1. Problem Statement
2. Overview of Results
3. Notation and Definitions
4. Facts
5. Lower Bounds: Rank Relaxation and the S-procedure
6. Stochastic Interpretation of Rank Relaxation
7. Upper Bounds: Intelligent Sampling and Local Search
8. Sensitivities: Use the S-procedure multipliers
9. References

We consider the following minimization which has a quadratic cost and quadratic constraints:

$$
\begin{align*}
p= & \min _{x} x^{T} M_{0} x+2 b_{0}^{T} x+a_{0} \tag{1}\\
& \text { subject to: } x^{T} M_{i} x+2 b_{i}^{T} x+a_{i} \leq 0 \quad i=1, \ldots, N
\end{align*}
$$

where $a_{i} \in \mathbb{R}, b_{i} \in \mathbb{R}^{n}$, and $M_{i} \in \mathbb{R}^{n \times n}(i=0, \ldots, N)$ are given data.
To ease the notation, we define $Z_{i}:=\left[\begin{array}{cc}a_{i} & b_{i}^{T} \\ b_{i} & M_{i}\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}$ for $i=0, \ldots, N$. With this notation, the minimization in Equation 1 can be written as:

$$
\begin{align*}
p= & \min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& \text { subject to: }\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq 0 \quad i=1, \ldots, N \tag{2}
\end{align*}
$$

Remarks:

- If $\left\{M_{i}\right\}_{i=0}^{N}$ are all positive semidefinite, this is known as a Quadratically Constrained, Quadratic Program (QCQP). It is a convex optimization that can be easily solved.
- The general case is known as a Nonconvex, Quadratically Constrained, Quadratic Program (NQCQP). It is computationally difficult to solve, so we will instead seek lower and upper bounds on p.

	Upper Bound:	
1) Guess x		
2) Constrained optimization $\rightarrow x_{\text {feas }}$		
3) $\bar{p}=\left[\begin{array}{c}1 \\ x_{\text {feas }}\end{array}\right]^{T} Z_{0}\left[\begin{array}{c}1 \\ x_{\text {feas }}\end{array}\right]$		

The stochastic
interpretation suggests
a randomized algorithm
to pick x for the upper bound
$\frac{\text { NQCQP: }}{p=\min _{x}\left[\frac{1}{x}\right]^{T} Z_{0}\left[\frac{1}{x}\right]}$
s.t.
$\left[{ }_{x}^{1}\right]^{T} Z_{i}\left[\begin{array}{c}1 \\ x\end{array}\right] \leq 0$

$\underline{p}_{r}=\min _{X} E\left[\left[\begin{array}{l}1 \\ X\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}1 \\ X\end{array}\right]\right]$
s.t.
$E\left[\left[\begin{array}{l}1 \\ X\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}1 \\ X\end{array}\right]\right] \leq 0$
$E[X]=\bar{x}, E\left[X X^{T}\right]=\Sigma$

Rank Relaxation
(Lower Bound 1):
$\underline{p}_{r}=\min _{Q \succeq 0} \operatorname{Tr}\left[Z_{0} Q\right]$
s.t.
$\operatorname{Tr}\left[Z_{i} Q\right] \leq 0, Q_{11}=1$

Reinterpret

The S-procedure multipliers, λ_{i}, provide the local sensitivity of the optimal cost with respect to perturbations of the constraints.

1. \mathbb{R} is the set of real numbers.
2. $\mathbb{R}^{n \times m}$ is the set of $n \times m$ dimensional matrices with entries in \mathbb{R}. The entry in the i 'th row and j 'th column of a matrix M is denoted by $M_{i j}$ or $(M)_{i j}$.
3. If $M \in \mathbb{R}^{n \times m}$ then M^{T} is the transpose of M, i.e. $\left(M^{T}\right)_{i j}=$ $M_{j i}$.
4. The notation $f: X \rightarrow Y$ means that X and Y are sets, and f is a function mapping X into Y
5. Set notation:

- $x \in X$ is read: " x is an element of X "
- $X \subset Y$ is read: " X is a subset of Y "
- The expression " $\{\mathcal{A}: \mathcal{B}\}$ " is read as: "The set of all \mathcal{A} such that \mathcal{B}."

6. Optimizations:

- If $p=\min _{x \in X} f(x)$, the minimum value, p, may not be achieved by any $x \in X$. Although we will not do so in the following slides, we should write $p=\inf _{x \in X} f(x)$ in this case. A similar statement holds with max and sup.
- We define the conventions that if X is the empty set then $\min _{x \in X} f(x)=+\infty$ and $\max _{x \in X} f(x)=-\infty$

7. The expectation of a random variable, X, is defined as:

$$
E[X]:=\int x p(x) d x
$$

Definition 1 For a square matrix $A \in \mathbb{R}^{n \times n}$, the trace of A is defined as $\operatorname{Tr}[A]=\sum_{k=1}^{n} a_{k k}$.

