground component can be obtained by selecting the remaining wy values. The initial amplitude by of each mode is
given by the inner-product between the first snapshot x(zy) and the k" reciprocal DMD mode (i.e., left eigenvector of A
associated with A). The low-rank (L) and sparse (S) components of a scene obtained from DMD are given by [4]],

L=~ Z bk¢k€wkt

|wi | <€

S = Z bk¢k€wkt.

|wk |>€

(D

In this study, we extend the background-foreground separation method proposed in [4] to the context of LiDAR data.
A key step in extending the approach for scene segmentation with LiDAR is in preparing the LiDAR point cloud data to
a format that is appropriate for the analysis within the DMD framework. Details about data preparation are presented in
the next section. In subsequent sections, we show that a streaming formulation of the DMD algorithm can be used to
efficiently perform video and LiDAR scene segmentation on-the-fly, as is needed for real-world operation.

I11. Data preparation

In this work, we use grayscale video and LiDAR point cloud data from the “city” and “campus” categories of the
KITTI Dataset [8]. Video data preparation for DMD is straightforward. Video data is a set of time sequenced images
captured at equally spaced time intervals, so only snapshot matrices X and Y need be formed for use within the DMD
framework. First, each grayscale image in the sequence is vectorized x(#;) and stored as a column of the snapshot matrix
X (see Figurdl). The corresponding time-shifted snapshots x(7x1) are stored as columns of the shifted snapshot matrix
Y. Then, the DMD algorithm can be applied directly to the snapshot data matrices in X and Y to extract spatio-temporal
modes.

In contrast to the 2D spatially fixed grayscale images provided by a camera (i.e., an Eulerian frame), a single LIDAR
scan provides 3D point cloud data in a spatially varying frame (i.e., a Lagrangian frame). For every beam impinging
on an object, the LiDAR sensor provides range information of the object relative to itself, which is then converted to
Cartesian coordinates relative to the scanner. The LiDAR sensor provides accurate ranging information with a 360°
FOV; whereas traditional vision sensors have a restricted field of view (see Figure [2a). However, due to spatial variance
of the point cloud, LiDAR data cannot be directly processed within the DMD framework.

To enable DMD-based foreground-background separation of the LiDAR information, we convert the 3D point cloud
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Video stream Snapshot matrix

Figure 1 Vectorizing video data for streaming DMD

data to a flattened spatially fixed format, akin to data from a camera. To do so, the point cloud data is first projected onto
a cylindrical surface. Then, the cylinder is unwrapped to obtain a 2D depth map (see Figure[3). The resulting depth map
is similar to an image: Instead of pixel intensity, the 2D depth map contains depth information relative to LIDAR sensor

(see Figure[2b).
The projection of individual points P(x;, y;, z;) is obtained as,

0; = atan2(y;, x;) 2

¢; = arcsin(z;/ xl.z + yi2 + z?) 3)

where (x;, y;, z;) denotes the Cartesian coordinates of the i point in 3D space. Once the points are projected onto a
cylindrical surface, we create a 2D map to store the corresponding depth information. The 2D depth map information
associated with the point of interest P(x;, y;, z;) is stored using an alternative indexing (r;, ¢;) on the cylinder surface,
where r; := [¢;/A¢] and ¢; := [0;/AO]. Here, 0 is the azimuth angle and ¢ is the elevation angle. Further, A and A¢
denote the resolution of the azimuth and elevation angle, respectively. In this 2D map, we fill the index (r;, ¢;) with

the associated depth d; = [xl.z + yl.2 associated with P(x;, y;, z;). An illustration of the depth map obtained from a 3D

LiDAR point cloud is shown in Figure [2b]

Once a depth map is created for every LiDAR scan, we obtain a set of time-sequenced depth maps. Each of these
depth maps is then vectorized, as done with images. We then form the time-shifted snapshot matrices (X, Y) of these
depth maps. Now that the LiDAR data has been processed in a format that can be handled within the DMD framework,
the process of application of DMD-based scene segmentation algorithms can proceed similarly to the case of video data.

IV. Streaming DMD for background-foreground separation in video and LiDAR
In this work, we use a streaming DMD algorithm for background and foreground separation from video and
registered LiDAR data streams. The streaming variant of DMD extends itself directly to autonomous systems; as
autonomous systems often need to operate from sensory data available incrementally in streams. The streaming DMD
method is capable of updating DMD computations incrementally (as data streams become available) while retaining
performance similar to the *batch-processed” DMD [[/]]. This section describes the streaming DMD formulation and
adaptive streaming DMD formulation.

