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Particle image velocimetry (PIV) systems are often limited in their ability to fully resolve
the spatiotemporal fluctuations inherent in turbulent flows due to hardware constraints. In
this study, we develop models based on rapid distortion theory (RDT) and Taylor’s hy-
pothesis (TH) to reconstruct the time evolution of a turbulent flow field in the intermediate
period between consecutive PIV snapshots obtained using a non-time resolved system.
The linear governing equations are evolved forward and backward in time using the PIV
snapshots as initial conditions. The flow field in the intervening period is then reconstructed
by taking a weighted sum of the forward and backward estimates. This spatiotemporal
weighting function is designed to account for the advective nature of the RDT and
TH equations. Reconstruction accuracy is evaluated as a function of spatial resolution
and reconstruction time horizon using direct numerical simulation data for turbulent
channel flow from the Johns Hopkins Turbulence Database. This method reconstructs
single-point turbulence statistics well and resolves velocity spectra at frequencies higher
than the temporal Nyquist limit of the acquisition system. Reconstructions obtained using
a characteristics-based evolution of the flow field under TH prove to be more accurate
compared to reconstructions obtained from numerical integration of the discretized forms
of RDT and TH. The effect of measurement noise on reconstruction error is also evaluated.
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I. INTRODUCTION

A. Motivation and problem statement

The ability to generate spatially and temporally resolved velocity measurements in turbulent
flows is essential for improving our understanding of the underlying dynamics, identifying coherent
structures, and the development of flow control. The past three decades have seen rapid advances
in the development of high-power and high-repetition rate lasers, high-speed digital cameras
capable of megapixel resolution, and computing power. These hardware advances, together with
improvements in the speed and accuracy of particle image velocimetry (PIV) analysis algorithms,
have led to a step change in our ability to make non-intrusive field measurements at high spatial
and temporal resolution [1,2]. Despite these advances, laboratory PIV systems are often limited in
their ability to fully resolve the broadband spatiotemporal fluctuations inherent in turbulent flows
due to hardware limitations or cost constraints. For example, even state-of-the-art PIV systems with
kHz-capable cameras and lasers may not yield complete temporal resolution in certain conditions.
These limitations in hardware motivate the need to reconstruct the flow field from limited and noisy
measurements.
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FIG. 1. Left: Non-time-resolved PIV snapshots stacked along the time axis. Right: Time-resolved recon-
struction of the velocity field from the PIV snapshots.

In this study, we develop models that can reconstruct the time evolution of wall-bounded
turbulent flows in the intervening period between two PIV snapshots from a non-time resolved
system. Figure 1 provides a schematic view of the problem being addressed. The left panel in Fig. 1
shows PIV snapshots stacked along the time axis. Consistent with typical planar PIV systems, we
assume that only two-dimensional, two-component (2D-2C) snapshots are available. The sampling
time between PIV measurements is T . As shown in the right panel, the goal is to reconstruct the
evolution of the flow field between two consecutive snapshots with high temporal resolution, i.e., to
generate predictions for the snapshots shown as translucent planes. We focus on turbulent channel
flow and use direct numerical simulation (DNS) data from the Johns Hopkins Turbulence Database
[3] to develop and test the models used for flow reconstruction. However, we expect these techniques
to be equally applicable to other wall-bounded flows (e.g., pipe and boundary layer flows) and be
directly transferable to physical PIV systems.

Most prior efforts on turbulent flow reconstruction have relied on data-driven approaches, in
which sensor data are used in conjunction with static correlation maps or projected onto basis
functions obtained from field measurements (e.g., Refs. [4–9]). In contrast, the present effort
employs simplified models based on rapid distortion theory (RDT) and Taylor’s hypothesis (TH) that
are derived from the governing Navier-Stokes equations. A brief review of previous reconstruction
efforts and models grounded in RDT/TH is provided below.

B. Previous reconstruction efforts

From a signal processing point of view, time resolution issues in measurements can be alleviated
through the use of compressed sensing, particularly when the signal of interest is sparse in frequency
space (e.g., Refs. [10–12]). If such narrow-banded signals are sampled randomly in time, then �1

minimization techniques can be used to reconstruct their time evolution even with sub-Nyquist
average sampling rates. However, such techniques are less reliable for signals that are not sparse
in frequency space, as is the case with broad-banded turbulent flows. Moreover, it is not typically
possible to generate PIV measurements that are sampled randomly in time.

Previous studies have compensated for the limited time resolution of PIV systems through
the use of two complementary instruments. In this multisensor fusion approach, the high-spatial
and low-temporal resolution velocity fields from PIV are typically fused with time-resolved point
measurements from instruments such as hot-wire anemometers (HWA) or pressure sensors [7–9].
Broadly, such sensor fusion and flow field reconstruction techniques can either involve a static
approach, such that the estimator relies purely on statistics compiled from prior data, or a dynamic
approach, in which an underlying evolution model is included in the estimation procedure.

Stochastic estimation with static maps has been employed extensively in the turbulence com-
munity (e.g., Refs. [4,13–15]), particularly in conjunction with proper orthogonal decomposition
(POD) [5,6]. Variants of linear stochastic estimation (LSE) have been used in many different
contexts. For instance, POD-based LSE has been used to educe coherent structure in turbulent
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flows [5,14,16]; multisensor stochastic estimation has been used to estimate velocity fields from
wall-based pressure and shear stress measurements [17–19]; and LSE incorporating time delays has
been used to predict the future evolution of flow fields for purposes of control [6,20]. Along similar
lines, Sasaki et al. [21] have recently used large eddy simulation data to identify linear and nonlinear
transfer functions that enable the estimation of streamwise velocity fluctuations in turbulent
boundary layers based on measurements at different wall-normal locations. Of relevance to the
present study, LSE has also been employed to fuse information from fast-time point measurements
and slow-time field data for turbulent channel flow. Specifically, Discetti et al. [9] evaluated the
correlation between fast-time point measurements and the time variation in POD modes obtained
from the field measurements, at the instances in which these datasets were synchronized. This static
correlation map was then used to infer the fast-time evolution of the POD modes from the point
measurements.

Dynamic estimators seek to incorporate information from underlying dynamic models as well
as sensor measurements to estimate the state of high-dimensional systems such as turbulent flows.
Standard techniques for linear dynamic estimation include Kalman filtering and Kalman smoothing.
Kalman filtering estimates the current state of the system based on previous observations, while
Kalman smoothing also allows for refinement of previous estimates in light of later observations.
Tu et al. [7] employed a Kalman smoother to successfully fuse information from fast-time point
measurements and slow-time field measurements to reconstruct the velocity field in the wake of
a thick flat plate with an elliptical leading edge at low Reynolds number. The dynamic model
employed in this study involved projection onto POD modes computed from the field measurements.
Tu et al. [7] found that a dynamic model comprising the following two elements was sufficient for
accurate flow field reconstruction: (i) the first two POD modes oscillating stably at the shedding
frequency measured from the probe signal, with amplitudes estimated from the point measurements,
and (ii) the remaining POD mode coefficients advanced in time via LSE. For the purposes of more
general turbulent flow reconstruction, dynamic models like the one developed by Tu et al. [7] have
two important limitations. First, the assumption of stable, low dimensional oscillatory dynamics
only holds for a small class of narrow-banded flows (e.g., low Reynolds number bluff body wakes).
Second, projection onto POD modes limits any model predictions to the subspace spanned by the
data, and does not guarantee that the resulting flow fields will be physically sound. This limitation
is especially problematic in the context of the broadband turbulent flows to be considered in this
study. Indeed, the necessary data for extracting the appropriate POD-basis (or a reliable data-driven
model by other means) are often unavailable, even when using state-of-the-art instrumentation for
flow diagnostics.

To circumvent these issues relating to data availability, recent studies have attempted flow
reconstruction by projecting the velocity field onto so-called resolvent modes that are obtained via a
gain-based decomposition of the governing equations [22,23]. For instance, this approach has been
used to reconstruct the unsteady three-dimensional flow field in a lid-driven cavity flow based on a
limited set of point measurements of velocity [24]; to estimate the pressure distribution around an
inclined square cylinder based on time-resolved measurements at a single point in the wake [25];
to model the flow around an airfoil based on limited PIV measurements [26]; and to estimate the
cross-spectral density of the turbulent fluctuations in a jet issuing from a convergent-straight nozzle
[27]. Typically, such resolvent-based reconstruction efforts proceed as follows. First, the point or
field measurements of velocity are used to identify the dominant frequencies present in the flow.
Next, a limited set of resolvent modes are computed for these frequencies, and their amplitudes
are calibrated using the measurements. The time-varying flow fields can then be reconstructed
based on a linear superposition of the calibrated resolvent modes. Note that a similar procedure
has also been used to reconstruct the flow field for a round jet using modes obtained from analysis
of the parabolized stability equations [28]. Since resolvent or stability modes can be computed
directly from the governing equations if a base (or mean) velocity profile is available (e.g., from
PIV; see Refs. [26,27]), such equation-based flow reconstruction techniques minimize the need for
a priori data. Moreover, the use of resolvent modes ensures that the reconstructed flow fields will be
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physically sound (e.g., satisfy the continuity constraint in incompressible flow). At the same time,
this approach is most useful in band-limited flows for which a limited set of modes can serve as
an adequate basis for projection. Identification, computation, and calibration of dominant resolvent
modes is much more challenging in broad-banded turbulent flows. For completeness, we note that
Illingworth et al. [29] have made use of the linearized NSE to estimate the velocity field at a given
wall-normal location within a turbulent channel flow using time-resolved velocity measurements
from a different wall-normal location and Towne et al. [30] have used the resolvent formulation to
estimate the space-time statistics in a turbulent channel flow.