Definition $2 A$ symmetric matrix, $M=M^{T} \in \mathbb{R}^{n \times n}$, is positive semidefinite if $x^{T} M x \geq 0 \forall x \in \mathbb{R}^{n} . M$ is positive definite if $\overline{x^{T} M x>0} \forall x \in \mathbb{R}^{n} \backslash\{0\}$. M positive semidefinite is denoted $M \succeq 0$ and M positive definite is denoted $M \succ 0$. Finally, M is negative (semi)definite if $-M$ is positive (semi)definite. These are denoted $M(\preceq) \prec 0$.

Remark: In the previous definition, we assumed M was symmetric. Any reference to sign definiteness in the following slides will implicitly mean that the matrix is symmetric.

Definition 3 Given matrices, $F_{i}=F_{i}^{T} \in \mathbb{R}^{n \times n}(i=0, \ldots, N)$, the following is a Linear Matrix Inequality (LMI) constraint on $x \in \mathbb{R}^{N}$:

$$
F(x):=F_{0}+x_{1} F_{1}+\cdots+x_{N} F_{N} \succeq 0
$$

Definition 4 A semidefinite program (SDP) is an optimization of the following form:

$$
\begin{aligned}
& \min _{x} c^{T} x \\
& \text { subject to: }\left\{\begin{array}{l}
A x=b \\
F(x):=F_{0}+x_{1} F_{1}+\cdots+x_{N} F_{N} \succeq 0
\end{array}\right.
\end{aligned}
$$

where $F_{i}=F_{i}^{T} \in \mathbb{R}^{n \times n}(i=0, \ldots, N), A \in \mathbb{R}^{m \times N}, b \in \mathbb{R}^{m \times 1}$, and $c \in \mathbb{R}^{N}$ are given data. In words, an SDP involves minimizing a linear cost subject to linear and LMI constraints.

Fact 1 For any $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}, \operatorname{Tr}[A B]=\operatorname{Tr}[B A]$.
Proof: This follows from the definition of $\operatorname{Tr}[\cdot]$.
Remark: A common application is:

$$
x^{T} A x=\operatorname{Tr}\left[x^{T} A x\right]=\operatorname{Tr}\left[A x x^{T}\right]
$$

where $x \in R^{n}$ and $A \in \mathbb{R}^{n \times n}$.
Fact 2 Define two sets:

$$
\begin{aligned}
& S_{1}:=\left\{Q \in \mathbb{R}^{(n+1) \times(n+1)}: Q \succeq 0, Q_{11}=1, \operatorname{rank}(Q)=1\right\} \\
& S_{2}:=\left\{Q \in \mathbb{R}^{(n+1) \times(n+1)}: \exists x \in \mathbb{R}^{n} \text { such that } Q=\left[\begin{array}{l}
1 \\
x
\end{array}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\right\}
\end{aligned}
$$

Then $S_{1}=S_{2}$.
Proof: $\quad S_{2} \subset S_{1}$ follows immediately. We outline the proof for $S_{1} \subset S_{2}$. If $Q \succeq 0$ and $\operatorname{rank}(Q)=1$, then $\exists z \in R^{n+1}$ such that $Q=z z^{T}$ (e.g. construct the eigenvalue decomposition of Q). Then $Q_{11}=1$ and $Q \succeq 0$ together imply that $z_{1}=1$.

Fact 3 If $A \succeq 0$ and $B \succeq 0$ then $\operatorname{Tr}[A B] \geq 0$
Proof: The eigenvalue decomposition of B has the form $B=$ $U \Lambda U^{T}$ with $\Lambda \succeq 0$. Define $\tilde{A}:=U^{T} A U$. Since A and \tilde{A} are related by a congruence transformation, $A \succeq 0$ implies $\tilde{A} \succeq 0$. Hence the diagonal entries of \tilde{A} are nonnegative. Equality (a) follows from Fact 1:

$$
\operatorname{Tr}[A B]=\operatorname{Tr}\left[A\left(U \Lambda U^{T}\right)\right] \stackrel{(a)}{=} \operatorname{Tr}[\tilde{A} \Lambda]=\sum_{k=1}^{n} \tilde{A}_{k k} \lambda_{k} \geq 0
$$

Fact $4 \min _{x}\left[\begin{array}{l}1 \\ x\end{array}\right]^{T} M\left[\begin{array}{l}1 \\ x\end{array}\right] \geq 0$ if and only if $M \succeq 0$.
Proof:
(\Longleftarrow) By definition, $M \succeq 0$ implies $\left[\begin{array}{l}1 \\ x\end{array}\right]^{T} M\left[\begin{array}{l}1 \\ x\end{array}\right] \geq 0 \forall x$.
(\Longrightarrow) Prove by contradiction. If $M \nsucceq 0$, then there exists a vector, v, such that $v^{T} M v<0$. Block partition $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ where $v_{1} \in \mathbb{R}$ is the first entry of v. First assume $v_{1} \neq 0$. Given this assumption, we can factor v_{1} out:

$$
\begin{aligned}
0 & >v^{T} M v=v_{1}^{2}\left[\begin{array}{c}
1 \\
1_{1} \\
v_{2}
\end{array}\right]^{T} M\left[\begin{array}{c}
1 \\
\frac{1}{1}^{v_{2}} v_{2}
\end{array}\right] \\
& \Longrightarrow \min _{x}\left[\frac{1}{x}\right]^{T} M\left[\begin{array}{l}
1 \\
x
\end{array}\right]<0
\end{aligned}
$$

If $v_{1}=0$, then by continuity $\left[\begin{array}{c}\epsilon \\ v_{2}\end{array}\right]^{T} M\left[\begin{array}{l}\epsilon \\ v_{2}\end{array}\right]<0$ for $\epsilon>0$ sufficiently small. Apply the argument above to show $\min _{x}\left[\begin{array}{l}1 \\ x\end{array}\right]^{T} M\left[\begin{array}{l}1 \\ x\end{array}\right]<0$.

