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NASA’s Generic Transport Model (GTM) is a remote-controlled, 5.5 percent scale com-
mercial aircraft. An L1 adaptive controller was recently designed and flight tested on the
GTM. Oscillations in the elevator command were observed at 1.4 to 2 Hertz during the first
flight test in September 2009. In most flight conditions the L1 adaptive controller can be
approximated by a linear time-invariant system. Thus linear analysis tools can be used to
assess the performance and robustness of the feedback system with the L1 controller. The
initial L1 design met the NASA requirement for 60 msec of time delay margin. However,
the linear analysis indicates that the margin requirements were insufficient due to inaccu-
rate models that were available at the time of the first flight test. A revised L1 controller
has significantly larger margins and demonstrated good performance during subsequent
flight tests.

I. Introduction

NASA’s Airborne Subscale Transport Aircraft Research (AirSTAR) program addresses the challenges
associated with validating flight control laws in adverse conditions.1,2 The Generic Transport Model (GTM)
is the primary test aircraft for NASA’s AirSTAR flight test facility.3–6 The GTM is a remote-controlled, 5.5
percent scale commercial aircraft. The vehicle is dynamically scaled so that flight test results can be used to
draw conclusions about the behavior of full-scale commercial aircraft. A high-fidelity six degree-of-freedom
model of the GTM, called the GTM DesignSim, has also been developed.7 Significant effort has been invested
to model the GTM at flight conditions where nonlinear effects are significant,5,6, 8 e.g. post-stall.

Recently an L1 adaptive controller with piecewise constant adaptive laws was designed for the GTM.9,10

Additional details concerning this control strategy can be found in Refs. 10 and 11. The basic architecture
of this controller consists of a state predictor, parameter adaptation law, and feedback control law. All three
components are linear and thus the L1 design described in Ref. 9 is a linear control law. The controller
implementation that was flight tested includes several additional features not described in Ref. 9. These
features include a single scalar gain-scheduled variable, integrator resets for L1 initialization, and models
of actuator saturation and delay. The scalar gain-scheduled variable is used to improve performance and
provide different performance at different flight conditions. Low pass filters and the adaptation rate, which
is the sampling rate of the piecewise constant adaptive law, are not gain-scheduled. In most flight conditions
the nonlinear/time-varying effects of these additional features are negligible. The key point is that the flight-
tested implementation of this L1 adaptation law can be approximated as a linear time-invariant system. As
a result it is possible to apply classical linear analysis tools to study the robustness of the closed-loop flight
dynamics.

The L1 adaptive controller with piecewise constant adaptive laws was flight tested in September 2009.
Oscillations in the elevator command were observed at 1.4 to 2 Hz during the flight test. This paper uses
linear analysis to study the performance of the longitudinal axis control law. The linear analysis indicates
that the initial L1 design had insufficient stability margins. Several effects were poorly modeled at the time
of the initial design including the actuator dynamics and network delays. The linear analysis performed in
this paper uses updated actuator and network models. The L1 controller was re-designed using the more
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accurate updated models. This revised L1 controller has significantly larger margins and was successfully
flown during tests in March and June 2010.

The remainder of the paper has the following structure. First, results from the flight test in September
2009 are briefly reviewed in Section II. The linear models for the GTM and L1 adaptive controllers are
described in Section III. The linear analysis of the closed-loop system is given in Section IV. Conclusions
are provided in Section V.

II. Review of Flight Test Results

This section briefly reviews the results from the flight test in September 2009. The flight test was
performed using Version 7 of the L1 adaptive controller. The GTM has inboard and outboard elevators on
the left and right side of the aircraft. The same command was used for all four elevators during the test.
The left subplot of Figure 1 shows the left outboard elevator command for 30 seconds prior to and after the
engagement of the L1 controller. The solid vertical line at t = 533.62 sec marks the turn-on time for the L1

controller. The right subplot of Figure 1 zooms in on the elevator command for a five second window around
the L1 turn-on time. The displayed data is sampled at 60 Hz a. In both plots there is a noticeable increase
in elevator command energy after the L1 controller is engaged.

