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1.  INTRODUCTION 

The focus of this paper will be I/O feedback linearizable systems that can be 

transformed into Strict Feedback Form (Krstic et. al., [13]).  Further, these systems will have 

parametric uncertainty of the following form: 
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Here, r denotes the relative degree of the system and rx ℜ∈  denotes the portion of the state 

which is visible through the output equation, (1 c).  Equation (1 a) describes the evolution of 

the state, rn−ℜ∈ξ , which is not visible at the output.  In the following, the system is assumed 

to be nonlinear minimum phase [10] and therefore the zero dynamics, ξ, are stable.  It is 

assumed that gi are smooth functions mapping into ℜ , gi(x) are uniformly bounded in x such 

that ii Gxg ≤)(  x∀ , and xxgi ∀≠   0)( .  The bounds on gi(x) can be quite large if necessary. 

The function h(x1) is a one-to-one smooth invertible map.  Furthermore, the fi are smooth 

vector fields mapping into inℜ . ‘Smooth’ means that the functions are differentiable to any 

order necessary, potentially ∞C . The parameter vectors in
i ℜ∈θ  are unknown constants and 

an adaptation scheme will be used to estimate them.   We assume that bounds on iθ  are 

known, i.e. we know ℜ∈iM such that ii M<θ .  In the following, unless specifically 

stated, the explicit dependence of fi and gi on the system states will be dropped for notational 

convenience.  The form shown in Equation (1) has been previously shown to be reasonable 

for representing certain types of physical systems with significant actuator dynamics (Alleyne 

& Hedrick, [1]).  In [1], the zero dynamics correspond to the dynamics of the physical 
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system, a ¼ car active suspension, and the r-dimensional dynamics in (1 b) corresponded to 

those of the electrohydraulic actuator.   

Control of systems in the form of Equation (1) has attracted a great deal of interest in 

the nonlinear controls community.  Adaptive Backstepping techniques presented by 

Kanellakopoulos, et. al. [11] and Kristic and Kokotovic [14] apply an iterative method to 

develop ‘synthetic inputs’ and estimators for a stabilizing controller.  Alvarez-Ramírez, et. al. 

also use a Backstepping approach to adapt on a more general class of uncertainties, i.e. not 

just linearly parameterized [4].  [4] presents a nice interpretation of the algorithm as a cascade 

of PI controllers. 

The controller presented in this paper differs significantly from the Backstepping 

approach by reducing the problem to r simpler problems.  The objective is to perform output 

tracking by creating multiple errors, ei = xi –x(i)desired, between the individual states and the 

desired value of each state [2].  The desired state values are then used as synthetic inputs to 

control each state error. Notice that the assumption, x 0)x(g i ∀≠ , ensures that xi+1 can 

always be used to affect xi.  This type of approach using ‘virtual’ control inputs for control 

design has surfaced previously within the context of the process control industry.  Early 

approaches often were implemented empirically without analytical analysis.  These 

approaches went by the description of ‘cascade’ controllers [17] in the process control 

industry.  This idea was also applied in the analysis of power converters under description of 

‘multi-loop’ regulators [15].  For a simple two state example system, the control structure of 

[17] takes on the structure of a ‘master’ controller and a ‘slave’ controller as shown in Figure 

1. The ‘master’ controller sets the desired value of the second state.  The ‘slave’ controller 

then uses the actual control input to track this desired value.  In actuality, the ‘master’ and 

‘slave’ type of controllers of the Passivity-based algorithm being proposed in the current 
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work may depend on other states as well as the errors, ei, in the individual tracking of each 

state. 

 

Master 
Controller 

Slave 
Controller

x1  
Dynamics 

x2  
Dynamics

x2 x1 x1d e1 x2d e2 u 

Controller Plant 

 

Figure 1: Cascade control interpretation of the design procedure 

Conceptually, the chained form of stability given by the control algorithm currently 

being proposed here can be illustrated in Figure 2. 

0 er,θr er-1,θr-1 ….. e1,θ10 er,θr er-1,θr-1 ….. e1,θ1
 

Figure 2.  Sequential Chain of State and Parameter Error Dynamics. 

