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Abstract— This paper discusses methods for model reduction
of power system dynamics. Dynamical models for realistic
power-systems can very easily contain several thousands of
states. The dimensionality increases further when considering
the dynamics of distributed energy resources; these systems are
typically smaller in power rating, so many more are installed
at the grid edge to scale capacity. Computationally efficient
models that capture the dominant modes of the system are
important for all aspects of power-system operation, control,
and analysis. In this paper, we analyze two data-driven methods
for model reduction of power systems: i) proper orthogonal
decomposition, which is based on singular value decomposition,
and ii) a constrained convex-optimization framework with
stability guarantees. Advantages and disadvantages of both of
these methods are discussed. Exhaustive numerical simulations
for a low-inertia system with mixed synchronous generator and
wind energy conversion system resources are provided to verify
the accuracy of the model-reduction methods.

I. INTRODUCTION

The dimension of state-space models that describe power-
system dynamics can easily contain a few thousand states.
This imposes a considerable computational burden on ap-
plications such as small signal stability analysis, dynamic
simulation, sensitivity analysis, and control design. With
the addition of renewable energy resources to the grid like
wind and solar, the state dimension of the system can
grow by another order of magnitude. The reason being
that typical ratings of these resources is far below that
of conventional fossil-driven generation; consequently, to
scale capacity, many such units would need to be installed.
Furthermore, with the introduction of such resources, the
dynamical models that capture the electromechanical and/or
electromagnetic behavior of the system may not be perfectly
known due to parametric uncertainty or they may not be
homogeneous and structured: attributes that have long been
leveraged for a variety of tasks spanning modeling, analysis,
and control design for bulk power systems dominated by
synchronous generators.

The challenges highlighted above imply that model-
reduction methods are critical to facilitate operations and
control in power systems. Broadly, the choice of model-
reduction method primarily depends on the properties of a
given system that are to be retained in the reduced-order

Sanjana Vijayshankar, Andrew Lamperski, and Sairaj Dhople are with
the Department of Electrical and Computer Engineering, University of
Minnesota, Minneapolis, MN 55455. E-mails: {vijay092, alampers, sdho-
ple}@umn.edu. Maziar S. Hemati is with the Department of Aerospace
Engineering and Mechanics, University of Minnesota, Minneapolis, MN
55455. E-mail: mhemati@umn.edu. This work is supported in part by the
National Science Foundation through award 1453921.

model. Of the scores of analytical, numerical, and data-
driven approaches that have been proposed in the literature,
two types of methods are particularly relevant in the context
of this work: those motivated by obtaining a balanced (i.e.,
it is as controllable as it is observable) realization of the
system; and data-driven methods grounded in singular value
decomposition (SVD) of time-series data collected from
the originating system. Balanced model reduction [1], [2]
innately offers stability guarantees on the reduced order
model whereas SVD-based data-driven methods [3] are prone
to instability. Model reduction has been a widely studied
topic in the context of power-system dynamics [4], [5] given
that most tasks related to small signal stability analysis
and control design would be intractable (analytically and
computationally) for the originating nonlinear full-order-
system differential algebraic equation models. Most methods
for model reduction focus on obtaining a linearized repre-
sentation of the underlying dynamics, which, in many cases
provides accurate descriptions of pertinent electromagnetic
and electromechanical behavior [3], [6]. Specific methods of
note include: i) Coherency [7], [8], which is an approach by
which generators that belonging to the same coherent group
are aggregated, thereby reducing the dimension of the system
dynamical model; and ii) Singular perturbation analysis [9],
where timescales are explicitly partitioned and dynamics at
a given time-scale are retained in the reduced-order model.
Data-driven and optimization-based methods, however, have
received limited attention. A few notable contributions in this
domain include [10], [11].

This paper develops two data-driven techniques for model
reduction. First, an SVD based method called Proper Orthog-
onal Decomposition (POD) is applied to project linearized
power-system dynamics to a lower dimensional subspace.
POD has no analytical guarantees for the stability of the
reduced-order system. As a mitigatory solution to this par-
ticular concern, the second method we put forth involves an
optimization framework for model reduction that preserves
stability of the originating full-order model. The approach
is an extension of a convex-optimization method developed
by Lacy and Bernstein [12] for system identification. Our
approach builds off this method, and leverages it for model
reduction by appending rank constraints in the involved opti-
mization problem to yield a low-rank solution. Furthermore,
we also put forth a linear relaxation of the problem to ensure
computational efficiency. From an application standpoint,
we want to emphasize that the data-driven foundation of
the proposed method is perfectly aligned with the task
of obtaining reduced-order models where the underlying



dynamics are due to heterogeneous energy-conversion in-
terfaces or model parameters may not be perfectly known.
This induces significant modeling complexity and renders
analytical approaches intractable. With this general feature
in mind, we provide simulation results for a setting that
might be representative of a future low-inertia power system:
a network composed of synchronous generators and power-
electronics based wind energy conversion systems (WECS)
with inertial and droop control.