Figure 2 shows single-sided FFTs of the left outboard elevator command for 30 seconds prior to and after
the engagement of the L1 controller. The 30 second data window was chosen because an additional test
signal was injected into the elevator command roughly 30 seconds after the engagement of the L1 controller.
The elevator command has an increase energy at higher frequencies (beyond 1.4 Hz) after the L1 is turned
on. In particular, there is a large increase in energy from 1.4 to 2 Hz. The 1.4 to 2 Hz oscillations in the
elevator command will be the main focus for the remainder of this paper.
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Figure 1. Time response of left outboard elevator command before and after engagement of L1 controller

III. Model Development

The analysis models for the GTM aircraft and L1 adaptive controller are described in this section. The
development focuses on the longitudinal axis.

A. GTM Longitudinal Model

The main GTM aircraft parameters are provided in Table 1. NASA constructed a high fidelity 6 degree-of-
freedom Simulink model of the GTM with the aerodynamic coefficients described as look-up tables.6,7 This
high fidelity simulation is referred to as the GTM DesignSim. This section describes a simplified four-state

aData made available for this paper was provided at 60 Hz but was logged at a higher rate by NASA.
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Figure 2. FFT of left outboard elevator command before and after engagement of L1 controller

model of the GTM longitudinal dynamics. The parameter values are taken from the December 2009 (v0912)
version of the GTM DesignSim.

Table 1. Aircraft and Environment Parameters

Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.616 slugs

Pitch Axis Moment of Inertia, Iyy 4.253 slugs-ft2

Air Density, ρ 0.002377 slugs/ft3

Gravity Constant, g 32.17 ft/s2

The longitudinal dynamics of the GTM are described by a standard four-state longitudinal model:12

V̇ =
1
m

(−D −mg sin (θ − α) + Tx cosα+ Tz sinα) (1)

α̇ =
1
mV

(−L+mg cos (θ − α)− Tx sinα+ Tz cosα) + q (2)

q̇ =
(M + Tm)

Iyy
(3)

θ̇ = q (4)

where V is the true air speed (knots), α is the angle of attack (deg), q is the pitch rate (deg/s) and θ is the
pitch angle (deg). The control inputs are the elevator deflection δelev (deg) and engine throttle δth (percent).

The drag force D (lbs), lift force L (lbs), and aerodynamic pitching moment M (lb-ft) are given by:

D = q̄SCD(α, δelev, q̂) (5)
L = q̄SCL(α, δelev, q̂) (6)
M = q̄Sc̄Cm(α, δelev, q̂) (7)

where q̄ := 1
2ρV

2 is the dynamic pressure (lbs/ft2) and q̂ := c̄
2V q is the normalized pitch rate (unitless). CD,

CL, and Cm are unitless aerodynamic coefficients computed from look-up tables provided by NASA. NASA
provides raw look-up table data for the aerodynamic coefficients in the airframe body axes, i.e. the raw data
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is provided for CX , CZ , and Cm.b The body-axis look-up tables CX and CZ were transformed into lift and
drag coordinates via a rotation of angle α about the lateral axis.

The GTM has engines on the port and starboard sides of the airframe. Thrust settings for both engines
were equal during the flight test. The thrust from a single engine T (lbs) is a function of the throttle setting
δth (percent). T (δth) is specified as a ninth-order polynomial in NASA’s high fidelity GTM DesignSim. Tx

(lbs) and Tz (lbs) denote the projection of the total engine thrust along the body x-axis and body-z axis,
respectively. Tm (lbs-ft) denotes the pitching moment due to both engines. Tx, Tz and Tm are given by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (8)
Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (9)
Tm(δth) = rzTx(δth)− rxTz(δth) (10)

nENG = 2 is the number of engines. ε2 = 1.98 deg and ε3 = 2.22 deg specify the rotation from engine axes
to the airplane body axes. rx = 0.4406 ft and rz = 0.3336 ft specify the moment arm of the thrust.