The goal is to have the output of each subsystem passively related to the output of the 

subsequent subsystem, moving left to right in Figure 2.  Having the final, or r-th, subsystem 

guaranteed to converge to zero assures the eventual convergence of the system output 

tracking error to zero.  In contrast, the Backstepping controllers usually ensure the sum total 

of all parameter and state errors converge to zero simultaneously.  This can be seen 

conceptually in Figure 3 that shows all state and parameter errors converging along 

decreasing level sets, Vn→Vn+1, associated with some Lyapunov function. 

0
er,θr

er-1,θr-1 …..

e1,θ1

Vn

Vn+1

0
er,θr

er-1,θr-1 …..

e1,θ1

Vn

Vn+1

 

Figure 3. Simultaneous Convergence of all State and Parameter Errors 



EJC 006/2001 

5 

In the Backstepping approach, a Lyapunov argument is used to show that the derivative of the 

Lyapunov function of the form ( )∑ +=
i

2
i

2
i

~eV θ  has a desirable form by considering all 

errors and parameters simultaneously.  Details of the differences between the two approaches 

will be examined in subsequent sections.  However, there are two key benefits to separating 

the dynamics into multiple errors: (1) the effect of model uncertainty can be localized and (2) 

differentiation of the system model in the controller can be avoided.  The first benefit 

provides a useful diagnostic tool to locate model uncertainty while the second benefit reduces 

controller complexity.  Both of these benefits are important in the presence of model 

uncertainty.  Previous stability results for this type of control strategy have been obtained for 

systems in parametric strict feedback form under the assumption of known bounds for the 

parametric uncertainty (Swaroop et al. [18], Hedrick & Yip [6]). 

The remainder of this paper has the following structure: Section 2 describes the 

Adaptive Passivity-Based Controller design and provides a proof of stability.  Section 3 gives 

a comparison of APBC and an Adaptive Backstepping controller on a simple model. Then 

Section 4 furthers this comparison by examining the effect of non-parametric model 

uncertainty, which clarifies the statement that the APBC controller results in decoupled error 

dynamics. A conclusion then summarizes the main results of this work. 

 

2. ADAPTIVE PASSIVITY-BASED CONTROLLER (APBC) DESIGN 

The goal of the APBC is to choose the control, u, such that the output of the system, 

y, in Equation (1) tracks some desired value.  It is assumed that the desired output is bounded, 

i.e. ∞∈Lydesired .  Define the tracking error as: 

desiredyye −=       (2) 
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For simplicity, assume that y = h(x1) = x1.  By the assumption on h, if y≠ x1 then the function 

h can always be inverted such that a desired value of x1 would be determined by x(1)desired =   

h-1 (ydesired).  As a generalization of the cascade control idea in Figure 1, define r separate 

error dynamics as follows: 

]r,1[i        xxe desired)i(ii ∈−=     (3) 

where desired)i(x  will be defined shortly.  Differentiating each error in Equation (3) gives: 

desired)r(rr
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Similar to Green and Hedrick [5], the desired state values, x(i+1)desired, are ‘synthetic inputs’ 

used to control the ith state for 1r,,1i −= � . For the rth system, no synthetic input is needed 

because u enters the er dynamics directly.  Now the r-dimensional system given by Equation 

(1 b) has been transformed into ‘r’ error systems, each with relative degree = 1.  Equation (4) 

can be rewritten to explicitly show this dependence on the synthetic inputs: 
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The synthetic inputs, desired)1i(x + , are chosen to force their respective error dynamics to decay 

to zero: 
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where îθ  is the best estimate of the actual vector iθ .  The justification for the choices in 

Equation (6) will be given in the proof below. For now, note that this choice tries to cancel 

most of the dynamics in Equation (5) and replace them with the stabilizing term -kiei. 

