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Abstract: In recent years, methods for data-driven Koopman spectral analysis, such as
Dynamic Mode Decomposition (DMD), have become increasingly popular approaches for
extracting dynamically relevant features from data sets. However to establish the connection
between techniques like DMD or Extended DMD (EDMD) and the Koopman operator,
assumptions are made about the nature of the supplied data. In particular, both methods
assume the data were generated by an autonomous dynamical system, which can be limiting in
certain experimental or computational settings, such as when system actuation is present. We
present a modification of EDMD that overcomes this limitation by compensating for the e↵ects
of actuation, and is capable of recovering the leading Koopman eigenvalues, eigenfunctions, and
modes of the unforced system. To highlight the e�cacy of this approach, we apply it to two
examples with (quasi)-periodic forcing: the first is the Du�ng oscillator, which demonstrates
eigenfunction approximation, and the second is a lattice Boltzmann code that approximates
the FitzHugh-Nagumo partial di↵erential equation and shows Koopman mode and eigenvalue
computation.

Keywords: nonlinear theory, nonlinear analysis, Koopman operator, model reduction, system
identification, data processing

1. INTRODUCTION

In many applications, tasks such as parameter optimization
or controller design become infeasible in practice due to the
computational cost associated with system simulation. One
method for avoiding this computational issue is to construct
an accurate reduced order model for the system dynamics.
Although there are many methods for accomplishing this
task, data-driven approaches like the Proper Orthogonal
Decomposition-Galerkin (POD-Galerkin) method, Vector
Autoregressive models, or Linear Parameter Varying (LPV)
models have become popular due to the availability of data
and e�cient algorithms (see, e.g., Holmes et al. (1998),
Lütkepohl (2005), and Bachnas et al. (2014)).

One subset of these techniques are methods based on
the analysis of the Koopman operator (see Budǐsić et al.

(2012), Mezic̀ (2013), and the references therein), which
governs the evolution of scalar observables of the system
state. The Koopman operator provides a principled and
often globally valid framework that trades dimensionality
for linearity; more precisely, the Koopman operator is
an infinite-dimensional linear operator that can describe
the dynamics of a finite-dimensional nonlinear system.
Because it is a linear operator, one can define Koopman
eigenvalues, eigenfunctions, and modes, which can be
useful aids in understanding possible system behaviors,
generating dynamically interpretable low-dimensional em-
beddings of high-dimensional state spaces, and visualizing
coherent structures and patterns in the underlying system.
Furthermore, using techniques such as Dynamic Mode
Decomposition (DMD), first proposed by Schmid (2010), or
the related Extended DMD (EDMD) proposed in Williams
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et al. (2015b), it is often possible to approximate a few
of the leading Koopman eigenvalues, eigenfunctions and
modes directly from data (see, e.g., Rowley et al. (2009),
Tu et al. (2014), and Williams et al. (2015b)).

Because they are strictly data-driven, DMD and EDMD will
produce results for any appropriately formatted set of data,
but connecting these outputs to the Koopman operator
requires additional knowledge about the nature of the data
supplied. In particular, for the arguments used by Williams
et al. (2015b) to be valid, the snapshot pairs must have been
generated by an autonomous dynamical system. However,
this restriction does not hold for all data or dynamical
systems; one common example is when system actuation
is used to explore state space during the data collection
process. As we will demonstrate in this manuscript, the
presence of actuation can deleteriously impact the results
of methods like EDMD, and if not taken into consideration,
destroy their connection with the Koopman operator.

To address this issue, we present a modification of EDMD
designed to compensate for the e↵ects of this actuation,
and reestablishing the connection between EDMD and the
Koopman operator of the underlying dynamical system
for this more general class of data sets. This work draws
upon a number of sources including system identification
methods for LPV models and existing extensions of DMD
such as Proctor et al. (2014). Our contribution is combining
these techniques into a single computational procedure and
establishing its connection with the Koopman operator.
Although the computational cost of this procedure is
greater than that of Proctor et al. (2014), it can accu-
rately reproduce a larger class of Koopman eigenfunctions
provided the dictionary elements are chosen appropriately.