C. Rapid distortion theory and Taylor’s hypothesis

As noted earlier, in this paper we use models grounded in rapid distortion theory (RDT) and
Taylor’s hypothesis (TH) to reconstruct the flow field between two consecutive PIV snapshots. In
essence, RDT assumes that if a turbulent flow field is subjected to substantial distortion by the
mean shear flow, the higher-order nonlinear interactions can be neglected when predicting the early
response. Scaling arguments show that RDT is formally correct if the time-horizon of prediction
is much shorter than a typical eddy turnover time [31]. This makes RDT a natural choice for the
present effort, in which the velocity field must be evolved from a known initial state over a short
time horizon until the next PIV snapshot becomes available. RDT has been used extensively in both
theoretical and experimental turbulence research [31,32]. Moreover, there are strong connections
between RDT and the resolvent analysis framework mentioned in the previous section [23] since
both approaches emphasize linear dynamics.

Under Taylor’s Hypothesis (TH), the RDT equations are simplified further to retain just the time
derivative of the fluctuations and the mean flow advection term. In other words, TH assumes that the
turbulent flow field is “frozen” and advects downstream with the mean flow [33]. The mean velocity
can therefore be used to convert temporal information to spatial information, and vice versa. TH
has been used extensively in the turbulence community [34–38], primarily to infer spatial structure
from time-resolved point measurements (e.g., from hot-wire anemometers). Experimental estimates
of streamwise wave-number (kx) spectra are often converted from frequency (ω) spectra under the
assumption that the resulting convection velocity (c = ω/kx) is equal to the local mean velocity
[39]. This is a good assumption in the outer region of the flow, where the convection velocity of the
turbulent fluctuations is known to be close to the local mean velocity. However, experiments and
numerical simulations both show that this assumption leads to an underestimate of the convection
velocity below the buffer region of the flow. Specifically, the convection velocity remains at c+ ≈ 10
below y+ ≈ 15, even as the mean velocity goes to zero at the wall (see, e.g., Refs. [40–42]). Here,
y is the wall-normal coordinate (y = 0 at the wall) and a superscript + denotes normalization with
respect to the friction velocity and kinematic viscosity. Thus, the use of the local mean velocity in
TH leads to underestimation of streamwise length scales in the near-wall region. Moreover, wall-
bounded turbulent flows are typically characterized by a broad spectrum of frequencies for a given
wave number (and vice versa). Hence, using the same convection velocity for all wave-number-
frequency combinations at a given wall-normal location can also lead to spurious peaks in the power
spectral density [36,37].

Since TH has been used to infer spatial structure from time-resolved measurements with some
success in turbulent flows, it should also be possible to invoke this hypothesis to solve the inverse
problem: to infer the time evolution of a flow field from measurements of spatial structure. The
reconstruction framework described in this paper develops this idea further.

D. Contribution and outline

To reconstruct the time evolution of the flow field between consecutive 2D-2C PIV snapshots,
we use the simplified equations obtained under RDT and TH to generate predictions forward in
time from the initial snapshot and backward in time from the subsequent snapshot. A weighted sum
of these forward and backward estimates is used to reconstruct the flow field in the intervening
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period. The accuracy of the reconstructed flow fields obtained using these models is assessed using
DNS data for turbulent channel flow at friction Reynolds number Reτ = 1000 obtained from the
Johns Hopkins Turbulence Database (JHTDB) [3]. Results show that this reconstruction framework
significantly outperforms direct interpolation, i.e., the reconstructed velocity fields deviate much
less from the DNS data compared to interpolated velocity fields. Moreover, frequency spectra
computed from the reconstructed velocity fields are found to closely resemble spectra obtained
from the DNS data, even at frequencies higher than the Nyquist limit of the PIV-like data. Note
that the reconstruction framework developed here only makes use of 2D-2C velocity snapshots
and simplified models grounded in the Navier-Stokes equations. Unlike previous efforts [7,9], no
additional time-resolved point measurements are used to improve temporal resolution. Instead, the
observed improvement in temporal resolution stems from the use of RDT and TH to reconstruct the
time evolution of the flow field from the spatial information present in the snapshots.

The remainder of this paper is structured as follows. In Sec. II, we provide a brief review of the
governing equations obtained under RDT and TH. We also describe the methods used for generating
the forward- and backward-time predictions, the weighting functions used to fuse these forward-
and backward-time reconstructions of the flow field, and the metrics used for error quantification.
In Sec. III, we assess reconstruction accuracy for the various models developed in Sec. II (e.g.,
RDT versus TH, different weighting functions). We also evaluate the effects of measurement
spatiotemporal resolution and noise on reconstruction accuracy, and compare turbulence statistics
and spectra obtained from the reconstructed flow fields against DNS results. Finally, we present
concluding remarks in Sec. IV.

II. METHODS

A. Rapid distortion theory and Taylor’s hypothesis

Under rapid distortion theory, the Navier-Stokes equations are linearized about the mean profile
[31,32,43] to yield the following momentum equation and continuity constraint:

∂u
∂t

+ U · ∇u + u · ∇U = −∇p + 1

Reτ

∇2u + (NL), (1)

and

∇ · u = 0. (2)

In the expressions above, U = [U (y), 0, 0] represents the mean profile, u = (u, v,w) denotes
the turbulent velocity fluctuations, p represents pressure fluctuations, and (NL) represents the
(neglected) nonlinear terms. A standard Cartesian coordinate system is used, in which x is the
streamwise direction, y is the wall-normal direction, and z is the spanwise direction; t is time.

Scaling arguments show that the nonlinear terms can be neglected in turbulent shear flows for
time horizons that are shorter than the typical eddy turnover time [31,32]. This makes RDT an
appropriate choice for the present problem requiring temporal reconstruction between sequential
PIV snapshots. However, even with the substantial simplification afforded by linearization, recon-
struction based on the full RDT equations is difficult in practice. This is because most common
PIV systems are only capable of generating planar 2D-2C field measurements. Assuming these
PIV measurements are carried out in the (x, y) plane to yield velocity components (u, v), additional
simplifying assumptions are needed to account for the out-of-plane flow and pressure gradient terms.
Here, we simply neglect these terms to yield the following coupled advection-diffusion equations
for streamwise and wall-normal velocity:

∂u

∂t
+ U

∂u

∂x︸ ︷︷ ︸
advection term

= 1

Reτ

(
∂2u

∂x2
+ ∂2u

∂y2

)
︸ ︷︷ ︸

diffusion term

− v
∂U

∂y︸ ︷︷ ︸
coupling term

, (3)
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and

∂v

∂t
+ U

∂v

∂x︸ ︷︷ ︸
advection term

= 1

Reτ

(
∂2v

∂x2
+ ∂2v

∂y2

)
︸ ︷︷ ︸

diffusion term

. (4)

In other words, the continuity constraint is not enforced. This ad hoc simplification is not rigorously
justified. However, solving two-dimensional versions of Eqs. (1) and (2) also introduces additional
modeling assumptions that are not rigorously justified and requires solution of the pressure Poisson
equation. Moreover, the initial and final velocity fields do not satisfy the two-dimensional continuity
equation. So, imposing this constraint for the intermediate reconstructions could lead to additional
numerical errors. Since the goal here is to generate simple models that can be used for flow
reconstruction, we proceed with Eqs. (3) and (4). These simplified, linearized versions of the
Navier-Stokes equations are referred to as RDT for the remainder of this paper to acknowledge
their conceptual origin (though we recognize that this terminology is not entirely accurate).

Under Taylor’s frozen turbulence hypothesis, the equations above are further simplified by
assuming that the advection term is dominant. This yields

∂u
∂t

+ U
∂u
∂x

= 0. (5)

As noted earlier, TH essentially assumes that the turbulent velocity field is ‘frozen’ in form and
advects downstream with the mean flow. So, the local mean velocity can be used to convert between
temporal variations and spatial variations.