Furthermore, the assumption x 0)x(g i ∀≠ ensures that (6) is well defined.    
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Next, the controller is augmented with the following set of estimators: 

rrrr

iiiiiii

feˆ

1]-r1,[i      ˆfeˆ

Γ=θ

∈θΓσ−Γ=θ
�

�

   (7) 

where Γi are ni x ni positive definite matrices which are used to tune the parameter 

convergence rate.  In the simplest form they are diagonal matrices with positive elements 

which tune each element of the parameter vector estimate, îθ .   The gains, σi, are scalar 

functions of îθ  which are used to ensure that parameter errors stay bounded.   As will be 

shown shortly in Equation (9), the error dynamics of Equation (5) reduce to a serial 

connection of adaptive control systems with the error from the (i+1)th subsystem acting as a 

disturbance on the ith subsystem.  It is well known that bounded disturbances can drive 

adaptive control systems unstable, so a switching σ-modification [7,8,9,16] is used to 

improve robustness to this disturbance and ensure error convergence: 















>θ

≤θ<⋅















−

θ

≤θ

=σ

iii

iiii
i

i

ii

i

M2ˆg

M2ˆMg1
M

ˆ
Mˆ0

    (8) 

This choice of σi uses the known bounds on iθ  to gradually activate the stabilizing term, 

iii θ̂Γσ− , when iθ̂  becomes too large.   

The parameter error is defined as iii
ˆ~ θθθ −= .  Since it is assumed that θi is constant, 

ii
ˆ~ θθ �� −= .  Combining equations (5)-(7) leads to a chain of interconnected (state and 

estimator) error dynamics: 
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Before proceeding, we make note of two assumptions.  Here no model uncertainty has been 

assumed.  The interested reader is referred to [3] for the case where this assumption would be 

relaxed.  The theorem below can be modified to make the controller robust against boundable 

model uncertainty.  Secondly it is assumed that desired)i(xD  is obtained numerically and contains 

no errors.  In actuality, the exact value of desired)i(xD  is an unknown quantity due to its 

dependence on 1−iθ  (via 1ie −D ) which then leads to the use of numerical differentiation.  In 

practice, the approximation of desired)i(x�  may introduce relevant errors; particularly if the 

derivative is low-pass filtered.  However, since system models usually contain some 

unknown uncertainty level in practice, the numerical differentiation can oftentimes perform 

better than an analytical differentiation of a partially unknown model.  An alternative to the 

numerical differentiation is the use of Dynamic Error Filters as shown in [6,18].  If numerical 

errors are a concern it can be assumed that they be bounded by known values.  In other 

words, if desiredix )(
D̂  is the estimate of the derivative of the synthetic input then 

idesiredidesiredi xx γ≤− )()(
D̂D .  As a result, the robustness analysis found in [3] can be invoked to 

compensate for the induced errors and achieve a specified boundary layer performance.  With 

these assumptions, the stability properties of this controller and estimator structure are 

summarized by the following theorem.  

 

Theorem: 
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Given the system in Equation (1) and using the synthetic/actual inputs in Equation (6) 

and the estimators in Equations (7)-(8) with controller gains chosen to be 

{ }0k and  1]-r[1,i gk rii >∈∀=  and estimator gains given by positive definite matrices Γi, 

the output tracking error e1 = y - ydesired is globally asymptotically stable. 

 

Proof:      By assumption, gi is smooth, bounded, and t)(x, 0g i ∀≠ .  Therefore, for any 

]1r,1[i −∈  only two cases have to be considered: gi > 0 and gi < 0.  Here the case gi > 0 

]1r,1[i −∈∀  is considered and it is noted that the proof can be easily modified as in [3] if gi < 

0 for some i. The proof will proceed in four steps. 

 
Step 1:  If 21i Le ∈+  then 2i Le ∈  ]1r,1[i −∈∀  

If gi>0  the i-th error dynamics can be written as: 
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This system is output strictly passive [12], which can be verified with the following positive 

definite storage function: 
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Consider 1ii eg + as the input and ei as the only output of the error dynamics given in Equation 

(10).  Differentiating the storage function gives: 
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The inequality in the final line is a consequence of the following relation: 
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( ) ( ) 0ˆˆˆˆ~~ 2

iiiii
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
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 θ−θ⋅θσ≤θθ−θσ=θ−θθσ    (13) 

The first inequality in Equation (13) is from the Cauchy-Schwartz Theorem and the second 

inequality follows from the choice of σi in Equation (8).  Thus Equation (12) can be 

rearranged to explicitly demonstrate passivity. 

