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AT ANY recent bustling fluid dynamics conference, it has
become commonplace to hear the terms POD, DMD, Koop-

man, global stability, and resolvent in conversations. In fact, it is not
surprising to overhear these terms at cafes, restaurants, and bars in the
neighborhood of the conference venue, even outside of working
hours. These terms, or the modal analysis techniques they represent,
are now woven into many of our studies and serve as indispensable
tools. The acronyms of POD and DMD are practically known by any
fluid mechanician. In our research community, the use of these
acronyms has become so widespread that they are rubbing shoulders
with other acronyms like DNS, LES, RANS, LDV, and PIV.
There have been a number of extensive papers and reference

books on modal analysis techniques [1–14]. With the enhancement
in computational and experimental capabilities, there is need for the
use of these modal analysis techniques to systematically extract
physical insights frommassive complex flowfield data. Furthermore,
the wealth of information in these large data sets has inspired the
development of reduced-order models founded on modal bases
[15,16]. What has been very exciting over the past few years are
the developments in data science [17] that inspire novel extensions of
these analysis techniques. Given these vast and growing selections
of modal analysis techniques and their applications, it can be over-
whelming for an aspiring fluid mechanician to take a dive into the
vast literature. In addition, there are many nuances in their applica-
tions that are yet to be fully understood.
To address these issues, a discussion group entitledModal Analy-

sis of Aerodynamic Flowswas created by Douglas Smith and the first
author under the Fluid Dynamics Technical Committee at AIAA.
This discussion group was established with two objectives: 1) to
provide an educational service to a nonspecialist who seeks to gain
greater insight from a data set with modal decomposition/analysis
methods, and 2) to minimize the barriers to implementation of these
methods. This discussion group has benefited from a large group of
attendees who have supported the technical activities, including the
contributions to the invited sessions on modal analysis at AIAA
Aviation 2016§ (Washington, D.C.), Aviation 2017 (Denver), and
Aviation 2018 (Atlanta). These efforts have also permeated outside of
AIAA, resulting in the organization of a minisymposium at the 2017
APSDivision of Fluid DynamicsMeeting (Modal AnalysisMethods
for Fluid Flows) by Mitul Luhar with the first and second authors.
Each and every one of these sessions was attended by a large
audience, which is a testament to how widely modal analysis tech-
niques are used and continue to attract attention. Furthermore, as
archival products of these efforts from the discussion group, we have
compiled this Virtual Collection on Modal Analysis of Fluid Flows,
comprising of two overview papers [18,19] and eight contributed
papers [20–27].
The first overview paper [18] provides an overarching survey

of modal decomposition and analysis techniques to serve as an
educational guide. Included in the survey are the proper orthogonal
decomposition (POD) [1,2,28,29], balanced proper orthogonal de-
composition (BPOD) [30], dynamic mode decomposition (DMD)
[3,4], Koopman analysis [4,7], global stability analysis [10], and
resolvent analysis [11–13]. In the overview paper, the modal analysis
techniques are broadly categorized into data-based techniques (POD,
BPOD, and DMD) and operator-based techniques (Koopman, global
stability, and resolvent analysis), with discussions on the relations
among them. The methods covered in the first paper are the most
commonly used modal analysis techniques in fluid mechanics and are

established on the theories of eigenvalue decomposition and singular
value decomposition.
As a companion to the first overview paper, a second overview

paper [19] was compiled to demonstrate how the outputs of these
modal analysis techniques can be interpreted to extract physical
insights. The second overview paper presents a collection of exam-
ples and applications of modal analyses for the canonical flows of
cylinder wakes, channel flows, airfoil wakes, and open cavity flows.
Also included in the second overview paper is an outlook on modal
analysis techniques. As data science and applied mathematics make
advancements in handling large data sets and operators, it is an
exciting time to expand the envelope of modal analysis techniques
to analyze high-dimensional high-Reynolds-number turbulent flows
and multiphysics fluid flow problems. In fact, there are already
promising advances on performing modal analysis with randomized
techniques [31–34] and machine learning [35–37], as well as devel-
opment of sparse models [38].
The remainder of the Virtual Collection consists of eight technical

papers, each providing an in-depth demonstration of the modal
decomposition methods for analysis, modeling, and control of fluid
flows. The paper by Schmidt and Colonius [20] presents some new
guidelines on the use of POD in the spectral domain [28,39], which
they term “spectral POD” (SPOD). They present illustrative exam-
ples of applying SPOD on flowfields obtained from a large-scale
turbulent jet simulation and a vertical wind turbine experiment,
extracting the frequency spectra and modal profiles. Chavarin and
Luhar extend the resolvent formalism to analyze and predict the effect
of riblets on the drag within a turbulent channel flow [24]. The
resolvent gains are found to be relevant predictors of drag increase
and decrease, creating opportunities to exploit these low-order resol-
vent models in riblet shape optimization. The resolvent framework
is also used to analyze cavity flows with stable and unstable base
states by Sun et al. [23]. In their work, guiding steps for resolvent
analysis are provided with examples of laminar and turbulent com-
pressible open cavity flows to elucidate physics insights. Ansell and
Mulleners tailor the empirical mode decomposition (EMD) [40] to
analyze the multiscale vortex characteristics of dynamic stall [26].
The EMD approach is used to distill PIV data from wind tunnel
experiments into a set of intrinsic modes that reflect the complex
physics associated with vortex formation, vortex pairing, and shear-
layer roll-up.
The utility of modal decomposition methods for predictive and

control-orientedmodeling is also demonstrated in a number of papers
in this collection. Xu et al. use projection-based reduced-order mod-
els to expedite numerical simulations of a quasi-one-dimensional
rocket combustor without compromising predictive performance
[27]. POD–Galerkin models are devised to model the combustion
instabilities in an upstream domain, which are then integrated with
full-order models of the downstream domain. Bai et al. show that the
DMD framework can be combined with ideas from compressed
sensing to solve challenging problems in system identification
[21]. The approach is demonstrated for the identification of input–
output models from heavily subsampled data of flow past a pitching
airfoil. Not only are these models ideal for subsequent control
analysis and design tasks, but they are also shown to be physically
interpretable. Kalur and Hemati show that modal decomposition
techniques can be used for control-oriented model reduction,
allowing feedback control design using computationally intensive
convex-optimization-based techniques [22]. By combining balanced
truncationwith output projection onto PODmodes, optimal feedback
controllers are designed to minimize the maximum transient energy
growth of flow perturbations within a channel flow. Symon et al. use
variational data assimilation within the resolvent framework to

§Presentations from the invited session at Aviation 2016 have been made
available online at https://www.youtube.com/playlist?list=PLOl5RDXeYOMC
NXko4fMx2ciVmTbbIGcB5.
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reconstruct the mean and unsteady components of flow over a
cylinder from a single point sensor [25]. Resolvent analysis is further
used to develop strategies for placing multiple sensors.
The publication of this Virtual Collection in the AIAA Journal

completes the activities of theModal Analysis of Aerodynamic Flows

Discussion Group. The efforts of this group have evolved and
continue through a new discussion group on Reduced-Complexity

Modeling and Analysis of Fluid Flows chaired by the second author
and Karthik Duraisamy. We greatly look forward to the future
developments of modal analysis techniques and their applications on
complex fluid flows. Before closing, we gratefully acknowledge the
support and encouragement from Douglas Smith, Steven Brunton,
Scott Dawson, Tim Colonius, Mitul Luhar, Karthik Duraisamy,
Alexander Smits, Peyman Givi, and the contributors to our discussion
group, who have made this endeavor possible and enjoyable.
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