The L1 adaptive controller was tested at approximately V = 80knots. At this speed the level flight trim
condition for the longitudinal dynamics is:

xt :=


Vt

αt

qt

θt

 =


80.00 knots

4.18 deg
0 deg/s,
4.18 deg

 , ut :=

[
δth,t

δelev,t

]
=

[
19.37%
1.74 deg

]
(11)

The subscript “t” denotes a trim value. Linearizing around this trim point gives the following linear, time-
invariant (LTI) model for the longitudinal dynamics:

˙δx =


−0.0451 −0.0876 −0.0007 −0.3327
−0.3401 −2.8083 0.9489 0
−0.4963 −42.6565 −3.6384 0

0 0 1.0 0

 δx+


0.0788 −0.0263
−0.0022 −0.2809
0.8675 −45.9280

0 0

 δu (12)

where δx := x− xt and δu := u− ut.
There are several components that must be modeled in addition to the basic airframe dynamics. One

important feature of the GTM platform is that measurements are transmitted down to a ground station.
The control laws are computed at the ground station and then transmitted back to the GTM. The additional
dynamics from measurement to actuation can have a significant effect of the robustness of the feedback loop.
The following effects were included in the LTI longitudinal model:

1. Sensors: The pitch rate measurement is generated by the MAG3 sensor. A specially ordered 200 Hz
bandwidth MAG3 was originally used on the GTM but this was replaced for the September 2009 flight
test by a standard MAG3 with 50 Hz bandwidth. The pitch rate sensor is modeled as a first-order
transfer function with a 50 Hz bandwidth. Vibration isolation was installed for the MAG3 between the
September 2009 and March 2010 flight tests. This introduced 6 msec of lag in the MAG3 measurements
for the March 2010 test. This additional 6 msec lag is modeled as a time delay for the analysis of the
March 2010 test but it is not included for the analysis of the September 2009 test.

The Air Data sensor measures angle of attack and total pressure. Total pressure is turned into airspeed
by a nonlinear function. This nonlinear function is neglected in the analysis and the Air Data sensor
is modeled as directly sensing airspeed. No dynamic model of the air data sensor is included in the
GTM DesignSim. It is assumed that these sensor dynamics are negligible. Both sensors have scale
factor and bias errors. These errors are neglected in the linear analysis. The pitch angle measurement
is generated by the MIDG II sensor. The MIDG II sensor dynamics are neglected since the pitch angle
is not used for feedback in this analysis.

2. Anti-Aliasing Filters: Anti-aliasing filters for pitch rate, angle of attack, and airspeed measurements
are modeled as first order transfer functions with time constants of 10 msec (bandwidth = 15.9 Hz).

bThe notation refers to standard aircraft body axis conventions.12 x is directed to the front along the longitudinal axis of
the aircraft and z is directed down. X and Z are the aerodynamic forces along the x and z axes, respectively.
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3. Downlink: The downlink is modeled as a 6 msec delay. This includes queuing delays, transmission
time, and delays due to asynchronous timing of subsystem components.

4. Processor: The processor runs at 600 Hz. It is assumed that the processor takes the entire sample
time to compute the controller. The processor is modeled as one sample (Ts ≈ 1.667 msec) of delay.

5. Uplink: The uplink is modeled as a 15 msec delay. This includes queuing delays, transmission time,
and delays due to asynchronous timing of subsystem components. The processor and uplink delays are
lumped as a single delay at the plant input.

6. Actuators: The elevator actuator is modeled as a first order system with 5 Hz bandwidth and 10 msec
of pure time delay. The actuator has several nonlinear effects including backlash and hysteresis. These
nonlinear effects are not modeled in the linear analysis. The throttle lag is modeled as the second order

system
−0.147s+ 0.731
s2 + 1.34s+ 0.731

.

There are two important points to note concerning this analysis model. First, an older version of the
GTM DesignSim (v0905) modeled the elevator actuator with a 10 Hz bandwidth and zero delay. The L1

controller tested in September 2009 was designed based on this older, less accurate actuator model. This
L1 controller was designed to meet the NASA requirement for 60 msec of time delay margin based on the
inaccurate models that were available at the time. However, the lower bandwidth and additional delay in the
actual elevator model has a significant impact on the actual (as compared to the designed) stability margins.
Second, wind turbulence is not modeled and this was a factor during some flight tests. It would be possible
to use linear analysis to investigate the effect of turbulence. This paper focuses on stability margins and
thus the effect of turbulence on performance is not considered.