� NML
D

NML
0

2
iii

input

1ii
output

i egege
≥

+ +Φ≥      (14) 

This shows that the error dynamics are output strictly passive, and in fact dissipative, from 

i1ii eeg →+ .  Since ig  is strictly positive, the mapping from i1i ee →+  is also output 

strictly passive.  The function ig  merely scales the magnitude of the input to a dissipative 

mapping.  Finally, output strictly passive systems are finite gain L2 stable [12]. Hence 

21i Le ∈+  implies 2i Le ∈  as claimed. 

 The actual input to each ith subsystem is 1+ii eg  which necessitates the uniform 

boundedness assumption on ig  in Section 1.  To this point, nothing has been proven about 

ig  being bounded.  If ∞→)(xgi , then 1ii eg +  may not be in L2 even though 21i Le ∈+ .  In 

this case, finite gain L2 stability cannot be used to conclude 2i Le ∈ .  If ∞∈ Lxgi )(  as 

assumed then it can still be concluded that 2i Le ∈  since 21 Leg ii ∈+ . 

 
Step 2:  If ∞+ ∈Le 1i  then ∞∈Lei  and ∞∈θ L~

i   ]1r,1[i −∈∀  
 

The output strict passivity ensures finite gain L2 stability, but not bounded input 

bounded output stability.  In this step, a Lyapunov-like function is used to prove the 

boundedness of ei and i
~θ  given ∞+ ∈Le 1i .  The positive definite function defined in Equation 

(11) is used again.  Differentiating iΦ  as in Equation (12) yields: 

( )ii
T

ii1iii
2
iii

~~egeeg θ−θθσ++−=Φ +
D     (15) 
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A separate completion of squares for the components of Equation (15)’s right hand side 

yields two useful inequalities: 

( )[ ] [ ]2
1i

2
i
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2
1i

2
i

i
1iii

2
ii ee

2
g

eeee
2
g

egeeg ++++ +−≤−−+−=+−    (16) 