Below, we employ the linear models grounded in RDT Eqs. (3) and (4) and TH Eq. (5) to
reconstruct the time evolution of a turbulent channel flow in the time interval (T ) between two
planar 2D-2C field measurement snapshots (e.g., from PIV). Note that the only input required for
these reconstructions is the mean velocity profile appearing in Eqs. (3)–(5), which can be obtained
from the snapshots themselves.

Keep in mind that reconstruction can proceed both forward and backward in time. In other words,
the equations above can be evolved forward in time using the first snapshot as the initial condition,
as well as backward in time using the second snapshot as the initial condition. These forward- and
backward-time predictions can be generated via numerical integration of appropriately discretized
versions of Eqs. (3)–(5). In addition, the advection equation in Eq. (5) can also be evolved backward
or forward in time using the method of characteristics. When using discretized versions of the
governing equations, the backward-time integration uses the transformation τ = T − t , such that
the new time variable has value τ = 0 for the final snapshot at t = T , and value τ = T for the
initial snapshot at t = 0. Note that this transformation switches the sign of the time derivative
term in Eqs. (3)–(5). This is equivalent to solving the RDT equations with negative convection
velocity, mean shear, and viscosity, and solving the TH equations with negative convection velocity.
An appropriately weighted combination of these forward- and backward-time estimates has the
potential to improve reconstruction accuracy. Below, we develop physically motivated weighting
schemes for this fusion of the forward- and backward-time estimates. Of course, the time evolution
of the flow between the two snapshots can also be estimated via linear interpolation, which does not
require any underlying models or weighting schemes. In Sec. III, we show that the reconstruction
framework developed in this paper yields velocity estimates that are significantly more accurate
than estimates obtained via direct interpolation.

B. Fusion of forward and backward estimates

The simplified linear equations obtained under RDT Eqs. (3) and (4) and TH Eq. (5) are evolved
forward in time from the first snapshot to yield a forward estimate for the velocity field, û f , and
backward in time from the second snapshot to yield a backward estimate, ûb. The reconstructed
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FIG. 2. Schematic showing the combined Region of Influence (ROI) and Domain of Dependence (DOD)
of two consecutive snapshots in the x-t plane at a given wall-normal location. Characteristics with slope
determined by the local mean velocity [dt/dx = 1/U (y)] are shown by the solid black lines at the yellow-green
and green-blue interfaces. The green region shows where the ROI of Snapshot 1 (S1) and the DOD of Snapshot
2 (S2) coincide. In this region both the forward and backward estimates are used for fusion.

flow field is given by a weighted average of these forward and backward estimates:

û = k f û f + kbûb. (6)

A simple way to fuse the forward and backward estimates is to use weights that vary linearly in time

k f = k f (t ) = 1 − t

T
; kb = kb(t ) = t

T
. (7)

Here t = 0 corresponds to the initial snapshot and t = T corresponds to the final snapshot. This
particular weighting scheme ensures that the forward-time estimate is weighted more heavily closer
to the initial snapshot and the backward-time estimate is weighted more heavily toward the final
snapshot.

This weighting scheme can be improved further by considering the mathematical nature of the
equations emerging from RDT and Taylor’s hypothesis. Since the hyperbolic advection term is
expected to be dominant in wall-bounded turbulent flows, information is expected to propagate
at a speed corresponding to the local mean velocity, U (y). This is illustrated in the x-t diagram
shown in Fig. 2. The region of influence (ROI) for the first snapshot and the domain of dependence
(DOD) for the second snapshot are determined by characteristics in the x-t plane that emanate
from the upstream (x = 0) and downstream (x = Lx) edge of the snapshots and have slope dt/dx =
1/U (y). For advection-dominated flows, information propagation from the forward-time evolution
is confined to the ROI of the first snapshot, and information propagation from the backward-time
evolution is confined to the DOD of the second snapshot. In other words, the forward-time estimate
is expected to be accurate only in the ROI of the first snapshot (i.e., green and blue regions in Fig. 2)
while the backward-time estimate is expected to be accurate only in the DOD of the second snapshot
(i.e., yellow and green regions in Fig. 2). Further, since the slope of the characteristics that define
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TABLE I. DNS datasets acquired from the JHTDB [3]. The time interval between individual snapshots
in the dataset is δt+ and the the total number of snapshots is N . For datasets 1 and 3, multiple snapshot
sequences are obtained for ensemble averaging purposes. Dataset 1 includes 48 different realizations obtained
at 6 different spatial locations and over 8 different time windows. Dataset 3 includes 12 realizations obtained
at different spatial locations. The last column lists the sections of the paper in which results corresponding to
each dataset appear.

Dataset Grid resolution δt+ N Realizations Sections

1 �x+ = �y+ ≈ 16 0.0649 256 48 III A, III D
2 �x+ = �y+ ≈ 4 0.0649 512 1 III B
3 �x+ ≈ 16 0.649 1024 12 III C

Logarithmic in y

the ROI and DOD is determined by the mean velocity, the size of the ROI and DOD also varies
with y.

To account for these effects, the weighting scheme in Eq. (7) can be modified as follows. The
linear weighting scheme in Eq. (7) can be retained in the common region of predictability for both
snapshots (green region in Fig. 2). The forward weight, k f , is set to 0 in the region outside the ROI
of the first snapshot (yellow region in Fig. 2) and the backward weight, kb, is set to 1. Similarly,
k f = 1 in the region outside the DOD of the second snapshot (blue region in Fig. 2) and kb = 0. The
resulting equations for the weights are

k f = k f (x, y, t ) =

⎧⎪⎨
⎪⎩

0 0 � x < l f(
1 − t

T

)
l f � x � Lx − lb

1 Lx − lb < x � Lx,

(8)

and

kb = kb(x, y, t ) =

⎧⎪⎨
⎪⎩

1 0 � x < l f
t
T l f � x � Lx − lb
0 Lx − lb < x � Lx.

(9)

In the expressions above, l f = U (y)t , lb = U (y)(T − t ), and Lx is the streamwise extent of the PIV
window. The upstream edge of the PIV window corresponds to x = 0 and the downstream edge
corresponds to x = Lx. Note that the weights shown in Eqs. (8) and (9) are dependent on (x, y)
as well as t , in contrast to temporal weighting scheme with k f = k f (t ) and kb = kb(t ) shown in
Eq. (7). Moreover, notice that the weights are discontinuous at x = l f (yellow-green interface in
Fig. 2) and at x = Lx − lb (green-blue interface in Fig. 2). Hence, this weighting scheme introduces
spatial shocks in the reconstructed flow field at those locations.

C. Numerical evaluation and error quantification

To test reconstruction accuracy for the forward, backward, and fused flow field estimates, we
use DNS data for turbulent channel flow at Reτ = uτ h/ν = h+ = 1000 available from the JHTDB
[3]. Here, h is the channel half-height, uτ is the friction velocity, and ν is kinematic viscosity. For
consistency with basic PIV systems, we use 2D-2C velocity data in the x-y plane that are sampled
uniformly in time and space (with one exception where the data are sampled with logarithmic
spacing in the y direction, as discussed below). In other words, we use systematically subsampled
DNS data as a surrogate for PIV measurements. The results presented below make use of three
complementary DNS datasets (see Table I). For each dataset, the PIV window extends across the
entire height of the channel (2h). The streamwise extent is also set to Lx = 2h.
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Dataset 1 in Table I is used to evaluate reconstruction accuracy for both RDT and TH for a
benchmark test case. This case has a uniform spatial grid comprising 129 × 129 points across
the PIV window including the walls at the top and bottom. A total of N = 256 snapshots are
acquired at a sampling rate of δt+ = 0.0649. Only the first and last snapshots in this dataset are
used for reconstruction and so the prediction time horizon is T + = Nδt+ ≈ 16. The intervening
snapshots from DNS are used to evaluate reconstruction accuracy. To evaluate statistical variations
in reconstruction accuracy for this benchmark case, similar data are extracted at 6 different spatial
locations and for 8 different time windows. In other words, this dataset comprises 48 independent
realizations with identical spatiotemporal resolution and prediction time horizon. Reconstruction
accuracy for this benchmark case is discussed in Sec. III A.