The remainder of this paper is organized as follows. In
Section II, we describe the dynamical models of the system.
Next, we discuss the two methods for model reduction in
Section III. We present results for each one of these in
Section IV. Finally, we conclude the paper in Section V.

II. MODELS FOR SYNCHRONOUS GENERATOR, WECS,
AND NETWORK

In this section, we describe the differential-algebraic
equation (DAE) models that capture the electromechanical
dynamics of synchronous generators and wind turbines in a
power network. We provide an abridged discussion (leaving
out precise details with regard to state variables, algebraic
variables, filter parameters, and controller gains) for the
dynamical models. For specific details, we point out that the
synchronous machine model is adopted from [13], while the
WECS model is based on our previous work [14].

A. Synchronous Generator Model

The synchronous generators are modeled with a two-axis
model and governor dynamics are ignored. The terminal
voltage is governed by a voltage regulator and associated
exciter circuitry. An IEEE Type-I exciter (which utilizes
a first-order lead-lag compensator) is assumed. The DAE
model governing the synchronous generator dynamics is of
the general form:

ẋm = fm(xm, zm, um), (1)
0 = gm(xm, zm, um), (2)

where the dynamic states, xm, algebraic variables, zm, and
inputs um of the machine are:

xm = [E′d, E
′
q, δg, ω, Efd, VR, RF]T, (3)

zm = [Id, Iq]T, um = [Vref , Tm]T. (4)

A brief overview of the dynamic and algebraic states is
as follows: E′d and E′q are the direct and quadrature-axis
transient internal voltages; δg and ω are the machine angle
and frequency, respectively; Efd is the field voltage; VR and
RF are the voltage regulator state and the rate feedback state
of the voltage regulator, respectively. The machine terminal
currents, Id and Iq, serve as the algebraic states. Inputs
include the mechanical torque Tm and the voltage reference
for the exciter circuitry, Vref . Closed-form expressions for the
functions fm : R7×R2×R2 → R7 and gm : R7×R2×R2 →
R2 are available in [13], and not explicitly spelled out here
due to space constraints.

B. Wind Energy Conversion System (WECS) Model

The WECS is assumed to be composed of Type-3 wind
turbines. Type-3 turbine dynamical models are composed
of the following sub-systems: aerodynamics, doubly fed
induction generator (DFIG), rotor-side converter , grid-side
converter, DC-link capacitor, and other filters. The turbine
aerodynamic model captures the dynamics of the gener-
ator speed and turbine rotor speed. Stator currents and
rotor transient voltages are the states of the DFIG. The
rotor side converter includes outer-loop reactive-power and
electromagnetic-torque controllers, and inner-loop current
controllers. The grid-side converter consists of a full-bridge
inverter, and the corresponding control architecture is com-
posed of a phase-locked loop (PLL), an outer-loop power
controller, and an inner-loop current controller. In all, each
turbine has 27 state variables [14].

In our previous work [14], we have established parametric
scalings with which one can obtain an aggregated reduced-
order model with the same dimension and structure as any
wind turbine in a WECS composed of N turbines. That is,
a wind farm dynamical model can be derived with the same
model order as that of an individual turbine (which is 27
in this case). We provide a brief overview of what such
an aggregate model involves. Inductances and resistances in
output filters are scaled by a factor of N−1, while the DC-
link capacitance is scaled by N given the parallel intercon-
nection. Pertinent controller gains for current controllers are
also appropriately scaled, while controller gains for the PLL
and power-side controllers are unchanged. These scalings
make intuitive sense given the parallel interconnection. In
effect, the state-space model for a WECS composed of N
Type-3 turbines can be expressed in the form:

ẋw = fw(xw, uw), (5)

where, we refrain from explicitly listing and describing all
27 states to preserve brevity of discussion, and the inputs are
as follows:

uw = [Nq∗, va
g , v

b
g , v

c
g, vw]T. (6)

The inputs to the model are the wind speed, vw, reactive
power references for the turbines, q?, and grid voltages,
va

g , v
b
g , v

c
g. A detailed description of all entries of the nonlin-

ear function fw : R27×R5 → R27 capturing all aerodynamic,
electromechanical, controller, and filter dynamics is provided
in [14].