( ) ( ) ( )[ ] [ ]i
T

ii
T

i
i

ii
T

iii
T

ii
T

i
i

ii
T

ii
~~

2
~~~~

2
~~ θθ+θθ−σ≤θ−θθ−θ−θθ+θθ−σ=θ−θθσ  (17) 

Applying the upper bounds in Equations (16) and (17) to Equation (15): 

[ ] [ ]i
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ii
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i
i2

1i
2
i

i
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2

ee
2
g

θθ+θθ−
σ

++−≤Φ +
D    (18) 

It remains to be shown that 0i <Φ�  outside some compact region in the state space.  This is 

shown conceptually in Figure 4 where the constants will be defined below.  Figure 4 

represents a 2-dimensional phase plane representation of the state and parameter error space; 

for the purpose of illustration, i
~θ  is shown here as a scalar. 

 

 

ei 
c 

{ }ii M3,cMmax +

0i <Φ�

indefinite
sign  is iΦ�

θi 
~ 

 

Figure 4:  Conceptual view of phase plane 

Demonstrating the negative definiteness of iΦ�  is accomplished in two stages.  First, it 

can be shown that the second term of Equation (18) is always nonpositive as done in 
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Equation (13).  By assumption on ∞+ ∈Le 1i , there exists a constant, c, such that 

t  c)t(e 1i ∀<+ .  Thus it is clear that 0i <ΦD  for cei > . This step forms the vertical walls of 

the rectangle in the Figure 4. 

Second, a close examination of Equation (18) indicates that the first term is sign 

indefinite if cei < . The purpose of the σ-modification in Equation (8) is to guarantee 

stability in this case.  If { }iii McM 3,max~ +>θ , then 0i <ΦD .  cM ii +>θ~ ensures that i
~θ  

is large enough to establish sign definiteness of Equation (18) regardless of ei+1 and iθ .  

ii M3~ >θ ensures that σi is operating at its maximum value of ig .  Conceptually, this step 

forms the horizontal walls of the rectangle in the phase plane of Figure 4.   

Since 0i <Φ�  outside some compact region in the phase plane, there exists a constant 

0i >Φ  such that 0i <Φ�  for all ii Φ>Φ . This implies that iΦ  is bounded and consequently 

ii
~,e θ  are bounded. 

 

Step 3: ∞∩∈ LLe 2r  and ∞∈θ L~
r  

 
Examine the r-th error dynamics: 

rrrr

r
T

rrrr

ef~
uf~eke
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θ

θ
D

D

    (19) 

where u* is a fictitious input which will be used here only for the analysis. Introduce a storage 

function similar to Equation (11). 

r
1

r
T

r

2
r

rrr
~~

2
1

2
e)~,e( θθθ −Γ+=Φ     (20) 

Differentiate Equation (20) with respect to time. 
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rrr
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D
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     (21) 

Equation (21) shows that, similar to the other r-1 error systems, the r-th error dynamics are 

also output strictly passive and hence finite gain L2 stable.  However, the input to this system 

is the fictitious input t  0u ∀≡∗ .  Clearly, u* is an L2 bounded signal and therefore er is also 

L2 bounded.   

Notice that the storage function Φr is also a Lyapunov function for the r-th error 

dynamics.  Further, Equation (21) shows that its derivative is negative semidefinite when the 

fictitious input is zero, 0u ≡∗ .  Therefore, the pair ( )rr
~,e θ  is bounded in time. Thus  

∞∩∈ LLe 2r  and ∞∈θ L~
r  and the claim is proved.   

 

Step 4: ∞∩∈ LLe 2i  and ∞∈θ L~
i  ]r,1[i∈∀ .  Moreover 0e1 → . 

 

∞∩∈ LLe 2i  and ∞∈θ L~
i  ]r,1[i∈∀  follows from Steps 1-3 and induction. To prove 

the asymptotic convergence of e1, define )t(e)t(f 2
1= .  Since 21 Le ∈ , ∫ ττ∞→

T

0T d)(flim  

exists and is finite.  Furthermore, ∞∈Ly ,e desired1  imply that ∞∈Lx1 .  By the minimum 

phase assumption, ξ is also bounded, so one can conclude that f1 and g1 are bounded.  Finally, 

examining the error dynamics indicates that each term on the right hand side of Equation (22) 

is bounded. 

211
T
1111 egf~ege +θ+−=D     (22) 

Combining all these results, it is straightforward to conclude that 1e�  is bounded.  

Consequently, 11ee2)t(f DD =  is bounded and thus f is uniformly continuous.  By Barbalat’s 

Lemma [12], 0)t(e)t(f 2
1 →=  as 0t → .   
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Remarks: 

(1)  Strictly speaking, the proof only shows convergence of all intermediate errors, ei for 

[ ]r,2i∈ , in an L2 sense: 0d)(elim
T

2
iT =ττ∫

∞

∞→ .  Mathematically, one could introduce 

pathological examples whereby the signals converge in an L2 sense but not to zero; an 

example of this would be pulses of shrinking width but finite height. However, for many 

practical types of sytsems, the previous analysis would indicate that the errors actually 

converge asymptotically to zero.  Thus ‘convergence’ in the remarks below is meant in this 

L2 sense with the understanding that asymptotic convergence is typical, though not 

guaranteed, in practice. 

 

(2)  The Passivity-Based structure of the algorithm dictates a sequential convergence of the 

tracking errors.  The er error will converge which causes the er-1 error to converge and so on.  

All intermediate errors converge which eventually causes the output error to converge. If the 

ith error (ei) were non-zero and bounded (e.g. due to model error or disturbances), then one 

cannot conclude convergence of all subsequent intermediate errors, including the output.  The 

only conclusion, as shown in Step 2 of the proof, is that all intermediate errors will stay 