The remainder of the paper is outlined as follows: the
computational procedure and associated theory are given
in Sec. 2, which is followed by two illustrative examples.
In Sec. 3, we apply the approach to the Du�ng oscillator
with periodic forcing where the Koopman eigenfunctions
are of interest. In Sec. 4, we apply the method to data
from a lattice Boltzmann model of the FitzHugh-Nagumo
equation subject to quasi-periodic forcing, which is a higher
dimensional example where the modes and eigenvalues are
desired. Finally, concluding remarks and future outlook are
presented in Sec. 5.

2. THEORY AND COMPUTATIONAL PROCEDURE

In this section, we present a modification of Extended
DMD (EDMD) that compensates for system actuation. To
provide some background for the approach, we review a
few of the salient properties of the Koopman operator and
“standard” EDMD before outlining our method. We refer
the reader to Budǐsić et al. (2012), Mezic̀ (2013), and the
references contained therein for more information about
the underlying theory, and Tu et al. (2014), Williams et al.
(2015b), and the references therein for more information
about DMD and EDMD respectively.

2.1 The Koopman Operator

For the purposes of this manuscript, the Koopman op-
erator, K, is defined for the autonomous, discrete time,
and deterministic dynamical system given by the triple

(n, M,F ), where n 2 Z is time, M ✓ RN is state space,
and F : M ! M is the evolution law. However, K acts
on scalar observables,  : M ! C rather than states. In
particular, the action of the Koopman operator is

(K )(x) = ( � F )(x) =  (F (x)), (1)

and is therefore often referred to as the composition operator
as it composes a scalar observable with the evolution law.
Intuitively, K takes a scalar function  and returns a new
function K that predicts what the value of  will be “one
time step” in the future.

Because it acts on functions rather than states, the
Koopman operator is infinite dimensional even if state
space is finite dimensional. The benefit, however, is that
it is a linear operator even if the underlying system is
nonlinear. Because it is linear, the Koopman operator can
have eigenvalues (µ

i

) and eigenfunctions ('
i

), which satisfy

K'
i

= µ

i

'

i

. (2)

In addition to these intrinsic quantities, the Koopman
operator also has modes (v

i

), which are defined for a given
vector valued observable, say, g : M ! RM . Taken together
the eigenfunctions, eigenvalues, and modes allow a vector
valued observable m-steps in the future to be written as:

g(F (m)(x)) =
1X

i=1

µ

m

i

v

i

'

i

(x), (3)

where F

(m)(x) denotes m applications of the map F to
the state x. It should be noted that not all vector valued
observables can be written in the form shown in (3), and for
some systems or observables, additional terms to account
for the remainder of the spectrum of the Koopman operator
may be required as shown by Mezic̀ (2013).

2.2 Extended Dynamic Mode Decomposition

Extended DMD approximates the Koopman operator
using a “pragmatic” weighted residual method. Similar
to “standard” weighted residual methods, we assume that
a scalar observable of interest can be written as the linear
superposition of dictionary elements  

i

:

�(x) =
MX

i=1

a

i

 

i

(x), (4)

where the a

i

are the coe�cients in the expansion. We
refer to  

i

as a dictionary element rather than a basis
function because it is often unclear whether or not the  

i

are linearly independent with respect to the state space of
the underlying dynamical system. The action of K on �

results in another scalar observable

(K�)(x) =
MX

i=1

b

i

 

i

(x) + r(x), (5)

with di↵erent coe�cients, b

i

, and the function r, which
is the residual that appears because the M -dimensional
subspace of scalar observables used in this approximation
may not be closed with respect to the action of the
Koopman operator.

In a weighted residual method, a finite-dimensional ap-
proximation of an infinite dimensional operator, which we
refer to here as K, is achieved by taking inner products
with a set of M weight functions, which we refer to as W

m



for m = 1, . . . , M . The matrix that minimizes the residual
given these weight functions is

K ,  X
+ Y , (6)

where the ij-th elements of  X , Y 2 RM⇥M are
 X

(ij) = hW
i

, 

j

i and  Y
(ij) = hW

i

, K 
j

i respectively,
and + denotes the Moore-Penrose pseudoinverse. There are
many ways to choose the weight functions, but most rele-
vant here are collocation methods, which choose W

i

(x) =
�(x � x

i

) where x

i

is a pre-determined collocation point
(see, e.g., Boyd (2001)).