Dataset 2 in Table I is acquired at higher spatial resolution with 513 × 513 uniformly sampled
points across the 2h × 2h PIV window. This dataset includes N = 512 snapshots obtained at
intervals of δt+ = 0.0649, for a total time horizon of T + = Nδt+ ≈ 33. In Sec. III B, this dataset
is subsampled systematically to evaluate the effect of spatiotemporal resolution and prediction time
horizon on reconstruction accuracy for both RDT and TH. Dataset 3 is used to compute turbulence
statistics and spectra in Sec. III C. For this, we use logarithmic spacing with 129 grid points across
the channel to better evaluate reconstruction accuracy in the near-wall region. In the streamwise
direction, we use a uniform grid spacing of �x+ ≈ 16, similar to the benchmark case. For improved
statistical convergence, a total of N = 1024 snapshots are acquired at intervals of δt+ = 0.649 over
12 different spatial locations of the DNS domain. Reconstruction is carried out using every 25th
snapshot in this dataset, so that the prediction time horizon T + = 25 × δt+ ≈ 16 is comparable
to the benchmark case. Reconstruction is only carried out using the fused TH model for this
dataset.

As a point of comparison, for a physical system with PIV analysis being carried out for 16 pixel
by 16 pixel segments with 50% overlap (i.e., 8 pixels between data points), the benchmark case
with 129 × 129 uniformly distributed points represents the use of a camera with approximately
1 Megapixel (1 MP) resolution. The high-resolution dataset with 513 × 513 uniformly sampled
points across the PIV window represents the use of a camera with 17 MP resolution. Similarly, the
time horizon for the benchmark case, T + ≈ 16, corresponds to water flow with friction velocity
uτ = √

T +ν/T ≈ 0.04 ms−1 for a PIV system capable of 100 Hz sampling rate (T = 0.01 s)
and uτ ≈ 0.15 ms−1 for a system capable of 1000 Hz sampling rate (T = 0.001 s). For air flow,
the corresponding friction velocity estimates are uτ ≈ 0.15 ms−1 for a 100 Hz system and uτ ≈
0.5 ms−1 for a 1000 Hz system. These estimates assume a kinematic viscosity of ν ≈ 10−6 ms−2

for water and ν ≈ 1.5 × 10−5 ms−2 for air.
For the reconstruction, the simplified equations (i.e., Eqs. (3) and (4) for RDT and Eq. (5) for

TH) are numerically integrated forward in time from the first snapshot and backward in time from
the last snapshots over the prediction horizon. A standard finite-difference scheme is used for this
purpose. An explicit Euler method is used for time integration, a first-order upwinding scheme is
used for the advection terms, and a second-order central differencing scheme is used for the diffusion
and coupling terms. Numerical evaluation is carried out at the spatial resolution of the snapshots,
and a time step of δt+ = 0.0649. The Courant-Friedrichs-Lewy (CFL) condition is satisfied for
all parameter combinations. Due to the linear nature of the governing equations and the relatively
short prediction horizons (512 time steps at most), the results presented below are not particularly
sensitive to the choice of the numerical method. However, the finite-difference discretization does
introduce additional artificial viscosity. The magnitude of this viscosity increases with increasing
grid spacing [44].

For TH, the effects of the artificial viscosity introduced by the numerical discretization of Eq. (5)
can be eliminated by using the method of characteristics to evolve the flow field in time. Specifically,
the solution in the intervening period between the snapshots can be obtained by simply propagating
the initial and final flow fields along characteristics determined by the mean velocity. The forward-
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TABLE II. Description of the different reconstruction techniques used in this study. In general, superscripts
(+, −, or ±) represent time evolution while subscripts (t or tx) represent the fusion scheme. The ∗() notation
denotes characteristics-based evolution of the flow field with TH.

Technique Description

Interpolation Linear interpolation in time
RDT+ Forward time integration of Eqs. (3) and (4)
RDT− Backward time integration of Eqs. (3) and (4)
RDT±

t Forward and backward time integration of Eqs. (3) and (4)
Fused using temporal weights Eq. (7)

RDT±
tx Forward and backward time integration of Eqs. (3) and (4)

Fused using spatiotemporal weights Eqs. (8) and (9)
TH+ Forward time integration of Eq. (5)
TH− Backward time integration of Eq. (5)
TH±

t Forward and backward time integration of Eq. (5)
Fused using temporal weights Eq. (7)

TH±
tx Forward and backward time integration of Eq. (5)

Fused using spatiotemporal weights Eqs. (8) and (9)
∗TH±

tx Characteristics-based evolution of Eq. (5)
Fused using spatiotemporal weights Eqs. (8) and (9)

time evolution of the flow field can be computed from the initial snapshot u(x, y, t = 0) as

û f (x, y, t ) = u(x − U (y)t, y, 0). (10)

Similarly, the backward-time evolution of the flow field can be computed from the final snapshot
u(x, y, t = T ) as

ûb(x, y, t ) = u(x + U (y)(T − t ), y, T ). (11)

Here, û f and ûb are the forward- and backward-time estimates and U (y) is the mean velocity. By
construction, the forward-time estimate is confined to the ROI of the first snapshot (l f � x � Lx in
Fig. 2), and the backward-time estimate is confined to the DOD of the second snapshot (0 � x �
Lx − lb in Fig. 2). The full reconstructed flow field can be obtained by fusing these forward- and
backward-time estimates using the spatiotemporal weights shown in Eqs. (8) and (9).

Table II summarizes the different forward-time, backward-time, and fused reconstruction tech-
niques used in this study. Reconstruction accuracy is quantified using the following integrated error
metrics. The time-varying global error is defined as

ε(t ) =
{∫ 2h

x=0

∫ 2h
y=0[(u − û)2 + (v − v̂)2]dxdy

}1/2

[ ∫ 2h
x=0

∫ 2h
y=0(u2 + v2)dxdy

]1/2 , (12)

while the wall-normal variation in error over time is defined as

ε(y, t ) =
{∫ 2h

x=0

[
(u − û)2 + (v − v̂)2

]
dx

}1/2

[ ∫ 2h
x=0(u2 + v2)dx

]1/2 . (13)

In the expressions above, û and v̂ are the reconstructed velocity fluctuations, u and v are the velocity
fluctuations from DNS “truth,” subsampled to match the PIV spatial resolution. The lower wall of
the channel is located at y = 0 and the upper wall is located at y = 2h.
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FIG. 3. Time variation of integrated reconstruction error for the benchmark case with T + ≈ 16 and �x+ =
�y+ ≈ 16. The error is computed using Eq. (12) and averaged over 48 different realizations. The solid, dashed,
and dotted lines represent the mean and the color bands are spaced at 1 standard deviation from the mean line.
Table II provides a description of the different reconstruction techniques used in this figure.

III. RESULTS AND DISCUSSION

In this section, we evaluate reconstruction accuracy for all the techniques listed in Table II.
Reconstruction accuracy for the benchmark test case for the different models is evaluated in
Sec. III A. Specifically, we evaluate the time evolution of global error in Sec. III A 1, the wall-normal
variation in error over time in Sec. III A 2, and compare reconstructed flow fields with DNS
snapshots in Sec. III A 3. The effect of field measurement spatial resolution (�x+ = �y+) and time
horizon (T +) on reconstruction accuracy is considered in Sec. III B. Reconstructed statistics and
frequency spectra are shown in Sec. III C. This proof-of-concept study is based on field data from
DNS. In Sec. III D, we add Gaussian random noise to the first and last DNS snapshots used as inputs
in the RDT/TH models to evaluate the effect of noisy real-world measurements on reconstruction
accuracy.

A. Reconstruction accuracy for benchmark test case

1. Variation in global error over time

First, we compare reconstruction accuracy across different models for the benchmark case with
spatial resolution �x+ = �y+ ≈ 16 and prediction horizon T + ≈ 16 using dataset 1 (see Table I).
The evolution in global error Eq. (12) for the simplest possible reconstruction technique—linear
interpolation between the snapshots—is shown as the black line in Fig. 3. Note that the error is
averaged over 48 different spatiotemporal realizations from the DNS database. The mean error
across these 48 different cases is plotted as a solid line and the shading represents one standard
deviation about the mean. As expected the error is zero at the beginning and the end of the prediction
horizon, where snapshots of the flow field are available. The error reaches a maximum of εmax =
max(ε) ≈ 0.8 at the middle of the time horizon.

Next, we evaluate reconstruction accuracy for the forward time integration of the RDT equations
with the snapshot at t+ = 0 used as the initial condition (denoted RDT+). With this technique,
the global error is 0 initially and grows monotonically with time (solid blue line in Fig. 3). The
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reconstruction error exceeds the error from linear interpolation at t+ ≈ 10. Similarly, the backward
time RDT reconstruction (RDT−) yields 0 error at the end of the time horizon (i.e., at t+ = T + the
initial condition for the backward time integration) and increases monotonically as time decreases.
The reconstruction error from RDT− exceeds that from linear interpolation for times before t+ ≈ 6.
In other words, for this case, the error dynamics are similar for both the forward and backward time
RDT models.