Fact 5 Given any $A=A^{T} \in \mathbb{R}^{n}$,

$$
\min _{Q \succeq 0} \operatorname{Tr}[A Q]=\left\{\begin{array}{l}
0 \quad \text { if } A \succeq 0 \\
-\infty \text { else }
\end{array}\right.
$$

Proof: By Fact $3, Q, A \succeq 0$ implies $\operatorname{Tr}[A Q] \geq 0$. Moreover, $Q=0_{n}$ achieves $\operatorname{Tr}[A Q]=0$.
If $A \nsucceq 0$, then there exists an eigenvalue/eigenvector, (λ, v), such that $A v=\lambda v, v^{T} v=1$, and $\lambda<0$. For $\alpha>0$, define $Q_{\alpha}:=$ $\alpha v v^{T} \succeq 0$. Using Fact $1, \operatorname{Tr}\left[A Q_{\alpha}\right]=\alpha \operatorname{Tr}\left[v^{T} A v\right]=\alpha \lambda<0$. As $\alpha \rightarrow \infty, \operatorname{Tr}\left[A Q_{\alpha}\right] \rightarrow-\infty$.

Fact 6 Given $A=A^{T} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}$, and $C=C^{T} \in$ $\mathbb{R}^{m \times m}$ with $A \succ 0$. Then:

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right] \succeq 0 \Leftrightarrow C-B A^{-1} B^{T} \succeq 0
$$

Proof:

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & C
\end{array}\right]=\left[\begin{array}{cc}
A^{1 / 2} & 0 \\
B A^{-1 / 2} & I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
0 & C-B A^{-1} B^{T}
\end{array}\right]\left[\begin{array}{cc}
A^{1 / 2} & 0 \\
B A^{-1 / 2} & I_{m}
\end{array}\right]^{T}
$$

The proof is completed by recalling that positive semidefiniteness is preserved under congruence transformations (i.e. for any matrices M and $\left.L, M \succeq 0 \Rightarrow L M L^{T} \succeq 0\right)$.

Remark: We will apply this result with $A=1$:

$$
\left[\begin{array}{ll}
1 & b^{T} \\
b & C
\end{array}\right] \succeq 0 \Leftrightarrow C-b b^{T} \succeq 0
$$

Fact 7 Let $\left\{f_{i}\right\}_{i=0}^{N}$ and $\left\{g_{k}\right\}_{k=0}^{M}$ be given functions from \mathbb{R}^{n} to \mathbb{R}. The following equality holds:

$$
\begin{aligned}
& \min _{x} f_{0}(x) \text { s.t. }:\left\{\begin{array}{l}
f_{i}(x) \leq 0, \quad i=1, \ldots, N \\
g_{k}(x)=0, \\
\\
(x)=1, \ldots, M
\end{array}\right. \\
&=\min _{x} \max _{\lambda_{i} \geq 0, \gamma} f_{0}(x)+\sum_{i=1}^{N} \lambda_{i} f_{i}(x)+\sum_{k=1}^{M} \gamma_{k} g_{k}(x)
\end{aligned}
$$

Proof: Define the Lagrangian:

$$
L(x, \lambda, \gamma):=f_{0}(x)+\sum_{i=1}^{N} \lambda_{i} f_{i}(x)+\sum_{k=1}^{M} \gamma_{k} g_{k}(x)
$$

For any x, the Lagrangian satisfies:

$$
\max _{\lambda_{i} \geq 0, \gamma} L(x, \lambda, \gamma)= \begin{cases}f_{0}(x) & \text { if } f_{i}(x) \leq 0(i=1, \ldots, N) \\ & \text { and } g_{k}(x)=0(k=1, \ldots, M) \\ +\infty & \text { else }\end{cases}
$$

Remarks:

- Lagrange multipliers turn constrained minimizations into unconstrained min-max problems.
- Lagrange multipliers can also be used to turn constrained maximizations into unconstrained max-min problems.
- Fact 5 allows us to handle matrix constraints in a similar fashion.. For example, if $F_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times m}$, then:

$$
\begin{array}{ll}
\max _{x} f_{0}(x) & =\max _{x} \min _{Q \succeq 0} f_{0}(x)+\operatorname{Tr}\left[F_{1}(x) Q\right] \\
\text { s.t.: } F_{1}(x) \succeq 0
\end{array}
$$