Extended DMD does not require F to be available explicitly,
but it does need a data set of snapshots pairs:

{(x
m

,y

m

)}M
m=1, where y

m

= F (x
m

), (7)

which contain information about the action of F . Due to
the lack of explicit governing equations, we cannot evaluate
the inner products needed to compute  Y and  X for
most choices of weight functions. However, one pragmatic
choice is to let W

i

(x) = �(x � x

i

) where x

i

is the i-th
snapshot in the data set. With this choice, the elements of
 X and  Y are:

 X
(ij) =  

j

(x
i

),  Y
(ij) = (K 

j

)(x
i

) =  

j

(y
i

), (8)

or the dictionary elements evaluated at each of the x

i

and
its image y

i

. As a result, EDMD is a collocation method,
where the collocation points were chosen solely so that the
inner products can be evaluated.

The advantage of this interpretation is that the relationship
between K and K is clear. In particular, the eigenvalues
of K are approximations of some of the eigenvalues
of K. Furthermore, the right eigenvectors of K help
to approximate the eigenfunctions of K. If a

i

is the
i-th eigenvector of K with the eigenvalues µ

i

, then the
approximation of the i-th eigenfunction is

'

i

(x) =
MX

m=1

a

(m)
i

 

m

(x), (9)

where a

(m)
i

is the m-th element of the eigenvector. Sim-
ilarly, if w

i

is the i-th left eigenvector of K, then the
approximation of the i-th Koopman mode is:

v

i

=
MX

m=1

x̂

m

w

(m)
i

, (10)

where x̂

m

is the m-th column of

[x̂1 x̂2 · · · x̂

M

] , [g(x1) · · · g(x
M

)] ( X
T )+ (11)

where g is the vector-valued observable whose modes are
desired, and x

m

is the m-th snapshot.

2.3 Compensating for System Actuation

To compensate for inputs, we combine EDMD with tech-
niques used to identify linear parameter varying (LPV)
models (see Bachnas et al. (2014) and the references therein)
to obtained a parameter varying approximation of the
Koopman operator. An LPV representation was chosen
because the Koopman operator is a linear operator, so the
LPV assumption of linear dynamics is satisfied, but could
have complex and possible nonlinear dependence on the
system parameters. Typically, LPV models treat system pa-
rameters and inputs separately (e.g., using standard state-
space notation, they identify the matrices A(p) and B(p)

where p are the system parameters, which characterize the
unforced dynamics and response to actuation respectively).
Our analysis focuses on identifying the Koopman operator
of an underlying unforced system from data obtained with
actuation, so inputs will be lumped in with the parameters,
and our approach will not compute an analog of B(p).
The analysis and e↵ective computation of the Koopman
operator for a forced dynamical system is currently an area
of active research, and beyond the scope of this manuscript.

In what follows, the data now comes in triples,

{(x
m

,u

m

,y

m

)}M
m=1 where y

m

= F (x
m

,u

m

). (12)

As before, we assume the space of observables is approx-
imated using a finite set of dictionary elements of the
form shown in (4) and (5), which do not have a direct
dependence on the system inputs. However, the mapping
between observables will, so we seek a parameter-dependent
matrix that minimizes:

min
K

1

2

MX

m=1

k Y
(m) � X

(m)
K(u(m))k2, (13)

where X
(m)

, Y
(m)

, and u

(m) denote the m-th row of the
matrix. As shown above by the form of K, this framework
treats the inputs as time-varying system parameters and not
as control parameters. To include parameters, we expand
the entries in terms of a set of N

u

basis functions:

K =
NuX

n=1

 ̃

n

(u)K
n

, (14)

where Kn is the n-th coe�cient in the expansion, and  ̃
n

is the n-th basis function that maps inputs to scalars. For
the sinusoidal forcing terms in the examples that follow,
only a few of these functions were required to accurately
approximate the leading Koopman eigenfunctions, but
more complex forcing terms may require larger numbers.
As with the  

m

, the  ̃
n

must be chosen by the user, and the
optimal choice is likely dependent on both the underlying
system and the type of forcing used to generate the data.
Then, we substitute (14) into (13) and solve for the K

n

using:

min
K

1

2

MX

m=1

k Y
(m) �

NuX

n=1

 ̃

n

(u(m)) X
(m)

K

n

k2. (15)

For notational convenience, we define the matrix  XU

where the m-th row of the matrix is

 XU
(m) , [ ̃1(u

(m)) X
(m)

,  ̃2(u
(m)) X

(m)
, · · · ], (16)

and the matrix

K̂ ,

2

664

K1

K2
...