Note that linear interpolation outperforms the RDT-based models because it uses both the first
and last snapshots over the prediction horizon for reconstruction. In contrast, the forward RDT
model uses only the first snapshot for reconstruction while the backward RDT model uses on the last
snapshot. To improve reconstruction accuracy for the RDT-based models, we can fuse the forward
and backward time estimates using the weighting functions shown in Eq. (7) and Eqs. (8), (9).
The fused RDT model that uses the temporal weighting function Eq. (7) is denoted RDT±

t . The
reconstruction error for this fused model (cyan line in Fig. 3) has a similar trend to the linear
interpolation method; i.e., it has 0 error at the beginning and the end and reaches a maximum in
the middle of the time domain. However, the maximum error is significantly lower: εmax ≈ 0.5 for
RDT±

t compared to εmax ≈ 0.8 for linear interpolation.
Figure 3 shows that the error from the fused estimate (RDT±

t ) exceeds that from forward
and backward reconstructions alone at early and late times. Ideally, any fusion would yield
reconstructions that are as good as, or better than, the individual RDT+ and RDT− estimates
over the entire time horizon. To a large extent, this can be achieved by taking into account the
advection dominated nature of the flow under consideration. As illustrated schematically in Fig. 2,
the fused reconstruction can be further refined using the spatiotemporal weighting scheme given
in Eqs. (8) and (9). This spatiotemporal reconstruction, termed RDT±

tx, has the lowest maximum
error of all the techniques considered thus far, with εmax ≈ 0.3 (green line in Fig. 3). Moreover,
the RDT±

tx reconstruction yields errors comparable to RDT+ and RDT− at early and late times,
respectively.

Next, we evaluate reconstruction accuracy for models grounded in Taylor’s hypothesis Eq. (5),
and compare these reconstructions against those obtained using RDT. Similar to the RDT models,
Eq. (5) can also be discretized and integrated forward or backward in time. These forward and
backward time reconstructions under TH are denoted TH+ and TH−, respectively. The forward and
backward TH predictions can be combined using the temporal weights shown in Eq. (7) to yield
the fused estimate TH±

t , or the spatiotemporal weights shown in Eqs. (8) and (9) to yield the fused
estimate TH±

tx. The fused reconstruction obtained using the method of characteristics Eqs. (10) and
(11) instead of numerical integration is denoted ∗TH±

tx. Note that we only consider the fused ∗TH±
tx

reconstruction because the characteristics-based evolution of Eq. (5) is not well defined outside the
ROI of the first snapshot and the DOD of the second snapshot.

Figure 3 shows the time evolution of error for the forward, backward, and fused reconstructions
obtained using TH as dashed lines. When the discretized form of Eq. (5) is used to generate
the forward- and backward-time estimates, reconstruction accuracy for the TH models is nearly
identical to that for the corresponding RDT models. However, reconstruction performance improves
further when the method of characteristics is used to evolve the flow field forward and backward in
time as shown by the dotted magenta line. Maximum reconstruction error for ∗TH±

tx is εmax < 0.2,
compared to εmax ≈ 0.3 for TH±

tx and RDT±
tx. This observation suggests that the artificial viscosity

introduced by the numerical discretization of Eq. (5) leads to a deterioration in reconstruction
performance for the relatively coarse spatial resolution used in the benchmark test case (�x+ =
�y+ ≈ 16). We explore this issue further in Secs. III B and III C. Similar performance across
the discretized RDT and TH models suggests that advection is the dominant physical mechanism
retained in Eqs. (3) and (4). The additional terms accounting for viscous effects and the interaction
between wall-normal velocity fluctuations and mean shear appear to be less important. However,
keep in mind that the planar approximations to the RDT equations used here also neglect viscous
effects due to out-of-plane gradients in the velocity, which are likely to be more important than
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FIG. 4. Wall-normal variation in reconstruction error as a function of time for the (a) RDT±
tx (b) TH±

tx and
(c) ∗TH±

tx models. The error is calculated using Eq. (13) and averaged over 48 different realizations.

the viscous effects arising due to streamwise gradients in velocity. In other words, the neglected
ν(∂2u/∂z2) term is expected to be larger in magnitude than the ν(∂2u/∂x2) term. Unfortunately,
accounting for out-of-plane gradients in streamwise and wall-normal velocity is not possible with
access to planar PIV measurements alone. Moreover, as we show in Sec. III C, reconstructions based
on discretized versions of the governing equations underestimate the intensity of the wall-normal
fluctuations in velocity. This may explain why inclusion of the additional v(∂U/∂y) term in Eq. (3)
does not yield substantially different reconstructions relative to those based on TH.

2. Wall-normal variation in error over time

The time-evolution of error for the fused RDT±
tx, TH±

tx, and ∗TH±
tx models is shown as a function

of wall-normal distance Eq. (13) in Fig. 4. Consistent with the plots in Fig. 3, the error is 0 at each
y location at the beginning and end of the time horizon and maximum in the middle for all models,
and ∗TH±

tx has the lowest reconstruction error at all wall-normal locations. The error is in general
higher in the inner region of the flow (below y+ ≈ 200 or y/h ≈ 0.2) where turbulence production
and turbulent kinetic energy are higher, and maximum reconstruction error increases closer to the
wall. However, keep in mind that the first grid point is at y+ ≈ 16 due to the linear distribution of
grid points. This means that buffer region of the flow is not resolved completely. Figure 4(c) also
shows the presence of distinct temporal oscillations in reconstruction error for ∗TH±

tx. The period for
these oscillations decreases with increasing distance from the wall and closely matches the timescale
�x+/U +. This suggests that the oscillations arise from specific grid locations leaving the ROI of
the initial snapshot or entering the DOD of the later snapshot as time advances (see Fig. 2).

The increase in reconstruction error with decreasing y+ could be attributed to the reduction
in turbulent timescales near the wall. Recall that linearization of the NSE is only accurate for
predictions over short periods of time. For y+ ≈ 10, the integral timescale for streamwise velocity
fluctuations has been estimated to be T +

u ≈ 20 while that for the wall-normal fluctuations has been
estimated to be T +

v < 10 [42]. Assuming these timescales are representative of typical eddy turnover
times, the applicability of RDT and TH is questionable in the near-wall region for the benchmark
case with prediction horizon T + ≈ 16. Integral timescales for the velocity fluctuations are known
to increase with distance from the wall and reach T +

u ≈ 110 and T +
v ≈ 50 at y+ ≈ 200 [45,46]. So,

the assumptions underlying RDT and TH are better satisfied with increasing distance from the wall,
which leads to an improvement in reconstruction accuracy.

3. Comparison of reconstructed flow fields with DNS

To provide further insight into the reconstructed flow fields obtained from the RDT±
tx and

∗TH±
tx models, Fig. 5 compares spatial snapshots of the fluctuating velocity fields from DNS and
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FIG. 5. Snapshots of the velocity field from DNS (a), (b), the RDT±
tx reconstruction (c), (d), and the ∗TH±

tx

reconstruction (e), (f) in the middle of the time horizon, when error is maximum. Profiles of streamwise and
wall-normal velocity at y+ ≈ 200 are plotted in panels (g) and (h). The bold solid lines show the reconstructed
velocity field for RDT±

tx , dotted lines are for ∗TH±
tx , and the fine solid lines show the DNS velocity field. The

locations of the shocks in the weighting functions for the reconstruction are highlighted in red.
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the reconstructions in the middle of the reconstruction time horizon (t/T = 0.5), when the error
is maximum. Figures 5(a), 5(c) and 5(e) show streamwise fluctuations from DNS, the RDT±

tx
reconstruction, and the ∗TH±

tx reconstruction, respectively. Similarly, Figs. 5(b), 5(d) and 5(f)
show wall-normal fluctuations from DNS, the RDT±

tx reconstruction, and the ∗TH±
tx reconstruction,

respectively. These spatial snapshots show that the reconstructed velocity fields obtained from
RDT±

tx qualitatively capture the large-scale structure. However, they do not reproduce small-scale
features of the turbulent flow field, particularly in the vicinity of the upper and lower walls. As shown
in Figs. 5(g) and 5(h), the reconstructed flow fields for RDT±

tx appear to have gone through a spatial
low-pass filter when compared to the DNS. In contrast, reconstructed flow fields obtained from the
∗TH±

tx model match the DNS results much more closely. This is also evident in Figs. 5(g) and 5(h),
which show that the ∗TH±

tx profiles retain nearly all the small-scale features present in the DNS
results, and there is minimal attenuation of fluctuation intensity. Reconstructed flow fields obtained
from the discretized TH±

tx model (not shown in Fig. 5) closely resemble those obtained from the
RDT±

tx model, i.e., they also appear low-pass filtered relative to DNS. This observation confirms
that the artificial viscosity introduced by numerical discretization of the governing equations is
responsible for the smoothing effect observed for the RDT±

tx and TH±
tx models. Recall that these

reconstructions are carried out using a much coarser spatial grid (�x+ = �y+ ≈ 16; see Table I)
compared to DNS. Since the artificial viscosity introduced by discretization is linearly proportional
to grid resolution, we anticipate significant smoothing for the benchmark case. The characteristics-
based evolution of Eq. (5) used for the ∗TH±

tx reconstruction introduces no such artificial viscosity.
Finally, recall that the spatiotemporal weighting functions shown in Eqs. (8) and (9) have

spatial shocks. These spatial shocks are not visible in the reconstructed flow fields shown in
Figs. 5(c)–5(f). However, the streamwise profiles of velocity at y+ ≈ 200 shown in Figs. 5(g)
and 5(h) do show the presence of minor discontinuities in the reconstructed velocity field. The
locations of the shocks in the spatiotemporal weighting functions Eqs. (8) and (9) are highlighted in
red for the reconstructed velocity profiles. The streamwise gradient in velocity is discontinuous at
both ends of the red regions, but smooth elsewhere. Together, Figs. 3–5 suggest that reconstruction
accuracy is similar for the discretized RDT and TH models for the benchmark test case. However,
reconstruction accuracy improves further when the method of characteristics is used to generate
TH-based reconstructions. Next, we assess the effect of measurement spatiotemporal resolution on
reconstruction performance.