Fact 8 Given a function $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ and sets $X \subset \mathbb{R}^{n}$, $Y \subset \mathbb{R}^{m}$, the following inequality holds:

$$
\begin{equation*}
\max _{y \in Y} \min _{x \in X} f(x, y) \leq \min _{x \in X} \max _{y \in Y} f(x, y) \tag{3}
\end{equation*}
$$

Proof: Assume X and Y are both nonempty. For any $\left(x_{0}, y_{0}\right) \in$ $X \times Y, f\left(x_{0}, y_{0}\right) \leq \max _{y \in Y} f\left(x_{0}, y\right)$. Since this inequality holds $\forall\left(x_{0}, y_{0}\right) \in X \times Y$, it must also hold when we take the minimum over x on both sides:

$$
\min _{x \in X} f\left(x, y_{0}\right) \leq \min _{x \in X} \max _{y \in Y} f(x, y)
$$

The left side of this inequality is a function of y_{0} while the right side is a constant:

$$
\begin{aligned}
& h\left(y_{0}\right):=\min _{x \in X} f\left(x, y_{0}\right) \\
& c:=\min _{x \in X} \max _{y \in Y} f(x, y)
\end{aligned}
$$

Since $h\left(y_{0}\right) \leq c \forall y_{0} \in Y$, it must hold for the maximum over y : $\max _{y \in Y} h(y) \leq c$. This is the desired result upon substituting back in for $h\left(y_{0}\right)$ and c.
If X and/or Y are empty, the result follows from our previously specified convention. Specifically, if X is empty then the Equation 3 holds because the right side is equal to $+\infty$. Similarly, if Y is empty then Equation 3 holds because the left side is equal to $-\infty$.

Fact 9 Let $A=A^{T}, B=B^{T} \in \mathbb{R}^{n \times n}$ be given with $A \succeq 0, B \succeq$ 0 and $\operatorname{rank}(B)=n-r$. If $\operatorname{Tr}[A B]=0$ then there exists $\tilde{A}_{22} \in$ $\mathbb{R}^{r \times r}, U \in \mathbb{R}^{n \times n}$ such that $U^{T} U=I_{n}$ and $A=U\left[\begin{array}{cc}0_{n-r} & 0 \\ 0 & \tilde{A}_{22}\end{array}\right] U^{T}$.

Proof: \quad Since $B \succeq 0$ and $\operatorname{rank}(B)=n-r$, the eigenvalue decomposition of B has the form $B=U\left[\begin{array}{cc}A & 0 \\ 0 & 0_{r}\end{array}\right] U^{T}$ where $U \in$ $\mathbb{R}^{n \times n}, \Lambda>0$, and $U^{T} U=I_{n}$. Define $\tilde{A}:=U^{T} A U$. Block partition $\tilde{A}=\left[\begin{array}{ccc}\tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{12}^{T} & \tilde{A}_{22}\end{array}\right]$ compatible with the dimensions of $\left[\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right]$. Since A and \tilde{A} are related by a congruence transformation, $A \succeq 0$ implies $\tilde{A} \succeq 0$ and hence the diagonal entries of \tilde{A}_{11} are nonnegative.
The following equalities hold:

$$
\begin{aligned}
& \quad 0=\operatorname{Tr}[A B] \stackrel{(a)}{=} \operatorname{Tr}\left[U^{T} A U\left[\begin{array}{ll}
\Lambda_{0} & 0 \\
0 & 0_{r}
\end{array}\right] \stackrel{(b)}{=} \operatorname{Tr}\left[\tilde{A}_{11} \Lambda\right]\right. \\
& \\
& \stackrel{(c)}{=} \sum_{k=1}^{n-r} \lambda_{k} \cdot\left(\tilde{A}_{11}\right)_{k k} \\
& \xlongequal{(d)}\left(\tilde{A}_{11}\right)_{k k}=0 \text { for } k=1, \ldots, n-r
\end{aligned}
$$

(a) follows from Fact 1 while (b) and (c) follow from the definition of $\operatorname{Tr}[\cdot]$. Implication (d) follows because $\lambda_{k}>0$ and $\left(\tilde{A}_{11}\right)_{k k} \geq 0$ for $k=1, \ldots, n-r$. The proof is completed by noting this result implies $\tilde{A}_{11}=0$ and hence $\tilde{A}_{12}=0$.

Remark: If the $\operatorname{rank}(B)=n-r$ is large then $\operatorname{rank}(A)=r$ is necessarily small.

The following steps put the NQCQP in an equivalent form:

$$
\begin{aligned}
& p:=\min _{x}\left[\frac{1}{x}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \text { s.t. : }\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq 0 \quad i=1, \ldots, N \\
& \stackrel{(a)}{=} \min _{x} \operatorname{Tr}\left[Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\right] \text { s.t. : } \operatorname{Tr}\left[Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\right] \leq 0 \quad i=1, \ldots, N \\
& \stackrel{(b)}{=} \min _{Q \succeq 0,} Q_{11}=1, \operatorname{rank}(Q)=1 \\
& \operatorname{Tr}\left[Z_{0} Q\right] \text { s.t. : } \operatorname{Tr}\left[Z_{i} Q\right] \leq 0 \quad i=1, \ldots, N
\end{aligned}
$$

(a) follows from Fact 1 and (b) follows from Fact 2.