K

Nu

3

775 . (17)

Using these quantities, (15) becomes

min
K̂

1

2
k Y � XUK̂k2

F

, (18)

which has the solution K̂ =  XU
+ Y . Given K̂, we

can compute K at a given value of u using (14), and
given K the eigenvalues, eigenfunctions, and modes can
be approximated using (9) and (10).

In practice, EDMD has the tendency to over-fit the data
supplied to it, and this approach, which will increase the



Fig. 1. The value of leading non-trivial Koopman eigenfunction of Du�ng oscillator at the 2000 data points used
to approximate it. The reference case is presented in (a), where the initial points were chosen from a uniform
distribution, and the level sets of the eigenfunction reveal the two basins of attraction in this problem. In (b),
EDMD is applied to actuated data without input compensation, and the leading eigenfunction is clearly di↵erent
from the benchmark. In (c), EDMD with input compensation is used, and recovers an eigenfunction that is, once
again, e↵ective at partitioning state space into basins of attraction. All three functions were normalized such that
their maximum amplitude is one in the window shown.

number of degrees of freedom, can exacerbate this issue.
In an e↵ort to avoid this, we regularize based on the L1,2

norm, which results in the optimization problem:

min
K̂

1

2
k Y � XUK̂k2

F

+ �kK̂k1,2, (19)

where

kK̂k1,2 ,
MX

m=1

vuut
NX

n=1

K̂

2

mn

, (20)

and � is a regularization parameter. This type of regular-
ization is the group lasso penalty, which in this context,
encourages K̂ to have a small number of nonzero rows.
Because each row contains the coe�cients associated with
one dictionary element, this form of regularization identifies
a small set of functions that are useful for predicting
the evolution of many scalar observables (see Yuan and
Lin (2006)). Furthermore, the resulting problem can be
solved e�ciently using the Alternating Direction Method
of Multipliers (ADMM) as described by Boyd et al. (2011).
Because it is iterative, this approach is more computation-
ally expensive than EDMD or DMD, but appears to be
more robust to the choice of dictionary elements and their
associated parameters for the two examples that follow.

3. EXAMPLE I: THE DUFFING OSCILLATOR

The first example we present is the Du�ng oscillator, which
we will use to demonstrate the e↵ects that system inputs
can have on the approximation of the leading Koopman
eigenfunctions. The governing equations are:

ẍ + �ẋ + �x + ↵x

3 = u(t), (21)

where u(t) = a cos(!t), ↵ = 1, � = �1, and � = 0.2.
For these parameter values, the Du�ng oscillator has two
stable spirals at x = ±1 and ẋ = 0 with non-trivial basins
of attraction. In our benchmark data set, we set a = 0 and
construct a data set using 2000 randomly but uniformly
distributed initial condition for x, ẋ 2 (�1.5, 1.5). Then
we run a single trajectory consisting of 2001 steps with
a = 0.3 and ! = 1 starting at x = ẋ = 0, which explores a
similar subset of state space but violates the assumption
of autonomy. The data in both experiments are sampled at
�t = 0.25, and the set of scalar observables are exponential
radial basis functions:

 

i

(x) = exp

✓
�kx � x

i

k
5

◆
, (22)

where x

i

is the i-th element in the data set. Equation 19
was solved with � = 10�4 using 200 steps of the ADMM.
For the input corrected version, we used a polynomial
expansion with  ̃1(u) = 1 and  ̃2(u) = u.

Figure 1a shows the reference solution obtained by applying
EDMD to the autonomous data set. In principle, the
eigenvalue associated with this eigenfunction should be
unity, and the level sets should indicate the basins of
attraction in this problem. Because this is a data-driven
approximation, the numerically computed eigenvalue is
µ = 1.003, and the numerically obtained eigenfunction
takes on a continuum of values rather than two distinct
values that cleanly denote basins of attraction. Despite
these limitations, the data can be partitioned into two sets
using the value of the numerically computed eigenfunctions,
as is clearly indicated by the red and blue regions in the
figure, which indicate positive and negative eigenfunctions
values respectively. The dividing point is the zero level set,
which appears as yellow in the figure, and correctly assigns
1911 of the 2000 data points (roughly 95% of the data) to
the appropriate basin of attraction. Most of the error is
due to points on the boundary between the two sets or at
the top-right or bottom-left corners of the domain shown in
Fig. 1a where many of the initial points leave the domain
of interest during the sampling interval.