B. Longitudinal-Axis L1 Adaptive Controller

This section briefly reviews the architecture of the L1 adaptive controller with piecewise constant adaptive
laws designed for the GTM. Full details on the design of this controller are provided in Ref. 9. Additional
theoretical details and applications of the L1 adaptive controller with piecewise constant adaptive laws are
given in Refs. 10 and 11. This section focuses on the longitudinal axis of the L1 controller. The architecture
is similar for the lateral axis. Two versions of the L1 controller will be analyzed in this paper. Version 7 was
flight tested in September 2009 and exhibited the 1.4 to 2 Hz oscillations in the elevator command shown
in Figure 2. Version 12 was successfully flight tested in March 2010 without the oscillations in the elevator
channel. The two versions use the same architecture with minor differences in implementation. All controller
parameters (e.g. adaptation gains, filter time constants) were obtained from the Simulink implementations
for the two L1 adaptive controllers.

The longitudinal controller design assumes the short period dynamics of the GTM can be modeled as:

ẋ(t) = Amx(t) +Bm (u(t) + f1(x(t), t)) +Bumf2(x(t), t) (13)
y(t) = Cx(t) (14)

where x := [α, q]T and u := δelev. y := α is the regulated output. Am and Bm define the desired
short period dynamics. f1 and f2 are unknown matched and unmatched uncertainties that represent the
difference between the actual and desired short period dynamics. The derivation in Ref. 9 also allows for
internal unmodeled dynamics but this generalization has been neglected for simplicity.

The longitudinal L1 adaptive control law is designed to track an angle of attack command from the pilot.
Specifically, the goal is to have the regulated output y(t) := α(t) track the desired response ym(t) due to a
reference command r(t) := αcmd(t) from the pilot. The desired response is given by the reference model:

ẋm = Amxm(t) +BmKgr(t) (15)
ym(t) = Cxm(t) (16)

The feedforward gain is chosen to be Kg = −(CA−1
m Bm)−1 so that the response from r(t) to ym(t) has a

steady state gain of one.
The L1 adaptive control law uses state feedback to accomplish this tracking objective. The basic idea is to

estimate the effect of the matched and unmatched uncertainties on the output y(t). The controller attempts
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to compensate for these uncertainties up to a defined bandwidth. The bandwidth is set by low-pass filters
introduced into the controllers. These low-pass filters provide separation between adaptation and robustness
as well as attenuating high frequency content in the controller output u(t). This is important because L1

designs typically use large adaptation gains which lead to high frequency content in some of the internal
states of the controller.

Figure 3 shows the high-level structure of the L1 adaptive controller. The controller inputs are the
reference command r and the measurements of the short period state x. The output is the elevator command
u. The architecture consists of three components:

1. State Predictor:

˙̂x = Amx̂+Bm (u+ σ̂m) +Bumσ̂um (17)

σ̂m and σ̂um are estimates of the matched and unmatched uncertainties. These are computed by an
adaptive law. x̂ is the estimate of the short period states x = [α, q]T . x̂ is an open-loop state prediction,
i.e. it does not use state measurements to correct the estimate. Instead, the difference between the
open-loop state estimate x̂(t) and the measured state x(t) is used by the adaptive law to update the
estimates of the model uncertainty.

2. Adaptive Laws: The estimates of the model uncertainties are updated with a piecewise-constant
adaptive law: [

σ̂m(t)
σ̂um(t)

]
= Mx̃(kTs) ∀t ∈ [kTs, (k + 1)Ts] (18)

where x̃(t) = x̂(t) − x(t) is the state estimation error and Ts is the sampling rate. M is the constant
matrix defined as M := −[Bm, Bum]−1Φ−1(Ts)eAmTs where Φ(Ts) := A−1

m (eAmTs − I). This adaptive
law samples x̃ every Ts seconds and updates the model uncertainty estimates. The sample time is
Ts = 1.667 msec. The sample rate is fast relative to the short period dynamics and hence the adaptive
law is essentially a continuous-time constant matrix gain.