If we 'relax' (i.e. ignore) the rank constraint, we get a semidefinite program (SDP):

$$
\begin{aligned}
\underline{p}_{r} & :=\min _{Q \succeq 0, Q_{11}=1} \operatorname{Tr}\left[Z_{0} Q\right] \\
& \text { subject to: } \operatorname{Tr}\left[Z_{i} Q\right] \leq 0 \quad i=1, \ldots, N
\end{aligned}
$$

Remarks:

- Removing the rank constraint means we are searching over a larger set of matrices and hence we can achieve a lower cost, $\underline{p}_{r} \leq p$.
- $\underline{p}_{r}=p$ if and only if the optimal solution to the SDP is rank 1 .

We can use Lagrange multipliers and weak duality to obtain another lower bound on p :

$$
\begin{aligned}
p & :=\min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \quad \text { s.t. }:\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq 0 \quad i=1, \ldots, N \\
& \stackrel{(a)}{=} \min _{x} \max _{\lambda_{i} \geq 0}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right]+\sum_{i=1}^{N} \lambda_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& \stackrel{(b)}{\geq} \max _{\lambda_{i} \geq 0} \min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\left[Z_{0}+\sum_{i=1}^{N} \lambda_{i} Z_{i}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& \stackrel{(c)}{=} \max _{\lambda_{i} \geq 0, \gamma} \gamma \text { s.t. }: \min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T}\left[Z_{0}+\sum_{i=1}^{N} \lambda_{i} Z_{i}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right] \geq \gamma
\end{aligned}
$$

(a) is an application of Lagrange multipliers (Fact 7) and (b) follows from weak duality (Fact 8). Equality (c) just introduces a dummy variable.

We can now apply Fact 4 to convert the constraint in the final maximization into an LMI. This yields the following SDP:

$$
\underline{p}_{s}:=\max _{\lambda_{i} \geq 0, \gamma} \gamma \text { subject to: } Z_{0}-\left[\begin{array}{cc}
\gamma & 0 \\
0 & 0_{n}
\end{array}\right]+\sum_{i=1}^{N} \lambda_{i} Z_{i} \succeq 0
$$

Remarks:

- In control theory, this is known as the S-procedure.
- By the steps given above, $\underline{p}_{s} \leq p$. If $\underline{p}_{s}=p$, the S-procedure is called 'lossless'.
- If $N=1$, then step (b) holds with equality, i.e. the S-procedure is lossless (Boyd, et.al., 1994).

Weak duality gives that $\underline{p}_{s} \leq \underline{p}_{r}$:

$$
\begin{aligned}
\underline{p}_{s} & :=\max _{\lambda_{i} \geq 0, \gamma} \gamma \text { s.t. : } F(\lambda, \gamma):=Z_{0}-\left[\begin{array}{cc}
\gamma & 0 \\
0 & 0_{n}
\end{array}\right]+\sum_{i=1}^{N} \lambda_{i} Z_{i} \succeq 0 \\
& \stackrel{(a)}{=} \max _{\lambda_{i} \geq 0, \gamma} \min _{Q \succeq 0} \gamma+\operatorname{Tr}[F(\lambda, \gamma) Q] \\
& \stackrel{(b)}{\leq} \min _{Q \succeq 0} \max _{\lambda_{i} \geq 0, \gamma} \gamma+\operatorname{Tr}[F(\lambda, \gamma) Q] \\
& \stackrel{(c)}{=} \min _{Q \succeq 0, Q_{11}=1} \operatorname{Tr}\left[Z_{0} Q\right] \text { s.t. }: \operatorname{Tr}\left[Z_{i} Q\right] \leq 0 \quad i=1, \ldots, N \\
& :=\underline{p}_{r}
\end{aligned}
$$

(a) and (c) use Lagrange multipliers (Fact 7). (b) follows from weak duality (Fact 8). If $\underline{p}_{s}=\underline{p}_{r}$, we say strong duality holds.

Theorem $1 \underline{p}_{s}=\underline{p}_{r}$ if either of the following holds:

1. Optimization 4 is strictly feasible: $\exists(\lambda, \gamma)$ such that $\lambda_{i}>0$ and $F(\lambda, \gamma) \succ 0$.
2. Optimization 5 is strictly feasible: $\exists Q \succ 0$ such that $Q_{11}=1$ and $\operatorname{Tr}\left[Z_{i} Q\right]<0, i=1, \ldots, N$.

Remarks:

- The proof is technical (Rockafellar, 1970).
- Conditions for strong duality can be weakened (Sturm, 1997).