Now we consider the actuated data set, and apply EDMD
with and without input correction. Without compensation
for actuation, the eigenvalue closest to unity that is not
associated with a constant eigenfunction is µ = 0.961,
whose corresponding eigenfunction is shown in Fig. 1b.
This eigenfunction has no connection with the one shown
in Fig. 1a, so although the eigenvalues appear promising,
the results are not meaningful in this case.

On the other hand, Fig. 1c shows the Koopman eigenfunc-
tion associated with the eigenvalue µ = 0.997 computed
using the same data with input compensation. The most
important change is that the eigenfunction agrees with
Fig. 1a, and assigns 1963 of the 2000 data points (roughly
98% of the data) to the correct basin. Note that the
performance here is better than the reference case because
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Fig. 2. (left) The numerically computed Koopman eigenvalues for the FitzHugh-Nagumo equation obtained: (green)
using EDMD without input compensation, (red) using EDMD with input compensation, and (blue) via direct
computation performed on the underlying PDE. (right) The real and imaginary parts of the numerically obtained
Koopman modes associated with eigenvalues in the dashed circle where the color of the line corresponds to the
color of the markers in the leftmost plot. The imaginary part of the mode highlights the di↵erence between the
true Koopman modes and those predicted by EDMD without input compensation.

several of the more “di�cult” subsets of state space are
not contained within this data set.

There are quantitative di↵erences between these functions:
for instance, there is more variance in the value of the
eigenfunction within a basin of attraction. These di↵erences
are expected; input compensation introduces new degrees
of freedom and makes additional assumptions about the
parametric dependence of the Koopman operator, all of
which could negatively impact the accuracy of the method.
However, the purpose of this example is to demonstrate
that the nature of the data impacts the validity of the
resulting analysis: using “standard” EDMD, our results
were useless for the intended task, but by compensating for
actuation, we were successful in extracting an eigenfunction
that allowed meaningful conclusions to be drawn.

4. EXAMPLE II: A LATTICE BOLTZMANN MODEL
FOR THE FITZHUGH-NAGUMO EQUATION

In many application areas, the Koopman modes and eigen-
values are more useful than the Koopman eigenfunctions
because they identify coherent patterns in the underlying
system associated with a single complex frequency. The
modes and eigenvalues “act” like the eigenvalues and
eigenvectors of a linear system, but are defined for a broader
class of problems including nonlinear systems of ODEs or
PDEs as well as agent-based models and mesoscopic models
that track densities of heterogeneous agents.

In this example, we consider a mesoscopic lattice-Boltzmann
(LB) approximation of the FitzHugh-Nagumo PDE, which
is a prototypical example of a reaction di↵usion system and
sometimes used as a simple model for signal propagation
in an axon. The system state of the FHNE is comprised
of two fields: v the activator complex and w the inhibitor
complex, which evolve according to:

@

t

v = @

xx

v + v � v

3 + w + u(t)e�x

2
/2

, (23a)
@

t

w = �@

xx

w + ✏(v � a1w � a0), (23b)

where � = 4, ✏ = 0.03, a1 = 2, and a0 = �0.03 on the
domain x 2 (�10, 10) with Neumann boundary conditions
in what follows. For this example, we introduced a forcing
term that contains the input:

u(t) = 0.005


cos

✓
2⇡t

100

◆
+ cos

✓
t

200

◆�
, (24)

which was chosen so that the forcing periods are incom-
mensurate but on the order of the natural timescales of
the problem. Given (23) and data obtained with u = 0,
Williams et al. (2015a) computed approximations of the
leading Koopman eigenvalues and modes that agreed
favorably with analytical results such as the ones presented
by Gaspard and Tasaki (2001), so EDMD is known to be
e↵ective for this problem.

This example builds upon that work in two ways: (i)
the introduction of the forcing term in (24), and (ii) the
obfuscation of the system state through the use of a lattice-
Boltzmann model. The LB model we implement is described
in Van Leemput et al. (2005), and consists of six interacting
species of particles confined to N

l

= 200 lattice points. At
the n-th lattice point, these species are:

{v

(n)
�1 , v

(n)
0 , v

(n)
1 , w

(n)
�1 , w

(n)
0 , w

(n)
1 }, (25)

where v

(n)
i

and w

(n)
i

are the two di↵erent types of reactants.
The subscript denotes the velocity of the particles, which

for v

(n)
i

is given by i

�x

�t

, where i = �1, 0, 1 where �x = 0.1,
�t = 10�3, and halfway bounce back boundary conditions
(no-flux) are imposed at the edges of the lattice. The
evolution laws are chosen so that the densities:
v

(n) , v

(n)
�1 +v

(n)
0 +v

(n)
1 , w

(n) , w

(n)
�1 +w

(n)
0 +w

(n)
1 , (26)

evolve according to the FHNE with the listed parameters.