bounded. However, this provides a useful tool for detection of non-parametric uncertainty.  

 

(3)  The proof only guarantees that the output and intermediate tracking errors will converge.  

The parameter errors will remain bounded but may not necessarily converge.  For parameter 

convergence to their true values, we need to impose persistency of excitation constraints.  For 

example, assume the ith error system is zero-state observable [12], i.e. the input and output 

identically zero implies that the state is identically zero. Then the ith parameter vector, θi, will 
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converge along with the output, ei.  If θi is a scalar and σi=0, then zero-state observability of 

Equation (10) means: 

0f~and0~0e,e iii1ii ≡≡⇒≡+ θθD     (23) 

To guarantee that 0~
i ≡θ  as required for zero-state observability, we need 0f i ≠ . 

 

(4)  The main benefit of the passivity-based approach is that the controller design problem 

can be decoupled into r simple problems.  This decoupling has two advantages over the 

Adaptive Backstepping with tuning functions (Krstic et al, [13]):  First, the design for each of 

the decoupled problems is very simple, while the Adaptive Backstepping approach can 

quickly lead to many terms.  Second, the decoupled nature of the APBC is useful for 

identifying sources of model error.  For example, suppose there exists an error in the ith state 

equation of the model but the rest of the model is accurate. By the analysis in the proof, all 

errors from ei+1 to er will converge but the errors from e1 to ei may not converge.  It will 

quickly be apparent where the model error exists.  In the Adaptive Backstepping approach, 

the errors and parameter estimators are coupled which makes it difficult to localize model 

uncertainty.  Furthermore, the decoupled nature of the APBC potentially reduces the size of 

transients.  Since the Adaptive Backstepping controller has many coupling terms, model error 

in one area of the system may lead to large transients in any of the error dynamics. 

 

(5)  It was mentioned that the proof would be similar should there be a gi < 0 for some i.  If gi 

were negative, Equation (16) becomes 
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The completion of squares is slightly different, but the same upper bound is obtained in (24). 

The net effect is that the subsequent Equation (18) would be the same for either gi < 0 or gi > 

0.  Therefore, the proof is valid for either case. 

 

3.  COMPARISON OF ADAPTIVE NONLINEAR TECHNIQUES 

Consider the following nonlinear plant: 
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The scalars, ai, are the unknown plant parameters which have nominal values of a1 = a2 = a3 = 

1.0.  As a result, this three state system is unstable without control and feedback is required. 

This plant is a simple system that is in Strict Feedback Form with parametric uncertainty as 

required by Equation (1).  For simplicity, the plant under consideration has no zero dynamics 

and hence it trivially satisfies the nonlinear minimum phase condition. This plant looks quite 

simple but will provide a suitable comparison between the APBC control and an Adaptive 

Backstepping Controller (ABC).  A setpoint control law will be formulated for this plant with 

both the APBC and ABC to compare their complexity and performance. 

The APBC design of the previous section gives the following synthetic and actual 

inputs: 
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Furthermore, the following set of estimators is obtained via the results of Section 2. 
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âxeâ
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The switching-σ law in Equation (8) is used with known bounds on 1â  and 2â  given by 

M1=M2=2.0.  Since g1 = g2 =1, the Theorem of Section 2 indicates that a choice of gains k1 = 

k2 = 1.0 and k3>0 will guarantee convergence of all intermediate errors.  For comparison with 

the Adaptive Backstepping controller, the following gains are used in the simulations: k1 = k2 

= k3 = 2.0. Naturally, the larger gains will only increase the dissipativity between each of the 

error states |ei|.  The estimator gains are chosen as γ1 = γ2 = γ3 = 1.0.  For the setpoint control 

objective, ydesired = 1.0.  The system given by (25) with controller and estimator given by (26-

27) is simulated with a step size of .001 seconds.  The initial condition vector is given by 

[0.5, 0.8, -0.2]T and the parameter estimates are started at the initial conditions: 

[ ] [ ]TT
321 9.0 ,9.0 ,1.1)0(â),0(â),0(â = .  Figures 5 and 6 show the tracking and estimator 

performance of the APBC approach.  The upper subplot of Figure 5 shows that the output is 

converging to the desired setpoint. The middle subplot shows all individual errors are also 

converging to zero.  A closer look at the intermediate errors (lower subplot of Figure 5) 

shows that e3 converges first followed by e2 and then e1. This is the sequential convergence 

dictated by the Passivity-based design:  123 eee0 ←←← . 
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Figure 5: APBC with Perfect Model  (Tracking Errors) 
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Figure 6 shows the parameter estimates are also converging to the true values.  In this case, 