3. Control Law: The elevator command is generated as:

u = −C1(s)σ̂m − C2(s)H−1
1 (s)H2(s)σ̂um +Kgr (19)

where H1(s) := C(sI−Am)−1Bm and H2(s) := C(sI−Am)−1Bum are the transfer functions from the
matched and unmatched uncertainty to the output, respectively. C1(s) and C2(s) are low pass filters
chosen to attenuate the high frequency content in the model uncertainty estimates. The first term
of this control law attempts to compensate for the matched model uncertainty up to the bandwidth
of C1(s). H2(s)σ̂um estimates the effect of the unmatched uncertainty on the model output and
H−1

1 (s)H2(s)σ̂um is the input needed to cancel the effect of this uncertainty at the output. Thus the
second term in the control law attempts to cancel the effect of the unmatched uncertainty up to the
bandwidth of C2(s). The last term in u(t) is the reference angle of attack with the desired gain.

r
-

Control
Law-

u
-

State
Predictor

x̂

?e x�x̃�Adaptive
Law

-

σ̂

-

Figure 3. Architecture for L1 Adaptive Controller

All three components of the L1 adaptive controller with piecewise constant adaptive laws are essentially
linear time-invariant systems. The state predictor is just a linear state-space system. The adaptive law
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consists of a sample/hold and a constant matrix gain. This can be represented as a continuous-time, constant
matrix gain for the fast sample rate used by the controller. Finally, the control law component consists of
low pass filters, transfer functions modeling the effect of the unmatched uncertainties, and a constant gain.
This control law component is a three-input, one-output linear time-invariant system. To summarize, the
L1 adaptive controller described in Ref. 9 can be well-approximated by a linear time-invariant system.
This conclusion is in contrast to most adaptive laws which use nonlinear terms in both the the adaptive
law and the control law. For example, other variants of L1 adaptive control13 and most variants of model
reference adaptive control contain quadratic terms in both the adaptive law and the control law. The L1

adaptive controller with piecewise constant adaptive laws can also be implemented using integral (nonlinear)
projection-type adaptive laws.13

The flight tested L1 adaptive controllers are implemented in Simulink. The Simulink implementation
includes several additional features not described in Ref. 9. First, a single scalar gain on the B-matrix
is scheduled to improve performance and provide different performance at different flight conditions. The
scheduling is based on α and V and the scheduling variables are low-pass filtered. In the linear analysis the
gain-schedule variable is assumed to be constant at their values for the flight condition V = 80knots and
α = 6.5o. This is approximately the mean flight condition during the September 2009 flight test. Second,
there is logic to reset all integrators when the controller is initially turned on. The reset logic is neglected
in the linear analysis. Third, the reference angle-of-attack command is smoothed by a low-pass filter and a
command pre-filter in addition to being multiplied by the gain Kg. These filters are included in the linear
analysis. The fourth difference occurs in the implementation of the state predictor. The implemented state
predictor differs from Equation 17 in that it includes a model of the actuator. Versions 7 includes models for
the rate and magnitude saturation limits as well as a model for the network/actuator time delays. Version
12 includes updated values for the limits/delays and it also includes a first-order transfer function model
for the actuator dynamics. As mentioned previously, Version 7 was designed using inaccurate actuator /
network models while Version 12 was designed using the updated, more accurate models. The time delay
and actuator dynamics are included in the linear analysis. However, it will be assumed that the effects of
the actuator saturation model in the state predictor can be neglected. Finally, Version 12 also includes a
pitch rate stability augmentation system in addition to the L1 control law described above. In this version,
the elevator command is δelev,cmd = −0.05q + uL1 where uL1 is the control command computed by the
L1 controller. The pitch rate feedback adds damping to the short period mode. Version 7 did not include
this pitch rate feedback term. In summary, both versions of the L1 adaptive controller contain numerous
implementation details. However both versions can be reasonably approximated as linear time-invariant
systems over a wide portion of the flight envelope.

C. Validation of Linear Model

A linear, time-invariant approximation for the closed loop system was constructed from the linearization
of the GTM longitudinal dynamics and the LTI approximation for the L1 controller. The longitudinal L1

controller is designed to track angle of attack commands. During the September 2009 flight test the pilot
controlled the throttle to maintain the airspeed. The pilot control of velocity is modeled with a simple
proportional throttle controller: δth = δth,t +Kth(Vt − V ) with Kth = 5. A state space model of the closed
loop system was constructed by connecting the L1 and throttle controllers in feedback with the linear model
of the longitudinal GTM dynamics.