A. Streaming DMD Algorithm

The streaming DMD method helps process information incrementally when a new snapshot becomes available. This
ability is a paradigm shift for processing data obtained from sensors on-board an autonomous vehicle. Sensors on-board
autonomous systems scan the environment in sequence, where data from the current scan will have correlation to data
obtained from the previous scan. The ability to process data incrementally is a tremendous advantage; specifically when
the accuracy of the extracted information is mathematically equivalent to the batch-processing method like the DMD.
Therefore, streaming DMD algorithm is practical in applications where data is being streamed online in ’real-time’.

To update the DMD operator with new incoming snapshots, we use a streaming variant of the DMD algorithm that
updates the linear operator when incoming snapshots becoming available. Consider a single snapshot pair (x;,y;) =
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(b) Projected LiDAR depth map

(c) video

Figure2 3D LiDAR point cloud (Figure @, here objects are clustered by Euclidean distance for better viewing.
The corresponding cylindrical depth map and camera field of view are shown in Figure 2b] and Figure 2¢|
respectively. Specific areas in the point cloud, depth map and image from camera have been highlighted with
a color code. The colored highlights ( , , violet) in upper panel correspond to three sectors, the
corresponding three sectors locations have been shown in the depth map. The image in Figure 2 correspond to
the scene in center pane of Figure@

(x(tx), x(t.+1)) corresponding to columns of X and Y, respectively. Then, from Section|Il} the high-dimensional DMD
operator A € R can be projected into a low-dimensional proxy system using an orthonormal basis for the image of X
(denoted Qy), i.e.,

A= Q% AQx. )
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Figure 3 Transformation 3D point cloud to a 2D map

Here, the matrix A € R"”X>"X is a low-rank operator, with rx < n. The incoming snapshot pairs x; and y; can be large.
Thus, we project these snapshots to obtain their low-dimensional representations X; = Q§xi and y; = Q§yi, where
Qy € R™ is an orthonormal basis for the image of Y. The low-dimensional data vectors obtained with multiple such
snapshots is given as X := Q;X andY = Q?Y, respectively. From Eq. (@), we have

A= 0hrxTox, (5)

where X denotes the Moore-Penrose pseudoinverse of X. To update the A operator with incoming data, we need to
modify the operator in Eq. (3)), such that it can be incrementally updated with available data. In the streaming version of
DMD we rewrite the DMD operator by substituting X™ = X7 (XX7)" in Eq. (3)

A= QY 0vKGY, (6)

where we define two matrices K := Y X7 and Gx := XXT e R"*>"x for simplicity. In Eq. @ we will update the operators
Ox, Oy, K and G, when a new snapshot pair becomes available. This enables the linear operator A, and thus the DMD
modes and eigenvalues to be computed on-the-fly. If the snapshot data contains noise (a high-rank component), we use
proper orthogonal decomposition (POD) based compression. The POD compression helps compute Qx and Qy using
leading eigenvectors of matrices Gx and Gy. As seen in Gy, the matrix Gy = Y¥”. The algorithm for updating the
DMD operator with a single pair of snapshot data is as follows:
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Algorithm 1 Streaming DMD

1:
2
3
4:
S:
6
7
8
9

10:
11:
12:
13:

procedure sTREAMINGDMD

ex — x; — Ox(Q%xi)
ey — yi — Oy (0 i)
if ||ex|| > € then
Ox(:,end + 1) = ex/|[ex]|
if ||ey|| > € then
Qy(:,end + 1) = ey/|ley]|
if rank(Qx) > r, OR rank(Qy) > r, then
GX — V;GxVX
Gy « VgGyVy
K — VI KVx
Ox « OxVx
Oy « OyW
% — Q% x;
Vi e Qpyi
Gx «— Gx + fifiT
Gy « Gy + 55,
K — K + 35"

> Vx: Leading Eigenvectors of Qx
> Vy: Leading Eigenvectors of Qy

Further details can be found in [7]. We also note that when measurement noise is present, alternative noise-

robust formulations of DMD can be used to improve performance [[17,[18]]. Such considerations are part of ongoing

investigations, but are not investigated in the current paper.
We also consider the case where the dynamics embedded in A may be time-varying and hence we use a “forgetting

factor” to obtain an adaptive streaming DMD. The forgetting factor enables us to appropriately weight the new incoming
snapshot pairs relative to the older snapshot pairs. This weighting factor adds an element of memory to the streaming
process that introduces additional versatility to the original streaming DMD formulation. The forgetting factor is denoted
by a and satisfies 0 < @ < 1. In the adaptive streaming DMD algorithm, only steps (16), (17), and (18) differ from the
original streaming algorithm presented in Algorithm 1. The adaptive streaming DMD algorithm follows:

Algorithm 2 Adaptive Streaming DMD

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

procedure ADAPTIVESTREAMINGDMD

ex — x; — Ox(Q%xi)
ey < yi — Qy(Qyyi)
if ||ex|| > € then
Ox(:,end + 1) = ex/||ex]|
if ||ey|| > € then
Qy(:,end + 1) = ey/||eyl|
if rank(Qx) > r, OR rank(Qy) > r, then
Gx « VIGxVx
GY — VY Gyvy
K — VIKVx
Ox <« OxVx
Oy <« OyW
X; «— Q§xi
Vi e Q;T/)’i
GX — Gx(l - a/) + (Y.fif.T
Gy < Gy(1 —a) + a5,
K—K(Il-a)+ amf

> Vx: Leading Eigenvectors of Ox
> Vy: Leading Eigenvectors of Qy

Each of these two streaming DMD algorithms is effective when the number of snapshots (i) and size of each
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snapshot (n) are large. The computational cost of computing DMD modes and eigenvalues using each streaming DMD
algorithm is O(nr?), where r = max(ry, ry). Note that the number of snapshots m does not appear in this scaling, and so
the approach is indeed a single-pass low-storage method that is suitable for on-line on-the-fly computations.

V. Results

In this section, we investigate the performance of the streaming DMD algorithm for background-foreground
separation. In Section we discuss in detail the performance of the streaming DMD algorithm and assess the
effect of the forgetting factor on video data. The video data is obtained from the “city” category and drive number
“2011_09_26_drive_0060" in the KITTI Dataset. In the following section, we test the streaming DMD algorithm
and its performance for background and foreground segmentation on LiDAR data streams. The LiDAR data used in
section. [V.BJis from the same corresponding drive in the“city” category, and another scene from the “campus” category
with drive number “2011_09_28_drive_0016", both of which are a part of KITTI Dataset. It should be noted that all the
LiDAR depth maps have been enhanced for clarity and moving objects have been tagged manually.

A. Background-foreground separation in streaming video

We use the streaming DMD algorithm for background-foreground segmentation using video information from a
camera. Once the linear operator A is obtained using either Algorithm 1 or Algorithm 2, eigenvalues provide information
on the temporal evolution of the dynamical scene, and hence stationary component and fast moving components are
distinguished via eigenvalues. As seen earlier, an image J can be decomposed into a low-rank component (L) and a
sparse component (§). To isolate the low-rank (background) components, we select the DMD modes near the origin
(w = 0). Once the DMD modes associated with the background is identified, the sparse component can be directly
obtainedas S =7 — L.

We first study the scene segmentation using standard streaming DMD (Algorithm 1). The video scene used here is
from the “city” category in the KITTI Dataset [8]. This particular video is comprised of 75 frames, of which we have
shown frame number 6 in Figure #a] We perform background-foreground segmentation on this video data set using
streaming DMD. The background and foreground components have been shown in Figure fb] It should be noted
that we use all the eigenvalues to perform the scene segmentation; hence, as a by-product we can observe traces of
high-frequency components in both the background (Figure b)) and foreground (Figure dc). In Figure the high
frequency component leads multiple visible bicycles and the car being blurred out.

Another advantage of using modal decomposition-based methods like DMD is that we can reconstruct scenes
using a reduced-order representation. The reduced-order representation is obtained from truncation; where only the
dominant DMD modes are used to recreate the scene. This truncation helps in getting rid of eigenvalues related to
the high-frequency content. An example of this truncated reconstruction using streaming DMD is shown in Figure[5]
here we use only 5 dominant modes to segment background-foreground information from the scene. By comparing
the foreground from 75 modes reconstruction (Figure fc) with 5 mode reconstruction (Figure[Sc)), we can see that the
high-frequency content can be eliminated and the clarity can be improved.

In this work, we use data only from stationary sensors and in cases like this, the DMD based methods can be very
powerful—as background foreground information can be obtained using only one mode. Since the one mode selected
here will be associated with the background, we can then subtract the obtained background from the original image to
obtain foreground content. This can also be understood by observing the eigenvalue plot for the video. In Figure[6]
we plot the DMD eigenvalues with r, = 50. In Figure[6] we can see that only the red’ eigenvalue corresponds to the
background mode, while all ’black’ eigenvalues combine to give the foreground information. Therefore, a single-mode
corresponding to the zero eigenvalue can be used to segment the scene into background and foreground.