B. Effect of measurement spatiotemporal resolution

In this section, we evaluate the accuracy of reconstruction as a function of spatial resolution
and prediction time horizon using dataset 2 (see Table I). For the fused RDT and TH models
with spatiotemporal weights, the integrated error is 0 at the beginning and end of the prediction
horizon and reaches a maximum in the middle. This maximum error is plotted as a function of
the grid resolution �x+(= �y+) and time horizon T + in Figs. 6(a)–6(c) for the RDT±

tx, TH±
tx, and

∗TH±
tx reconstructions, respectively. The grid resolution and time horizon for the benchmark case

considered above are shown as a black cross.
Consistent with the results shown in Sec. III A 1 for the benchmark case, reconstruction accuracy

is broadly similar for the discretized forms RDT±
tx and TH±

tx models. The characteristics-based re-
construction, ∗TH±

tx, shows similar trends, though reconstruction errors are generally lower and less
sensitive to spatial resolution. For a given time horizon T +, the maximum error increases gradually
as a function of �x+ for the RDT±

tx and TH±
tx reconstructions. For the ∗TH±

tx reconstruction, error
is relatively insensitive to grid resolution below �x+ ≈ 20 and only increases significantly beyond
this threshold value for �x+. The gradual increase in reconstruction error as a function of �x+
for the RDT±

tx and TH±
tx models can be attributed to the artificial viscosity introduced by numerical

discretization. The magnitude of this artificial viscosity is expected to increase as a function of �x+
[44]. The ∗TH±

tx reconstruction does not introduce any artificial viscosity. However, for higher �x+,
the initial and final snapshots include less information from smaller scale turbulent flow features.
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(a) (b) (c)

FIG. 6. Maximum reconstruction error (εmax) as a function of the grid resolution (�x+) and time horizon
T + for (a) RDT±

tx , (b) TH±
tx , and (c) ∗TH±

tx . The contour lines are shown at intervals of 0.05, and the benchmark
case is shown as the black cross. Figure 7 shows the variation in integrated error as a function of time for the
case marked with a black square (�x+ = 4; T + = 32).

The forward and backward reconstructions are therefore unable to resolve these smaller scales, and
reconstruction accuracy deteriorates.

For a given grid resolution �x+, the maximum reconstruction error increases as a function of
time horizon for all the models. As an example, for grid resolutions corresponding to the benchmark
case (�x+ = �y+ ≈ 16) the maximum error for RDT±

tx model increases from εmax ≈ 0.3 for T + ≈
16 to εmax ≈ 0.5 for T + ≈ 32. This observation is consistent with trends in Fig. 7, which show
that the forward and backward reconstruction errors increase monotonically with increasing and
decreasing time, respectively. Hence, as prediction time horizon increases, any fusion of the forward
and backward estimates is also expected to yield larger errors. In general, as discussed earlier, any
RDT- or TH-based reconstructions are expected to become less accurate as the prediction time
horizon increases relative to typical turbulence timescales.

FIG. 7. Variation in integrated error Eq. (12) as a function of time for the RDT, TH, and ∗TH reconstruc-
tions at the grid resolution and time horizon marked with a black square (�x+ = 4; T + = 32) in Fig. 6.

054604-16



RECONSTRUCTING THE TIME EVOLUTION OF WALL- …

Notably, Fig. 6(a) shows that the error for the RDT±
tx reconstruction grows dramatically with

time horizon beyond T + = 20 at the lowest grid spacing considered here, �x+ ≈ 4. In contrast,
Figs. 6(b) and 6(c) show no such increase in error for high grid resolutions and long prediction
horizons for the TH±

tx and ∗TH±
tx reconstructions. To provide further insight into this observation,

Fig. 7 shows the time evolution of error for all the RDT and TH reconstructions for the case
shown as a black square in Fig. 6, which corresponds to �x+ ≈ 4 and T + ≈ 33. Compared to
the forward RDT predictions (solid blue line), error for the backward RDT predictions (solid red
line) grows much more steeply with time. For instance, at t+ ≈ 16, the error associated with the
forward RDT prediction is ε ≈ 1, while that for the backward RDT prediction is ε ≈ 5. This
blowup can be attributed to the viscous terms in the RDT Eqs. (3) and (4). As noted earlier, when
integrating backward in time using the transformation τ = T − t , this viscous diffusion becomes
negative. This steepens spatial gradients in velocity and eventually leads to instability (especially
if additional noise is introduced). In contrast, for the forward RDT integration, viscosity serves to
smooth spatial gradients and damp external noise. The blowup in reconstruction error due to this
negative diffusion phenomenon is most prominent for lower grid spacing and longer prediction
horizons. This can be attributed to two reasons. First, snapshots with finer grid resolutions are likely
to include information from smaller-scale turbulent fluctuations with larger spatial gradients. These
large spatial gradients will be further amplified over time due to the negative effective viscosity in the
backward RDT estimates. Second, the finite-difference discretization scheme used here contributes
additional artificial viscosity. The magnitude of this artificial viscosity is proportional to the grid
spacing �x+ [44]. Hence, for higher grid spacing the effect of negative diffusion in the backward
RDT estimates is partially offset by artificial viscosity. However, for grid spacing �x+ ≈ 4, the
effect of this artificial viscosity is outweighed by the negative diffusion over longer prediction
horizons.

Neglecting the viscous diffusion terms in the RDT Eqs. (3) and (4), along with the coupling term
between horizontal and wall-normal velocity v(∂U/∂y) yields Eq. (5), corresponding to Taylor’s
hypothesis. This is an advection equation for the velocity fluctuations with the mean velocity as the
convection speed. This means that the velocity fluctuations are advected downstream with speed
U (y) for the forward TH estimates and upstream with speed U (y) for the backward TH estimates.
The dashed blue, red, and green lines in Fig. 7 show reconstruction accuracy as a function of time
for the forward, backward, and fused TH models, respectively. When integrating forward in time
the performance of the TH model is comparable to that for the forward RDT model. However, when
integrating backward in time, the TH model far outperforms the RDT model. While the backward
RDT model led to ε ≈ 5 in the middle of the prediction horizon, the backward TH model yields
ε ≈ 1. This is comparable to the reconstruction error for the forward TH model, suggesting that the
forward and backward time dynamics are similar under Taylor’s hypothesis (as expected from the
governing equations). Thus, eliminating the viscous diffusion term alleviates the sharp increase in
reconstruction error observed for the backward RDT estimates. This also means that the fused TH±

tx
model leads to significantly lower reconstruction error relative to the fused RDT±

tx model for fine
spatial resolutions and longer prediction horizons (see solid and dashed green lines in Fig. 7).

Note that reconstruction accuracy for the ∗TH±
tx model is similar to that for the TH±

tx at the grid
resolution considered in Fig. 7. As mentioned above, the artificial viscosity introduced by numerical
discretization increases as a function of grid spacing [44]. Hence, at smaller grid resolutions
both discretized and characteristics-based TH reconstructions yield similar results. Together, these
observations suggest that the TH±

tx and ∗TH±
tx models, which fuse the forward and backward TH

estimates using the spatiotemporal weights shown in Eqs. (8) and (9), yield more robust and accurate
reconstructions relative to the other techniques tested in this paper.