C. Power Network Model

Interactions of the different energy-conversion interfaces
in the power network are captured by Kirchoff’s laws.
These algebraic equations can be significantly simplified by
eliminating nodes in the network with zero-power injections
through a process called Kron reduction. The algebraic equa-
tions that describe the interconnection of the wind farm and
the synchronous generators through the electrical network
can be subsequently compactly written as:

0 = gn(xw, uw, zm). (7)



It so emerges for a network with impedance-based loads, that
the function gn is such that the algebraic variables can be
explicitly expressed as functions of dynamic states. In short,
this means that the complete model can be expressed only
with dynamic equations and it can be subsequently linearized
around a suitable operating point.

A power network comprising Ngen synchronous gener-
ators and NWECS WECS, each with say Ntur turbines
would be described by a dynamical system model of order:
7 × Ngen + 27 × NWECS. (Notice that we do not have an
additional factor of Ntur given that we employ an aggregated
model for each WECS.) Evidently, modeling, analysis and
control of such a system at scale (Ngen > 10, NWECS > 100
for a realistically sized synchronous balancing area) would
be infeasible and intractable with the original system models.

III. MODEL REDUCTION METHODS

Given the models for the synchronous generators, WECS
and the power network in, (1), (5) and (7) respectively, we
are interested in deriving a stability-preserving, discrete-time
reduced-order model with m inputs and p outputs admitting
the following representation:

xk+1 = Arxk +Bruk,

yk = Crxk +Druk.
(8)

Above, Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r and Dr ∈
Rp×m. A similar representation expressed with matrices
A,B,C,D follows for the full-order stable discrete-time
model that is obtained by suitably linearizing the originating
dynamics. We next overview two methods to obtain the
reduced-order model. In subsequent discussions, we will
denote the dimension of the full-order model by n, and the
dimension of the reduced-order model by r.

A. Method I: POD-Galerkin Approach

Proper orthogonal decomposition (POD) [15], [16] is a
method for obtaining a basis that optimally spans a given
set of data. This basis may then be used for Galerkin
projection which allows one to obtain a reduced-order rep-
resentation [3]. Here we briefly discuss the method in the
context of finite-dimensional systems.

First, we generate l snapshots of system states for time
indices k, . . . , k+ l− 1 from the full-order model, and form
an augmented data matrix:1

∆k:k+l−1
x :=

[
xk xk+1 . . . xk+l−1

]
∈ Rn×l. (9)

Let us denote rank(∆k:k+l−1
x ) =: ρ∆. An economy-sized

SVD of ∆k:k+l−1
x is given by

∆k:k+l−1
x = UΣV ∗, (10)

where (·)∗ denotes complex-conjugate transpose, the diag-
onal matrix Σ ∈ Rρ∆×ρ∆ is invertible and includes all
non-zero singular values, and U∗U = V ∗V = In×n. The

1We abuse notation slightly in the definition (9) with regard to (8)
by denoting the states sampled from the full-order model also by xk .
Differences are indeed contextually evident.

columns of U are called POD modes and the rows of ΣV ∗

form the temporal amplitudes [3].
Following the approach in [15], the POD modes can be

used to obtain a reduced-order model as below with the
following Galerkin projection:

Ar = U∗r AUr, Br = U∗r B,

Cr = CUr, Dr = D,
(11)

where, recall that A,B,C,D are system matrices for the
full-order model, and Ar, Br, Cr, Dr are the corresponding
reduced-order counterparts. Furthermore, Ur denotes the first
r ≤ ρ∆ columns of U .

B. Method II: Constrained Optimization with Guaranteed
Stability

In this method, we develop a data-driven constrained
optimization framework for model reduction that also em-
phasizes stability of the reduced-order model. We introduce
the approach through a sequence of developments.

1) Weighted Least-squares Problem: As a first step in the
model-reduction method, consider the weighted least squares
problem with cost function:

J(Ar, Br, Cr, Dr) (12)

=

∥∥∥∥∥
([

∆k+1:k+l
x

∆k:k+l−1
y

]
−
[
Ar Br

Cr Dr

] [
∆k:k+l−1
x

∆k:k+l−1
u

])
R

∥∥∥∥∥
F

,

where ‖·‖F denotes the Frobenius norm; ∆k+1:k+l
x ,

∆k:k+l−1
x , ∆k:k+l−1

y , ∆k:k+l−1
u are augmented data matrices

for system state x, output, y, and input u of the full-order
model (of the same form in (9)); and R is a weighting
matrix. For subsequent developments, we will find it useful
to express