We also investigate the effect of the forgetting factor on scene segmentation in the streaming DMD method. To
study this, we compare the effect of the forgetting factor on the full-rank decomposition i.e., we do not perform any
truncation. In Figure[7, we observe that when the & = 0.99 (incoming snapshot pairs are most important) the foreground
reconstruction has more high-frequency content compared to the case with @ = 0.5 (incoming snapshots are weighted
equally to past information). In the case with @ = 0 (incoming snapshots are not considered for updating A matrix),
we are not updating the the A matrix with new incoming snapshots, thereby using only initial snapshots to distill
background and foreground information. Therefore, a higher forgetting factor corresponds to using more recent snapshot
data to update the linear operator A. From Figure [7| we see that a decreasing forgetting factor, mostly eliminates the
high-frequency content. Even though the forgetting factor has a similar performance as rank truncation, a major benefit
of the forgetting factor will be noticed in cases where there is ego-motion with a changing scene. We hypothesize that



Downloaded by 71.43.7.27 on January 5, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-1943

(b) Background component of frame no. 6 (c) Foreground component of frame no. 6

Figure4 Background-foreground segmentation on frame number 6 of city category video data stream; segmen-
tation performed using streaming DMD without truncation. Here, all 75 modes have been used to reconstruct
the background scene. The Figure @b and Figure [dc|shows the stationary background and foreground objects
respectively, in both we observe traces of high frequency component.

(b) Background component of frame no. 6 (c) Foreground component of frame no. 6

Figure 5 Background-foreground segmentation on frame number 6 of city category video data stream; seg-
mentation performed using streaming DMD with truncation. Here, only 5 modes have been used to reconstruct
the background scene. The Figure [5bjand Figure [5c|shows the background and foreground component with no
high frequency component; in comparison to Figure@ and Figure

the forgetting factor would be beneficial in such cases, however, ego-motion with changing scenes is a topic we reserve
for future investigations.
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Figure 6 The figure shows the first 50 eigenvalues of the operator ¢%! obtained by processing the complete
video data stream. The eigenvalue corresponding to the stationary mode is shown in red, all other modes
correspond to the foreground component in the scene. The existence of a single background mode shows that

the background can be reconstructed with a rank | matrix.

B. Background-foreground separation from streaming LiDAR data

To enable processing LiDAR point cloud data with the streaming DMD or DMD framework, we convert the point
cloud into cylindrical depth map that contain full 360° FOV information using the procedure detailed in Section|[[I} This
depth-map is then used for the background-foreground separation with the streaming DMD (both Algorithms 1 & 2).

We show that the LiDAR data streams can also be used to segment background-foreground objects. In Figure[§] we
show a depth image of frame number 6 obtained from the LiDAR point cloud; the data is taken from the city category in
the KITTI Dataset. The scene is composed of both dynamic and stationary objects. The objects in the scene — a cyclist
and a car both of which are moving and have been tagged with a circle and square respectively. All other aspects of the
images are stationary and form the background component. Using Algorithm 1, we obtain scene segmentation using 5
dominant modes; both the static and moving objects have been segmented in the scene. The background (stationary)
component is shown in Figure[8band in Figure [8c|we show the successful isolation of foreground objects.

In Figure [9a] and Figure [T0a] we show depth map obtained from a LiDAR point cloud taken from the “campus’
category in KITTI Dataset. The power of dynamic mode decomposition-based methods lies in the fact that only the first
pair of snapshots are needed to reconstruct the stationary background; and foreground information in the incoming
snapshot scenes can be extracted by subtraction. However, this is applicable only in the absence of ego-motion and
continuous scene change. This can be observed from Figure[0] where we use only 1 dominant mode to identify the
dominant eigenvalues associated with the static background as shown in Figure[9c| In this case, we also set & = 0 using
Algorithm 2. As mentioned previously, setting @ = 0 corresponds to the new snapshot pair is not being used in updating
the linear operator A. Therefore, we can segment background and foreground information only using a single snapshot
pair for settings where the scene is not continuously changing.