If we define $Q:=\left[\frac{1}{\bar{x}} \bar{x}_{\Sigma}^{T}\right]$, then the rank relaxation problem can be written as:

$$
\begin{aligned}
& \underline{p}_{r}:=\min _{\Sigma, \bar{x}} \operatorname{Tr}\left[Z_{0}\left[\begin{array}{c}
1 \\
\bar{x} \\
\Sigma \\
\Sigma
\end{array}\right]\right] \\
& \text { subject to: }\left\{\begin{array}{l}
\operatorname{Tr}\left[Z_{i}\left[\begin{array}{ll}
\frac{1}{\bar{x}} & \bar{x}_{\Sigma}^{T} \\
\Sigma
\end{array}\right] \leq 0 \quad i=1, \ldots, N\right. \\
{\left[\begin{array}{l}
1 \bar{x}^{T} \\
\bar{x} \\
\Sigma
\end{array}\right] \succeq}
\end{array}\right.
\end{aligned}
$$

Let X be a random variable (r.v.) of dimension $n \times 1$ with $E[X]=\bar{x}$ and $E\left[X X^{T}\right]=\Sigma$. By Fact 1 and the linearity of $\operatorname{Tr}[\cdot]$ and $E[\cdot]$,

$$
E\left[\left[\begin{array}{l}
1 \\
X
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
X
\end{array}\right]\right]=\operatorname{Tr}\left[Z_{i}\left[\begin{array}{cc}
\frac{1}{x} & \bar{x}^{T} \\
\Sigma
\end{array}\right]\right]
$$

Thus rank relaxation is equivalent to:

$$
\begin{array}{rl}
\underline{p}_{r}:=\min _{X} & E\left[\left[\begin{array}{l}
1 \\
X
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
X
\end{array}\right]\right] \\
\text { s.t. : } & \left\{\begin{array}{l}
E\left[\left[\begin{array}{l}
1 \\
X
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
X
\end{array}\right] \leq 0 \quad i=1, \ldots, N\right. \\
{\left[\begin{array}{c}
1 \\
\bar{x} \\
\Sigma
\end{array}\right] \succeq 0} \\
X
\end{array}\right]
\end{array}
$$

By Schur Complements (Fact 6), the second constraint is equivalent to $\Sigma-\bar{x} \bar{x}^{T} \succeq 0$. This constraint is trivially satisfied if X a random variable because $E\left[(X-\bar{x})(X-\bar{x})^{T}\right]=\Sigma-\bar{x} \bar{x}^{T}$ and variance matrices are always positive semidefinite.
Based on this discussion, rank relaxation is equivalent to a minimization involving the random variable X :

$$
\begin{align*}
& \underline{p}_{r}:=\min _{X} E\left[\left[\begin{array}{l}
1 \\
X
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
X
\end{array}\right]\right] \\
& \text { s.t. : }\left\{\begin{array}{l}
E\left[\left[\begin{array}{l}
1 \\
X
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
X
\end{array}\right] \leq 0 \quad i=1, \ldots, N\right. \\
X \text { is a r.v. with } E[X]=\bar{x}, E\left[X X^{T}\right]=\Sigma
\end{array}\right. \tag{6}
\end{align*}
$$

The original NQCQP is:

$$
\begin{align*}
p= & \min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \tag{7}\\
& \text { s.t. : }\left[\frac{1}{x}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq 0 \quad i=1, \ldots, N
\end{align*}
$$

The rank relaxation problem is:

$$
\begin{align*}
& \underline{p}_{r}:=\min _{\Sigma, \bar{x}} \operatorname{Tr}\left[Z_{0}\left[\begin{array}{c}
1 \\
\bar{x} \\
\bar{x} \\
\Sigma
\end{array}\right]\right] \tag{8}
\end{align*}
$$

Rank relaxation is equivalent to the following minimization:

$$
\begin{align*}
& \underline{p}_{r}:=\min _{X} E\left[\left[{ }_{X}^{1}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
X
\end{array}\right]\right] \\
& \text { s.t. : }\left\{\begin{array}{l}
E\left[\left[\frac{1}{X}\right]^{T} Z_{i}\left[\frac{1}{X}\right]\right] \leq 0 \quad i=1, \ldots, N \\
X \text { is a r.v. with } E[X]=\bar{x}, E\left[X X^{T}\right]=\Sigma
\end{array}\right. \tag{9}
\end{align*}
$$

Remarks:

- Equation 9 is similar to Equation 7, except that we search for a random variable rather than a specific vector.
- Let Σ_{0}, \bar{x}_{0} denote an optimal point for Equation 8. Then, any distribution with mean, $E[X]=\bar{x}_{0}$, and second moment, $E\left[X X^{T}\right]=\Sigma_{0}$ is an optimal distribution for Equation 9.
- Recall that if $\operatorname{rank}\left[\begin{array}{cc}1 & \bar{x}_{0}^{T} \\ \bar{x}_{0} & \Sigma_{0}\end{array}\right]=1$, then $\underline{p}_{r}=p$. In this case, $\Sigma_{0}=$ $\bar{x}_{0} \bar{x}_{0}^{T}$ and $E\left[\left(X-\bar{x}_{0}\right)\left(X-\bar{x}_{0}\right)^{T}\right]=0_{n}$. Thus the optimal distribution for Equation 9 consists of a single point.