all three error systems satisfy the zero-state observability condition given in Equation (23). 

Specifically, when ydesired = 1.0 then 0f i ≠ for i=1,2,3 at steady state and thus the parameters 

should and do converge to the true values. 
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Figure 6: APBC with Perfect Model (Parameter Estimates and True Values) 

For comparison a controller is designed using Adaptive Backstepping Control (ABC) with 

tuning functions as developed in [13,14]. For the same system, this design gives the 

following synthetic and actual inputs:  
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++
∂

∂
+

+
∂

∂
+−−−=












∂
∂

−
∂

∂
+

+
∂

∂
+−−−=

−−=

γ   (28) 

where v3 is given by: 
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Stabilizing gains for this controller are any ki > 0 and the γi > 0 are the estimator gains. The 

controller is augmented with the following estimators: 
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The partial derivatives contained in Equations (28-30) can be summarized as follows.   
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Equations (28-30) are constructed iteratively from Lyapunov’s Direct Method with the 

following Lyapunov function: 
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where ]â â â[~
321

T =θ and ),,(diag 321 γγγ=Γ .  If Equation (32) is differentiated with 

respect to time along the trajectories of Equation (25) with the ABC given by Equations (28-

31), then the Lyapunov function derivative is negative semidefinite. 

0ekV
3

1i

2
ii ≤−= ∑

=

D      (33) 

Barbalat’s lemma can then be applied to conclude that all individual errors converge to zero.  

Notice that the ABC in Equations (28-31) looks similar to the APBC in Equations (26-27) 

except that it has additional coupling terms along with terms to calculate desired)2(x�  and 

desired)3(x� .  From Equation (31) it is clear that the ABC uses analytically computed derivatives 

that result in an explosion of terms.  Moreover, if an unknown model uncertainty were to 

exist in one of the state dynamics, it would be very difficulty to properly take the partial 

derivative of it with respect to the states.  As a result, the ABC is more complex than the 

APBC. For example, even for this simple system, the partial 
1

desired)3(

x
x
∂

∂
has 14 terms. Besides 

complexity, the coupling terms have another drawback.  Notice that x(3)desired and u depend on 

multiple intermediate errors and parameter estimates in Equations (28) and (29). Moreover, 

the first and second estimators are coupled to multiple errors in Equation (30).  Therefore, if 

an error occurs in a specific synthetic input or estimator, the error will leak to other synthetic 

inputs or estimators.  This may cause undesired transients and make it difficult to pinpoint 

which section of the system is causing the error. This idea will be explored further in the 

comparisons below. 

For this comparison, the ABC gains, ki, are all set equal to 3.0 and the estimator gains 

are chosen as γ1 = γ2 = γ3 = 0.1.  These values were chosen to give nominal performance that 

was similar to the APBC case.  In addition, the setpoint and initial conditions were all 

identical to the APBC case.  Figures 7 and 8 show the performance of the ABC under 
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conditions identical to those in Figs 5 and 6.  Specifically, it is clear that all intermediate and 

output errors converge to zero in Figure 7.  What can also be noticed is the non-sequential 

convergence of the errors that differentiates the ABC from the APBC.  Figure 8 shows the 

parameter estimates along with the nominal values.  It appears that 3â  is not converging to 

the true value.  The Adaptive Backstepping design only guarantees the boundedness of 

parameter errors, so the nonconvergence of 3â  is not uncommon.  The fact that all parameters 

converged for the APBC is not a general result; it is merely specific to this example where 

the zero-state observability conditions were satisfied. In summary, despite the variation in 

algorithm complexity, the performance of the APBC and ABC controllers behave similarly 

for this case of well-known system dynamics.  Any differences in nominal performance can 

probably be eliminated with further tuning of the appropriate controller. 
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Figure 7: ABC with Perfect Model  (Tracking Errors) 
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Figure 8: ABC with Perfect Model (Parameter Estimates and True Values) 

 

4.  EFFECT OF NON-PARAMETRIC UNCERTAINTY 

As shown in Section 3, both the APBC and ABC can handle the case of parametric 

model uncertainty.  In reality, a control designer does not have access to the “true” plant 

dynamics and must deal with model structure uncertainty.  The adaptive control laws are well 

suited to handle parametric uncertainty, so the actual concern lies in the case of unmodeled 

dynamics.  A controls engineer may wonder if a specific set of dynamical equations models 

the plant accurately or if neglected dynamics truly are relevant.  The real benefit of the APBC 

approach arises in this case of non-parametric model uncertainty. To simulate the effect of 

non-parametric model error the previous plant (25) is perturbed by adding a slowly-varying 