Keep in mind that the TH and ∗TH models use spatial information to infer time evolution. As a
result, reconstruction accuracy is limited by the spatial resolution of the snapshots. The accuracy of
the temporal reconstruction is expected to improve only if the frequency corresponding to the spatial
Nyquist limit, f +

s = U +/(2�x+), is higher than the temporal Nyquist frequency of the acquisition
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(a) (b) (c)

FIG. 8. Comparison of wall-normal profiles of (a) u2, (b) v2, and (c) uv from DNS with the TH±
tx and ∗TH±

tx

reconstructions. The solid black lines show statistics computed directly from DNS data. The dashed lines show
statistics for TH±

tx and the dotted lines show statistics for ∗TH±
tx . Reconstructions were carried out with the DNS

data subsampled at intervals of T + ≈ 16.

system, f +
t = 1/(2T +). The expression for f +

s above translates the spatial Nyquist limit (i.e., only
structures longer than 2�x+ can be resolved) into a frequency using Taylor’s hypothesis. The
requirement that f +

s be larger than f +
t translates into the following condition for spatial resolution:

�x+ < U +T +.
For completeness, we note that discarding just the viscous terms from the RDT equations while

retaining the coupling term in Eq. (3) does not yield any improvements in reconstruction accuracy
relative to the TH models. Similarly, Yang and Howland [38] suggest the use of instantaneous
streamwise velocity (U + u) instead of the the mean velocity in the near-wall region (30 � y+ �
100) to improve estimates relative to Taylor’s hypothesis. For the cases considered here, this only
leads to a marginal improvement in reconstruction accuracy (<0.5%).

C. Reconstructed statistics and spectra

Results presented in the previous section show that the forward-time estimates of velocity
obtained using TH are just as accurate as those obtained using RDT, when the governing equations
are discretized. However, the backward-time estimates obtained using TH are more robust given the
instability of the backward-time RDT predictions. As a result, the fused TH±

tx model yields recon-
structions that are just as accurate, and more robust, than the fused RDT±

tx model for the conditions
tested in this paper. Reconstruction accuracy improves further when the TH reconstructions are
obtained using a discretization-free method, at least for coarser grid resolutions. In this section, we
compare single-point velocity statistics and frequency spectra obtained using the successful TH±

tx
and ∗TH±

tx models against DNS results. We use dataset 3 for this evaluation (see Table I).
Figure 8 compares profiles of the streamwise and wall-normal turbulence intensities (u2 and v2)

as well as the Reynolds shear stress (uv) obtained from DNS against those obtained from the TH±
tx

and ∗TH±
tx reconstructions. The prediction time horizon for these reconstructions, T + ≈ 16, and the

streamwise grid resolution, �x+ ≈ 16, are identical to that for the benchmark case. However, the
grid points follow a logarithmic distribution in the wall-normal direction with a minimum spacing
of (�y+ ≈ 3) to allow for better comparison in the near-wall region. As discussed in Sec. II only
41 subsampled DNS snapshots are used for reconstruction. The statistics are then computed for
the reconstructed flow field. All reconstructed profiles show qualitative agreement with the DNS
profiles. However, Fig. 8(a) shows that the near-wall peak in streamwise fluctuation intensity (u2)
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for the reconstructed flow field is lower than the DNS value by approximately 15% for TH±
tx and

8% for ∗TH±
tx. Figure 8(b) shows that the wall-normal fluctuation intensity (v2) is under-predicted

to an even larger extent by the TH±
tx model. The peak value is reduced by approximately 35% for

TH±
tx and 10% for ∗TH±

tx. Similarly, the Reynolds shear stress profile in Fig. 8(c) is under-predicted
by about 20% in the near-wall region for TH±

tx and 9% for ∗TH±
tx.

Consistent with the results shown in Figs. 3–6, the ∗TH±
tx model outperforms the TH±

tx model
and yields single-point statistics that are in close agreement with DNS data. This improvement
in performance for the ∗TH±

tx model is illustrated well by the v2 profiles shown in Fig. 8(b).
The TH±

tx reconstruction attenuates the v2 profile much more than the ∗TH±
tx reconstruction. This

strong attenuation of the wall-normal velocity fluctuations is again caused by the artificial viscosity
introduced by the numerical discretization of Eq. (5). Since the wall-normal velocity fluctuations
have more energy content at higher frequencies and smaller scales compared to the streamwise
velocity fluctuations (see Fig. 9), they are damped more quickly by the artificial viscosity (see
Fig. 5). For completeness, we note that the ∗TH±

tx reconstruction does attenuate the intensity and
Reynolds’ stress profiles by roughly 10%. These errors would not be present in statistics computed
from non-time-resolved PIV snapshots, provided sufficient data are available to ensure convergence.
Also keep in mind that the DNS profiles shown in Fig. 8 are computed from a subset of the
full database: N = 1024 snapshots obtained at intervals of δt+ ≈ 0.649 (i.e., total duration is
N δt+ ≈ 660 viscous units) for 12 different 2h × 2h spatial windows. As a result, the profiles shown
in Fig. 8 are not expected to match the canonical converged profiles obtained from the full DNS. The
reconstruction is carried out with these data further subsampled in time: using every 25th snapshot
such that the prediction horizon is similar to the benchmark case, T + = 25δt+ ≈ 16.

The premultiplied power spectral density for the streamwise and wall-normal velocity fluctua-
tions are shown in Fig. 9, plotted as a function of frequency and wall-normal location. Figures 9(a)
and 9(d) show results obtained from DNS data. Figures 9(b) and 9(e) show results obtained from
the PIV-like data, i.e., DNS data subsampled at intervals of T + ≈ 16. Panels (c) and (f) show
results computed from the reconstructed velocity fields obtained using the best performing ∗TH±

tx
model. The classical inner peak at y+ ≈ 15 and f + ≈ 10−2 from the near-wall cycle [39], which
corresponds to streak-like structures with a streamwise wavelength of λ+

x = U +(y+ ≈ 15)/ f + ≈
103, is clearly evident in the DNS data for streamwise velocity shown in Fig. 9(a). However, Fig. 9(b)
shows that this peak is not resolved in the subsampled PIV-like data. This is a direct consequence
of Nyquist’s sampling criterion. For the PIV-like data, frequencies higher than f + = 0.5/T + are
not resolved. This translates into f + ≈ 3 × 10−2 for T + ≈ 16, which is insufficient to fully resolve
the near-wall peak. As a result, the distinct peak in the DNS data around f + ≈ 10−2 is replaced
by a region of high power spectral density at lower frequencies because of aliasing. In contrast,
Fig. 9(c) shows that the premultiplied spectra computed from the ∗TH±

tx reconstruction closely
match those in Fig. 9(a), both in terms of near-wall peak location and shape. The magnitude
of the peak is slightly reduced for the reconstruction relative to that of the DNS data, which is
consistent with the reduction in the magnitude of the reconstructed u2 profile observed in Fig. 8(a).
The wall-normal velocity spectra in Figs. 9(d)–9(f) show a similar trend. For the wall-normal
velocity fluctuations, the DNS spectra in Fig. 9(d) show a peak centered around wall-normal
location y+ ≈ 100 and frequency f + ≈ 7 × 10−2, which is above the Nyquist limit of the PIV-like
subsampled data. The reconstructed spectra shown in Fig. 9(f) capture the location of this peak
reasonably well. The magnitude of the power spectral density is again under-predicted slightly,
which is consistent with the reduction in magnitude of the v2 profile observed in Fig. 8(b) for the
reconstruction.

Figure 10 shows the error in the reconstructed power spectral densities relative to DNS for

both the streamwise velocity fluctuations, f (EDNS
uu − E

∗TH±
tx

uu )/u2
τ , and the wall-normal velocity

fluctuations, f (EDNS
vv − E

∗TH±
tx

vv )/u2
τ . As expected, for both components of velocity, reconstruction

errors are generally largest in the vicinity of the peaks in the spectra. It is also clear that errors
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Premultiplied power spectral density for streamwise velocity f Euu/u2
τ (a)–(c) and wall-normal

velocities f Evv/u2
τ (d)–(f). Panels (a) and (d) are obtained from DNS data. Panels (b) and (e) show the power

spectra from the PIV-like data, i.e., DNS data subsampled at a frame rate corresponding to T + ≈ 16. Panels
(c) and (f) show the power spectra obtained from the characteristics-based ∗TH±

tx reconstruction. Contour lines
are shown at intervals of 0.2 for panels (a)–(c), and 0.04 for panels (d)–(f).

are larger for frequencies above the Nyquist limit for the subsampled PIV-like data used for the
reconstruction. Consistent with the results shown in Fig. 9, the reconstructed velocity spectra deviate
very little from the DNS results below the Nyquist limit. In contrast, the spectra obtained directly
from the PIV-like snapshots [Figs. 9(b) and 9(e)] deviate substantially from the DNS results. In
other words, the reconstruction procedure used here improves spectral predictions even below the
temporal Nyquist limit of the input data. The ability to effectively reproduce these lower-frequency
fluctuations arising from larger-scale turbulent flow structures is likely to become even more
important in the reconstruction of wall-bounded turbulent flows at higher Reynolds numbers. The
fact that the ∗TH±

tx model is also able to reproduce important features in the frequency spectra above
the temporal Nyquist limit of the input data is an added bonus.