Find upper bounds using the following algorithm:

1. Solve the rank relaxation problem. Let $Q_{0}:=\left[\begin{array}{cc}1 & \bar{x}_{0}^{T} \\ \bar{x}_{0} & \Sigma_{0}\end{array}\right]$ denote an optimal point for the rank relaxation problem.
2. Sample \mathbb{R}^{n} using any distribution with mean, $E[X]=\bar{x}_{0}$, and second moment, $E\left[X X^{T}\right]=\Sigma_{0}$.
3. Sampled points may not be feasible, but we can use them as initial conditions for a local search algorithm.
4. Any feasible point, $x_{\text {feas }}$, returned by a local search algorithm gives an upper bound: $p \leq\left[\begin{array}{c}1 \\ x_{\text {feas }}\end{array}\right]^{T} Z_{0}\left[\begin{array}{c}1 \\ x_{\text {feas }}\end{array}\right]$.

Remarks:

- We typically solve the SDP arising from the S-procedure. Given an optimal solution to this problem, we would like to cheaply compute a Q_{0}. This is covered on the next slide.
- Sedumi solves both lower bound SDPs simultaneously, so the first remark is not an issue.
- In many cases, Q_{0} is low rank, so the optimal distribution has nonzero variance along a small number of dimensions.

The SDPs from the S-procedure and Rank Relaxation are:

$$
\begin{aligned}
& \underline{p}_{s}:=\max _{\lambda_{i} \geq 0, \gamma} \gamma \text { s.t. }: F(\lambda, \gamma):=Z_{0}-\left[\begin{array}{cc}
\gamma & 0 \\
0 & 0_{n}
\end{array}\right]+\sum_{i=1}^{N} \lambda_{i} Z_{i} \succeq 0 \\
& \underline{p}_{r}:=\min _{Q \succeq 0, Q_{11}=1} \operatorname{Tr}\left[Z_{0} Q\right] \text { s.t. : } \operatorname{Tr}\left[Z_{i} Q\right] \leq 0 \quad i=1, \ldots, N
\end{aligned}
$$

These SDPs are known as primal and dual forms of each other.
If strong duality holds, then there exists feasible $(\bar{\lambda}, \bar{\gamma})$ and \bar{Q} such that $\bar{\gamma}=\operatorname{Tr}\left[Z_{0} \bar{Q}\right]$. This implies:

$$
\begin{aligned}
& 0 \stackrel{(a)}{\leq} \operatorname{Tr}[F(\bar{\lambda}, \bar{\gamma}) \bar{Q}] \stackrel{(b)}{=} \sum_{i=1}^{N} \lambda_{i} \operatorname{Tr}\left[Z_{i} \bar{Q}\right] \stackrel{(c)}{\leq} 0 \\
& \Longrightarrow \operatorname{Tr}[F(\bar{\lambda}, \bar{\gamma}) \bar{Q}]=0
\end{aligned}
$$

Inequality (a) holds since $F(\bar{\lambda}, \bar{\gamma}), \bar{Q} \succeq 0$ (Fact 3). (b) follows by substituting for $F(\bar{\lambda}, \bar{\gamma})$ and using $\bar{\gamma}=\operatorname{Tr}\left[Z_{0} \bar{Q}\right]$. Inequality (c) follows by from the feasibility: $\lambda_{i} \geq 0$ and $\operatorname{Tr}\left[Z_{i} Q\right] \leq 0$.
To summarize, the optimality conditions are given by:

$$
\begin{array}{ll}
F(\bar{\lambda}, \bar{\gamma}) \succeq 0, \bar{\lambda}_{i} \geq 0 & \text { Primal Feasibility } \\
\bar{Q} \succeq 0, \bar{Q}_{11}=1, \operatorname{Tr}\left[Z_{i} \bar{Q}\right] \leq 0 & \text { Dual Feasibility } \\
\operatorname{Tr}[F(\bar{\lambda}, \bar{\gamma}) \bar{Q}]=0 & \text { Complementary Slackness }
\end{array}
$$

These are known as the Karush-Kuhn-Tucker (KKT) conditions.
Remark: Given $(\bar{\lambda}, \bar{\gamma})$, we can compute a \bar{Q} from the KKT conditions. It typically happens that $F(\bar{\lambda}, \bar{\gamma})$ has large rank. We can apply the complementary slackness condition and Fact 9 to conclude that \bar{Q} must have low rank.

The original NQCQP is:

$$
\begin{aligned}
& p=\min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& \quad \text { s.t. : }\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq 0 \quad i=1, \ldots, N
\end{aligned}
$$

Consider the following perturbed version of the original NQCQP:

$$
\begin{aligned}
p(u)= & \min _{x}\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{0}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \\
& \text { s.t. : }\left[\begin{array}{l}
1 \\
x
\end{array}\right]^{T} Z_{i}\left[\begin{array}{l}
1 \\
x
\end{array}\right] \leq u_{i} \quad i=1, \ldots, N
\end{aligned}
$$

When $u=0, p(0)$ is the optimal cost for the original, unperturbed NQCQP. The theorems on the next two slides show that the Sprocedure gives local sensitivity information. The proofs and interpretations are minor modifications of results in [Boyd and Vandenberghe].
First we introduce some notation. The SDP from the S-procedure can be written as:

$$
\underline{p}_{s}:=\max _{\lambda_{i} \geq 0} g(\lambda)
$$

where $g(\lambda):=\min _{x}\left[\begin{array}{l}1 \\ x\end{array}\right]^{T}\left[Z_{0}+\sum_{i=1}^{N} \lambda_{i} Z_{i}\right]\left[\begin{array}{l}1 \\ x\end{array}\right] . g(\lambda)$ is known as the dual function. Let λ^{*} be the optimal vector of S-procedure multipliers, i.e $\underline{p}_{s}=g\left(\lambda^{*}\right)$.