sinusoidal disturbance to the first state equation. 
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The time-varying model error will display the error localization property that is a key benefit 

of APBC design over the ABC.  It is assumed that neither controller has knowledge of this 

additional term in Equation (34).  Figure 9 shows the individual errors for both the APBC 

(upper subplot) and the ABC (lower subplot).  Figure 10 shows the parameter estimates for 

both controller designs.  For the APBC, Figure 9 shows the trajectories for e2 and e3 converge 

to zero, while the trajectory for e1 retains the artifacts of the sinusoidal disturbance.  

Furthermore, Figure 10 shows that 2â and 3â  converge to their true values, but 1â oscillates 

to compensate for the disturbance.  In summary, the disturbance has been localized in the first 

estimator and error.   

Figures 9 and 10 clearly show the decoupling property of the APBC design method.  

Only those states associated with the uncertain part of the model, along with any states 

further “up” the passivity chain, manifest an error.  This property effectively acts in a 

controller diagnostic mode and allows the controls engineer to focus attention on improving a 

specific portion of the system model. 
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Figure 9: APBC and ABC Individual Errors. 
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The lower subplot of Figure 9 shows the individual errors for the ABC design.  The output 

error, e1, is smaller than the APBC design, but the magnitude is simply a function of the 

Backstepping gains. The important property of this plot is that all three intermediate errors 

oscillate similarly about the origin.  Furthermore, Figure 10 shows that both 1â and 2â  for the 

ABC design oscillate at the disturbance frequency.  The third estimator output, 3â , has a 

response similar to the perfect model case of Figure 8. This result is explained by Equation 

(30), which shows that the first two estimators have coupling terms while the third estimator 

depends only on e3 and x3.  The key result of these two figures is that the model uncertainty 

or disturbance is not localized for the ABC.  In fact it has leaked to all the errors and the first 

two estimators making it impossible to determine the location of the error in the system.  
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Figure 10: APBC and ABC Parameter Errors. 

Finally, as evidence of the potential benefits of the APBC approach, the effect of the 

Adaptive Backstepping coupling terms on the system transients can be examined. The plant 

given by Equation (25) is perturbed by adding a constant to the first state equation. 
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Again, this uncertainty is unknown to both the APBC and ABC.  As will be shown, all 

intermediate errors converge to zero for both the APBC and ABC designs.  Due to the 

integrators contained in the parameter estimation algorithms, the estimators for both 

controllers are able to compensate for this constant disturbance and therefore the outputs still 

converge to the desired setpoint. It is the transient behavior of the systems that illustrates a 

difference between the two approaches. Figure 11 shows the synthetic and actual inputs for 

the nominal system with no model error (25) and the perturbed system (35) when the APBC 

design is used.  These plots show that the synthetic/actual inputs have comparable transients 

for the nominal and perturbed models (although the steady state values are different to 

compensate for the model error).  For comparison, the ABC was also simulated on the 

perturbed plant. Figure 12 shows the synthetic and actual inputs for the ABC on the nominal 

and the perturbed model.  The lowest subplot shows that the control effort, u, has very large 

initial transients on the perturbed plant. Recall from Equations (28) and (29) that this input 

had the most coupling terms and it is these coupling terms which is resulting in the large 

transients.   
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Figure 11: APBC with/without Model Error (Comparison of Synthetic and Actual Inputs) 
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Figure 12:  ABC with/without Model Error (Comparison of Synthetic and Actual Inputs) 

 

CONCLUSIONS 
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In this paper an Adaptive Passivity Based Controller for nonlinear systems in Strict 

Feedback Form with parametric uncertainty is developed.  This design method is then 

compared against Adaptive Backstepping with tuning functions on a simple 3-state nonlinear 

model.  While the APBC and ABC performance are comparable when the model is perfectly 

known (other than the parametric error), the APBC offers an easier design procedure.  The 

APBC controller is less complex than the Adaptive Backstepping controller, a fact which 

may lead to easier implementation.  In addition, the APBC design method has a very 

beneficial decoupling property which can be used as a diagnostic tool to determine where 

uncertainty lies in the system representation.  Finally, when there is non-parametric model 

uncertainty, the simpler APBC controller may lead to reduced transients in the synthetic and 

actual inputs. 
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