As noted earlier, Taylor’s hypothesis has long been used to convert premultiplied frequency
spectra, such as those shown in Fig. 9 but obtained from time-resolved point measurements, into
estimates of wavelength spectra. The time-resolved nature of the point measurements ensures that
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(a) (b)

FIG. 10. Error in reconstructed power spectral densities for (a) streamwise velocity and (b) wall-normal
velocity. The error is computed by taking the difference between power spectra obtained from DNS and the
∗TH±

tx reconstruction. The horizontal white line corresponds to the Nyquist limit for the PIV-like data sampled
at T + ≈ 16. Contour lines are shown at intervals of 0.05 (a) and 0.01 (b).

features with small streamwise wavelengths, which would appear as higher frequencies per Taylor’s
hypothesis ( f + = U +/λ+

x ), are resolved. Here, we use TH to reconstruct the time evolution of
the flow field from non-time-resolved field measurements. In this case, the small-scale spatial
information present in the intermittent velocity snapshots enables us to resolve dynamics at
frequencies higher than the temporal Nyquist limit. In other words, since the PIV-like measurements
are able to resolve flow structures with streamwise wavelengths as small as 2�x+, this spatial
information can be used to estimate spectra for frequencies up to f + = U +/(2�x+) under TH.

D. Effect of noise on reconstruction accuracy

Finally, we briefly evaluate the effect of random measurement noise on reconstruction accuracy
for the TH±

tx, and ∗TH±
tx models. Specifically, we add zero-mean, independent and identically

distributed Gaussian random noise of varying intensity to the initial and final snapshots prior to
reconstruction. Four different signal to noise ratios are tested, SNR = (∞, 20, 10, 5). SNR = ∞
corresponds to the noise free DNS data tested thus far. Figure 11 shows reconstruction accuracy
as a function of time for the benchmark case for both models. Similar to Fig. 3, these results are
averaged over the 8 different temporal and 6 different spatial windows included in dataset 1 (i.e., 48
different realizations) for each noise level. At the beginning and end of the prediction horizons, the
integrated error corresponds to the level of noise added. For example, the case with SNR = 5 leads
to ε = 0.2 for the initial and final snapshots.

For the TH±
tx reconstructions shown in Fig. 11(a), this added noise gets attenuated quickly

over time. In the middle of the prediction horizon, where the error is maximum, reconstruction
accuracy for all four SNR values is similar. In other words, reconstruction accuracy for the noisiest
snapshots (SNR = 5, black line) is very close to that for the noise-free data (SNR = ∞, blue line).
Averaged over the 48 different realizations, there is only a difference of 1.8% in εmax between the
noise-free case and the noisiest case with 20% initial error. The initial attenuation of noise can
be attributed to the artificial viscosity introduced by the finite-difference discretization used here.
This artificial viscosity attenuates any spatial gradients in velocity introduced by the random noise.
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(a) (b)

FIG. 11. Variation of integrated error as a function of time with 4 different initial noise levels for (a) TH±
tx

and (b) ∗TH±
tx . The solid lines show results averaged over 48 different realizations. A shaded gray band

representing one standard deviation above and below the average value from the 48 realizations is shown
for the noisiest case, i.e., SNR = 5.

The ∗TH±
tx reconstructions in Fig. 11(b) do not show as much damping of the initial noise. The

maximum reconstruction error, εmax, is approximately 4% larger for the noisiest case with SNR = 5
compared to the noise-free case. Despite the reduced damping, the ∗TH±

tx model yields more
accurate reconstructions than the TH±

tx model for all noise levels. Note that the ∗TH±
tx reconstructions

show distinct temporal oscillations in error. These oscillations are most evident for the noisiest case
with SNR = 5. When the error evolution is evaluated using Eq. (13) for a particular y location, the
oscillation period closely matches the timescale �x+/U +(y). This indicates that the oscillations
arise from individual grid points leaving the ROI of the first snapshot or entering the DOD of the
subsequent snapshot as time advances. Similar oscillations in reconstruction error are also observed
for the TH±

tx model. However, these oscillations are masked by the larger magnitude of the error.
Smoothing due to artificial viscosity may also play a role.

Real-world measurements are likely to suffer from both random and systematic error. Random
errors can be modelled reasonably using Gaussian white noise, as is done here. However, accounting
for systematic errors due to hardware limitations or analysis procedures requires different models
(e.g., multiplicative or additive noise of varying intensity). A detailed evaluation of such errors is
outside the scope of the present effort.

IV. CONCLUSIONS

The results presented in this paper show that both RDT and Taylor’s hypothesis can lead to
useful reconstructions of wall-bounded turbulent flows from non-time-resolved PIV snapshots.
Compared to previous reconstruction efforts, the methods proposed here are distinguished by the
following features. First, the methods are based on the governing Navier-Stokes equations, with
associated simplifying assumptions. Second, the models use spatial information from the snapshots
directly to infer time evolution; no additional time-resolved measurements are needed. Third, we
evolve the flow fields both forward and backward in time, and fuse these estimates to improve
reconstruction accuracy. This fusion is carried out using spatiotemporal weighting functions that
also take advantage of the advection dominated nature of wall-bounded turbulent flows (Fig. 2). The
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only input required for these reconstructions is the mean velocity profile appearing in Eqs. (3)–(5),
which can be obtained from the PIV data.

Overall, the use of Taylor’s hypothesis, with the local mean velocity (U ) as the convection speed,
leads to more robust and accurate reconstructions compared to the use of models grounded in RDT.
This result is somewhat counter-intuitive since the RDT Eqs. (3) and (4) include additional flow
physics. The forward time estimates from the RDT and TH models are of comparable accuracy.
However, the backward estimates from RDT are prone to instability due to the negative diffusion
introduced by backward time integration. This leads to substantial reconstruction errors over long
time horizons, especially from datasets with high spatial resolution (Fig. 6). The accuracy of the TH
reconstructions improves further when the method of characteristics is used to evolve the flow field
instead of time integrating the discretized form of Eq. (5). This is because numerical discretization
introduces artificial viscosity, which serves to damp out smaller-scale features present in the initial
and final snapshots. Consistent with physical intuition, reconstruction accuracy using the fused
TH model improves as the spatial resolution of the snapshots improves and as the prediction
time horizon between snapshots gets smaller. Using the instantaneous streamwise velocity (U + u)
in Taylor’s hypothesis compared to the mean streamwise velocity does not yield a substantial
improvement in performance. Since the convection speed of near-wall turbulent flow structures
is known to converge to c+ ≈ 10 below y+ ≈ 15 [36], perhaps reconstruction accuracy can be
improved further by altering the convection velocity in the viscous sublayer and buffer region of
the flow.

The fused TH model that utilizes the method of characteristics to evolve the flow field also proves
to be useful in reconstructing premultiplied spectra for frequencies that are above the Nyquist limit
of the acquisition rate of the PIV-like data. Spectra computed using the flow fields reconstructed
from DNS data subsampled significantly in time closely resemble spectra computed directly from
the DNS data. The reconstruction is also robust to random external noise, as shown in Fig. 11. The
effect of systematic errors in the field measurements remains to be studied.

High Reynolds number wall-bounded turbulent flows are known to be advection dominated.
Hence, the success of Taylor’s hypothesis and the spatiotemporal weighting scheme depicted
in Fig. 2 in flow reconstruction is perhaps not surprising. Taylor’s hypothesis has been used
extensively in previous studies to extract spatial information from temporal measurements (e.g.,
Refs. [34,35,37]). However, in this study, we use spatial information from field measurements to
infer the time evolution of the flow between two consecutive PIV-like snapshots. As discussed in
Sec. III B, since spatial information is used to infer time evolution, the resolution of the spatial data
limits reconstruction accuracy. The accuracy of the temporal reconstruction is expected to improve
only if the frequency corresponding to the spatial Nyquist limit is higher than than the frequency
corresponding to the temporal Nyquist limit of the acquisition system. This requirement translates
into the following condition for spatial resolution �x+ < U +T +. The other limit on reconstruction
is imposed by the hyperbolic nature of the governing equations for both RDT and TH. Equations (3)
and (4) or Eq. (5), can only be used to accurately reconstruct the flow field if the advection timescale
L+

x /U +, where L+
x is the streamwise extent of the snapshot, is less than the prediction time horizon,

T +. If this condition is not met, there will be regions in the x-t plane that are not covered either by
the region of influence for the first snapshot or the domain of dependence for the last snapshot.
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