Theorem 2

$$
p(u) \geq \underline{p}_{s}-\lambda^{* T} u=p(0)-\lambda^{* T} u-\left[p(0)-\underline{p}_{s}\right]
$$

Proof: For any x_{0} that is feasible for the perturbed problem:

$$
g\left(\lambda^{*}\right) \stackrel{(a)}{\leq}\left[\frac{1}{x_{0}}\right]^{T}\left[Z_{0}+\sum_{i=1}^{N} \lambda_{i}^{*} Z_{i}\right]\left[{ }_{x}^{1}\right] \stackrel{(b)}{\leq}\left[{ }_{x_{0}}^{1}\right]^{T} Z_{0}\left[\frac{1}{x_{0}}\right]+\lambda^{* T} u
$$

Inequality (a) follows from the definition of the dual function and (b) follows since x_{0} satisfies the perturbed constraints. Minimizing the right side over x_{0} subject to the constraints of the perturbed problem yields $g\left(\lambda^{*}\right) \leq p(u)+\lambda^{* T} u$. This is the desired inequality since $\underline{p}_{s}=g\left(\lambda^{*}\right)$.

Remarks:

- The bracketed term is bounded by the gap between upper and lower bounds: $p(0)-\underline{p}_{s} \leq \bar{p}-\underline{p}_{s}$. This gap is typically small.
- Suppose λ_{i}^{*} is large and the gap is negligble. If the $i^{t h}$ constraint is tightened (i.e. $u_{i}<0$), then the optimal value $p(u)$ will increase greatly.
- Suppose λ_{i}^{*} is small and the gap is negligble. If the $i^{\text {th }}$ constraint is relaxed (i.e. $u_{i}>0$), then the optimal value $p(u)$ will not decrease too much.
- Note that the inequality in Theorem 2 is only a lower bound. Since it is not an upper bound, the interpretations in the previous two bullets are not symmetric.

Theorem 3 If $p(u)$ is differentiable at $u=0$, then the gradient of $p(u)$ satisfies:

$$
\left|\left[\nabla_{u} p(0)\right]^{T} u+\lambda^{* T} u\right| \leq\left[p(0)-\underline{p}_{s}\right]+o(u)
$$

Proof: Since $p(u)$ is differentiable at $u=0$, the definition of a gradient gives:

$$
p(u)=p(0)+\left[\nabla_{u} p(0)\right]^{T} u+o(u)
$$

From Theorem 2, the following two inequalities hold:

$$
\begin{aligned}
p(u) & \geq p(0)-\lambda^{* T} u-\left[p(0)-\underline{p}_{s}\right] \\
p(-u) & \geq p(0)+\lambda^{* T} u-\left[p(0)-\underline{p}_{s}\right]
\end{aligned}
$$

Substituting the Taylor series into these inequalities gives:

$$
\begin{aligned}
{\left[\nabla_{u} p(0)\right]^{T} u+o(u) } & \geq-\lambda^{* T} u-\left[p(0)-\underline{p}_{s}\right] \\
-\left[\nabla_{u} p(0)\right]^{T} u+o(u) & \geq \lambda^{* T} u-\left[p(0)-\underline{p}_{s}\right]
\end{aligned}
$$

The theorem follows from these inequalities.

Remarks:

- If the gap is negligible, then the inequality implies $\nabla_{u} p(0)=$ $-\lambda^{*}$. In this case, the multipliers are exactly the local sensitivity of the optimal cost with respect to constraint perturbations:

$$
\left.\frac{\partial p(u)}{\partial u_{i}}\right|_{u=0}=-\lambda_{i}
$$

- If the gap is neglible, the interpretations are: Tightening constraint i by a small amount ($u_{i}<0$) approximately increases $p(0)$ by $-\lambda_{i}^{*} u_{i}$. Similarly, relaxing this constraint a small amount $\left(u_{i}>0\right)$ approximately decreases $p(0)$ by $-\lambda_{i}^{*} u_{i}$.

Matrix facts can be found in:

- R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press. 1990.

Optimization facts can be found in:

- J. Sturm. Primal-dual interior point approach to semidefinite programming. Thesis Publishers, Amsterdam, Netherlands, 1997. Available at: http://fewcal.kub.nl/sturm/.
- R.T. Rockafellar. Convex Analysis. Princeton University Press. 1970.
- S. Boyd and L. Vandenberghe. Convex Optimization. Draft available at: http://www.stanford.edu/class/ee364/reader.ps.
- S. Boyd, and L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM. 1994.