J2(Ar, Br, Cr, Dr) = J2
1 (Ar, Br) + J2

2 (Cr, Dr), (13)

where

J1 :=

∥∥∥∥∥
(

∆k+1:k+l
x − [Ar, Br]

[
∆k:k+l−1
x

∆k:k+l−1
u

])
R

∥∥∥∥∥
F

, (14)

J2 :=

∥∥∥∥∥
(

∆k:k+l−1
y − [Cr, Dr]

[
∆k:k+l−1
x

∆k:k+l−1
u

])
R

∥∥∥∥∥
F

. (15)

The optimal values of Cr, Dr, which we denote by C?r , D
?
r ,

respectively, can be obtained in closed-form quite straight-
forwardly from above. However, the solution to the above
least squares problem will not necessarily yield a stable Ar.
In the following developments, we provide an approach to
ensure stability.

2) Guaranteeing Stability: Asymptotic stability of Ar is
equivalent to requiring the following Lyapunov inequality
with a positive definite matrix P :

P −ArPA
T
r < δIr. (16)

We wish to ultimately reflect the above constraint in the
weighted least-squares optimization problem. To do so, we
first recognize using the Schur-complement lemma, that the



above constraint can be equivalently expressed as:[
P − δIr ArP
PAT

r P

]
< 0, (17)

where δ > 0, and it is introduced to facilitate computation.
Now consider expressing weighting matrix R in the follow-
ing form:

R =

[
∆k:k+l−1
x

∆k:k+l−1
u

]‡ [
PR1 0r×m
0m×r R2

]
, (18)

where, R1 ∈ Rr×r and R2 ∈ Rm×m, and with regard to
notation,

V ‡ := V T(V V T)†,

with (·)† denoting the matrix pseudo-inverse. Substituting R
from (18) above in (12), we get the cost function:

J̃(Ar, Br)

=

∥∥∥∥∥
(

∆k+1:k+l
x

[
∆k:k+l−1
x

∆k:k+l−1
u

]‡
×
[
PR1 0r×m
0m×r R2

]
−
[
ArPR1 BrR2

])∥∥∥∥∥
F

. (19)

We can express this in the form:

J̃2(Ar, Br) = J̃2
1 (Ar) + J̃2

2 (Br), (20)

where

J̃1(Ar) := ‖(∆1 −Ar)PR1‖F, (21)

J̃2(Br) := ‖(∆2 −Br)R2‖F, (22)

[∆1 ∆2] := ∆k+1:k+l
x

[
∆k:k+l−1
x

∆k:k+l−1
u

]‡
, (23)

and ∆1 ∈ Rn×n and ∆2 ∈ Rn×m. It is not hard to see that
the minimizer for Br, B?r = ∆2.

Now, define the following change of variables

Q := ArP , (24)

and consider the following semidefinite program,

min
P,Q

‖(∆1P −Q)R1‖2F

s.t.

[
P − δIr Q
QT P

]
< 0.

(25)

With the optimal values of P,Q denoted by P ?, Q?, respec-
tively, the optimal value of A?r follows from (24) to be

A?r = Q?(P ?)−1. (26)

This is the method developed by Lacy and Bernstein [12]
for system identification. The following section recasts (25)
as a model reduction problem.

3) Model Reduction: The developments thus far enable
identifying system matrices given data. We next describe
how to extend this by introducing rank constraints in (25)
to achieve a reduced-order system model. To be able to use
solvers like CVX [17], we need a convex alternative to the
rank of matrix Ar. The following theorem [18] gives us a

convex surrogate to the matrix rank.

Theorem 1. The convex envelope of the function
φ(X) = rank(X) on C = {X ∈ Rm×n‖X‖ ≤ 1} is
φenv(X) = ‖X‖∗, where ‖X‖∗ is the nuclear norm of X .

Thus, by penalizing ‖Ar‖∗, we can get a low-rank ap-
proximation of the system dynamics. However, Ar does not
appear directly in (25), rather, it appears through Q. With that
said, rank(Q) = rank(Ar) because P is full rank. Thus, we
can reformulate (25) as:

min
P,Q

‖(∆1P −Q)R1‖2F + γ‖Q‖∗

s.t.

[
P − δI Q
QT P

]
< 0.

(27)

This problem is convex, however, we observed that although
the results obtained were accurate as well as of reduced
order, the problem did not scale very well and is not very
computationally efficient. In order to address this challenge,
we use the following theorem [19], which allows us to obtain
linear constraints corresponding to the positive semidefinite
ones.

Theorem 2. If a Hermitian matrix X is diagonally dominant,
i.e., Xii ≥

∑
i 6=j |Xij | then X < 0.