We also study the combined effect of truncation with forgetting factor @« = 0.5. This setting is very useful for
real-world applications, where we want to compute background-foreground information from reduced-rank operators,
while weighting the incoming snapshot. In Figure[TT] we illustrate the effect of combining truncation and snapshot
weighting on the LiDAR data from the city category. Here, the reduced-rank operator A is of rank 50. It can be seen
that with both the truncation and forgetting factor, the foreground objects (see Figure have been distilled from
the background (see Figure[I1c). Even though this has just been demonstrated for one scene only, we observe similar
results when this method is applied to other scenes as well.

s
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(a) a =0.99

b a=0.5

©a=0

Figure7 The figure shows the effect of forgetting factor in segmenting foreground objects on video data streams.
A high forgetting factor retains high frequency content. Similarly, o = O implies that the foreground has been
obtained processing only initial snapshot pair and without processing additional incoming snapshots.
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(a) Actual scene with tags

BURT LK NS

(b) Background component

(c) Foreground components

Figure 8 Depth map obtained from scan 3 of city category LiDAR point cloud. Background-foreground
segmentation on LiDAR depth map using streaming DMD. Only 5 mode have been used to perform background-
foreground segmentation. The full scene is shown in Figure here the cyclist (tagged with a circle) and
car (tagged with a square) are the only moving objects. The static background information is shown in
(Figure . The isolated dynamic foreground objects the cyclist and car are shown in Figure
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(a) Depth map obtained from scan 1 of LiDAR point cloud

T e 0 O

(c) Background component of scan 1

(d) Foreground component of scan 1

Figure 9 Depth map obtained from scan 1 of campus category LiDAR point cloud. Background-foreground
segmentation on LiDAR depth map using streaming DMD. The figures in Figure [9ajand Figure[9b]are from the
same scene, the tags have been manually added in the latter to show moving objects of interest. We reconstruct
the background using only first 2 snapshot pairs as shown in[0c} In addition to the background, the foreground
component is also shown in Figure @]
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(a) Depth map obtained from scan 96 of LiDAR point cloud

g . J ; i B

(b) Depth map obtained from scan 96 of LiDAR point cloud, shown here with tags on moving objects

Gl o by

(c) Background component of scan 96

(d) Foreground component of scan 1

Figure 10 Depth map obtained from scan 96 of campus category LiDAR point cloud. Background-foreground
segmentation on LiDAR depth map using streaming DMD. The figures in Figure[I0aJand Figure[10b|are from the
same scene, the tags have been manually added in the latter to show moving objects of interest. We reconstruct
the background using only first 2 snapshot pairs as shown in[I0c, In addition to the background, the foreground
component is also shown in Figure

14



Downloaded by 71.43.7.27 on January 5, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-1943

T & LT ..

(a) Depth map obtained from scan 17 of LiDAR point cloud

RiOMF. T Y.

(b) Depth map obtained from scan 17 of LiDAR point cloud, shown here with tags on moving objects

WU Ly L v

(c) Background component of scan 17

(d) Foreground component of scan 17

Figure 11 Depth map obtained from scan 17 of city category LiDAR point cloud. Background-foreground
segmentation on LiDAR depth map using adaptive streaming DMD. The figures in Figure [I1a)and Figure [I1b|
are from the same scene, the tags have been manually added in the latter to show moving objects of interest. We
reconstruct the background using reduced-rank operator of rank 50 snapshot with a = 0.5 as shown in In
addition to the background, the foreground component is also shown in Figure
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VI. Conclusions

We demonstrate the ability of the streaming DMD approach in foreground-background scene segmentation from
both video and LiDAR sensors. Here, moving foreground objects can be isolated from the stationary backgrounds in an
“on-line” setting, when a new frame becomes available. We show that a lower rank approximation of the scene can be
obtained by truncation; the truncation process can also be used to eliminate spurious high-frequency components in the
scene.

The forgetting factor has also been shown to be effective in weighting the new incoming snapshot data and behaves
similar to the reduced-rank truncation. Even though we study only the case with static sensors, a natural extension of
this work is to apply the streaming DMD algorithms to moving platforms and changing scenes. The forgetting factor
used in SDMD will be especially helpful in cases with ego-motion and changing scenes. This work can be further
extended by developing tracking and filtering algorithms to track dynamical objects in the scene.

Under certain conditions, the streaming approach can reconstruct the complete background component of the scene
using only a few snapshot pairs. This is especially useful when data is only available intermittently or after long
intervals. Therefore, streaming DMD is an effective and apt method for background-foreground separation applications
on registered video and LiDAR data feeds. This is specifically effective in autonomous systems that receive streaming
information from on-board sensors and need to perform tasks like object detection, tracking and classification.
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