The data set consists of 2000 snapshot pairs, where each
snapshot is a vector R1200 generated by “stacking” the
densities of the six species into a single vector. The sampling
interval is �T = 1, which is every 1000 steps of the
lattice Boltzmann code. The dictionary elements consists
of Gaussian radial basis functions,

 

i

(x) = exp
�
�20kx � x

i

k2
�
, (27)

where x
i

is the i-th snapshot in the data set. The parameter
dependence is approximated using polynomials up to third
order, and the regularization parameter in (19) was chosen
to be � = 10�3, and 200 iterations of the ADMM appeared
to be su�cient to find a solution.

The left plot in Fig. 2 shows the EDMD eigenvalues
obtained from this data with and without input correction.



Due to the forcing, the leading uncorrected eigenvalues are
e↵ectively on the unit circle, which is indicative of a quasi-
periodic orbit or limit cycle. Input compensation “shifts”
the eigenvalues away from the unit circle, and with this
choice of observables, accurately reproduces the first two
layers of the “pyramid” of eigenvalues associated with
a stable spiral (see, e.g., Gaspard and Tasaki (2001)).
Furthermore, the numerically computed eigenvalues of
µ = 0.993 ± 0.053i compares favorably with the directly
computed values of µ ⇡ 0.992±0.057i, which was obtained
by linearizing a spectral approximation of the PDE in (23)
about the fixed point without forcing.

In addition to extraneous eigenvalues, the forcing term also
a↵ects the modes obtained by EDMD. In particular, we
focus on the mode for v as defined in (26) associated with
the circled eigenvalues in Fig. 2, which are the eigenvalues
closest to the true value. Because the eigenvalues are
complex, the Koopman mode is part of a complex conjugate
pair, so to facilitate comparison, we normalized each mode
and chose the phase such that sum of the imaginary part is
zero. As shown in the figure, the real parts of both modes
have the same mode shape, but there are clear qualitative
di↵erences in the imaginary parts of the mode obtained
using “standard” EDMD. In particular, the mode obtained
without input correction has a zero near x = 0, which is
near where both the true and corrected modes have their
maximums. As a result, system actuation also can have
an e↵ect on the eigenvalues and modes, and compensating
for inputs can have a visible impact on the quality of the
resulting modes and eigenvalues.

5. CONCLUSIONS

In this manuscript, we presented a modification of Extended
Dynamic Mode Decomposition designed to mitigate the
e↵ects of system actuation, and demonstrated the approach
on two illustrative examples. In both cases, the initial
results appeared reasonable, but further analysis of the
output of EDMD showed clear qualitative di↵erences
between the numerically computed and true solutions.
Because they are entirely data-driven, methods like DMD
or EDMD will produce sets of eigenvalues and their
corresponding left- and right-eigenvectors for any set of
data. However, interpreting these quantities as Koopman
eigenvalues, modes, and eigenfunctions requires additional
assumptions to be made; in particular, that the data were
generated by an autonomous dynamical system. The failure
of “standard” EDMD in the two test cases presented here
can be attributed to the violation of this assumption by
the introduction of the time-dependent system actuation.

To address this issue, we treated system inputs as a time-
varying parameter, and fit a linear parameter varying (LPV)
model. As with “standard” EDMD, the user must choose
a set of dictionary elements  

i

(x), and to capture the
dependence on the inputs, they must also choose a set of
functions  ̃

n

(u). Because of these additional degrees of
freedom, we introduced L1,2 regularization to enhance the
robustness of the procedure. This form of regularization
would also enhance the robustness of EDMD, but it comes
with a significant computational cost due to the iterative
nature of the optimization procedure. Although in ideal
settings we would use EDMD, obtaining the requisite data

sets is not always straightforward or even possible, and
in these more realistic settings, methods such as this are
necessary to reestablish the connection between methods
like DMD or EDMD and the Koopman operator.
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