Using Theorem 2, we modify (27) to get:

min
P,Q

‖(∆1P −Q)R1‖2F + γ‖Q‖∗

s.t. Pii ≥
∑
i6=j

|Pij |+
∑
j

|Qij |

Pii ≥
∑
i6=j

|Pij |+
∑
j

|Qji|.

(28)

Replacing the positive semidefinite constraint in (15) with the
linear constraints in (28) facilitates computations for larger
problems.

IV. NUMERICAL SIMULATION RESULTS

In this section, we present simulation results for Methods I
and II introduced in Section III. Simulations are performed
on a personal computer with an Intel Core i5 CPU and 16 GB
RAM to reduce the model order of dynamics corresponding
to a modified Kundur two-area power system discussed
next. For the simulation setup, requisite data is collected by
simulating the original nonlinear full-order model, although,
conceivably, they could be collected from appropriate mea-
surements.

A. Modified Kundur Two-area System

The topology of the Kundur two-area system [20] used in
the simulation studies is depicted in Fig. 1. It contains eleven
buses with four generators connected to buses 1, 2, 3, 4, and
two RLC loads, each connected to buses 7, 9. The standard
Kundur two-area model is modified by replacing the PQ
buses at 7, 9 with parallel RLC loads and by including a
WECS with Ntur = 10 at bus 4. The full order model is
described by a system dynamical model of order n = 298.



Fig. 1: Schematic depicting single-line diagram of a modified version of the Kundur two-area network used in the case
studies. Buses 1 through 4 include synchronous generators G1, G2, G3 and G4. A WECS, denoted T1 with Ntur = 10
turbines, is connected at bus 4. Impedance loads are connected at buses 7, 9. The dimension of the state-space model
corresponding to the original full-order model, n = 298.

Reduced-order

Fig. 2: Grid frequency at Bus #1 (See Fig. 1). Here, r = 8.

The wind farm is first reduced using the aggregation
technique described in [14]. This method relies on using
parametric scalings to represent the dynamics of an entire
wind farm as a single, large wind turbine. The resultant
system is of state dimension 53. The results presented next
apply the model reduction techniques described in Section III
to this system to further reduce the state dimension.

B. Results for Method I

In this section, we present some results that verify the
accuracy of the POD-Galerkin approach. We first generate
snapshots as in (9) from a simulation of the full-order
model. (In practice, these data points could be collected from
measurements.) Left singular vectors of this data gives us the
principal directions of the system. Figure 2 compares the
time-domain simulations of the grid frequency at Bus #1 of
the reduced- and full-order models. These match up perfectly
well. The number of columns of U required to obtain Ur is
decided using inferences that can be drawn from Fig. 3 which
plots the cumulative concentration of POD modes. It is clear
from Fig. 3 that 8 columns of U are sufficient to capture all
the energy of the system. Thus, the resultant reduced-order
model is order 8.

Fig. 3: Cumulative concentration of POD modes for n = 53.
The curve saturates at n = 8 indicating that 8 modes are
sufficient to capture the energy of the whole system.

C. Results for Method II

In this section, we focus on the convex-optimization-based
method in Section III-B to obtain a reduced-order model de-
scription with stability guarantees. Figure 4 compares Bode
plots of the full- and reduced-order models and demonstrates
the accuracy of the reduced-order model. The reduced rank
obtained by solving the optimization problem in (28) is 21.
The matrix Ar in the reduced-order model is of dimension
21, while the full-order matrix A is of dimension 53. We
note that (27) requires 75 sec of computation time, while
with (28), we obtain the reduced-order model with 4 sec of
computation time due to the linear constraint relaxation. Both
of these computations are performed on CVX. The reduced
system preserves stability and this can be seen from Fig. 5
which shows all the poles well within the unit circle.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper describes two computational approaches for
model reduction of power system dynamics. The first method
is SVD-based and relies on an orthogonal projection of
the dynamics on to a lower dimensional subspace while
the second method relies on a convex-optimization based



Fig. 4: Frequency response of the reduced and full-order
systems.

H
Fig. 5: Pole-zero map of the reduced system shows that the
poles are well within the unit circle indicating that they are
stable.

model-reduction method. While POD has computational ad-
vantages as computing the SVD is not very expensive, the
optimization-based approach has guarantees on stability and
gives us the freedom to add desirable constraints that can
be utilized to impose structure and sparsity requirements.
As part of future work, we will leverage the developed
reduced-order models for stability analysis of low-inertia
power networks with significant penetration of wind and
solar resources.
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