To validate the approximation, the linear system was simulated with pulse angle-of-attack commands of
various magnitudes. The results were compared with nonlinear simulation results using the GTM DesignSim.
The nonlinear simulation included the high fidelity 6DOF GTM model and the flight tested implementation
of the L1 controller. The L1 controller in the nonlinear simulation included both the longitudinal and lateral
axes of the controller as well as all the special implementation features described at the end of the previous
section. Figure 4 shows the responses of the linear and nonlinear simulations to a 2 deg angle of attack pulse
command. Version 7 of the L1 adaptive controller was used to generate the linear and nonlinear responses
in this figure. The short period response of the linear model is similar to that of the nonlinear model. There
are small differences in the long-period responses.
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Figure 4. Nonlinear and linear closed-loop response to pulse α command

IV. Linear Analysis

The longitudinal axis of the L1 controller has three inputs (αcmd, α, and q) and one output (δelev,cmd).
The linear, time-invariant approximation for the L1 controller allows the feedback system to be analyzed
using a variety of linear analysis tools. For example, Figure 5 shows the Bode plots for Versions 7 and 12 of
the longitudinal axis of the L1 controller. The columns of Figure 5 are the Bode plots from αcmd, α, and q,
respectively to the δelev,cmd. For both versions, the transfer function from αcmd to δelev,cmd is approximately
−k/s at low frequencies for some constant k. The transfer function from α to δelev,cmd is approximately
+k/s at low frequencies for the same constant k. Thus the L1 can be interpreted as having an integral
control term on the α tracking error. This interpretation is only approximate however because both gains
eventually level out to constant values at very low frequencies.

The effect of the pitch rate stability augmentation system in Version 12 is apparent in the Bode plot
from q to δelev,cmd (third column of Figure 5). The approximately constant gain at low frequencies is the
result of this additional feedback term. Version 7, on the other hand, has much lower gain especially from 1
to 10 rad/sec. At V=80knots, the short period mode of the GTM is at 7.12 rad/sec with a damping of 0.45.
The additional stability augmentation system in Version 12 increases the pitch rate gain at the short period
frequency and thus adds damping to this mode.

The Bode plot from α to δelev,cmd (middle column of Figure 5) has a significant increase in gain and
phase starting around 5 rad/sec for both controllers. This appears to add phase lead to the feedback system.
For Version 7, the gain of this transfer function exceeds 10 dB from 50 to 400 rad/sec and the gain exceeds
0 dB out to 1400 rad/sec. Thus the effect of α measurement noise on elevator command is amplified over a
wide frequency band by Version 7. This might explain the increase in high frequency (beyond 2 Hz) energy
in the elevator command shown in Figure 2. In Version 12 the α to δelev,cmd transfer function rolls off at a
much lower frequency.

The performance of the feedback system can also be analyzed using the input loop transfer function.
The input loop transfer function, denoted LI(s), is the scalar, open loop transfer function from the elevator
input of the plant to the elevator output from the L1 controller. The αcmd input to the L1 controller is
neglected and the proportional throttle controller (Kth = 5) is wrapped in feedback around the longitudinal
dynamics. As mentioned previously this proportional control roughly models the pilot control of the throttle.
The results reported in the remainder of the section are similar for a wide range of throttle gains (Kth ≥ 2).
The Bode plot of the input loop transfer function is shown in Figure 6. This figure shows that Version 12
has a significantly lower bandwidth than Version 7. It is also important that Version 7 crosses 0 dB near 8.4
rad/sec and there is a very sharp roll-off in phase occurring at this frequency. As a result, small increases in
loop gain, e.g. due to scale factor errors in the sensors, can drastically reduce the phase margin of Version
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Figure 5. Bode Plots for Version 7 (v7) and Version 12 (v12) of the L1 controller

7. This is important because scale factor errors in the α measurement, attributed to upwash on the sensor,
were observed during flight tests.

Stability margins for both versions of the L1 control law can be computed using the input loop transfer
function. The first three rows of Table 2 shows the classical gain, phase, and delay margins. These classical
margins measure robustness with respect to either gain or phase variations. The last two rows of Table 2 are
robustness margins that allow for simultaneous gain and phase variations. The fourth row shows the disk
margin. The disk margin defines the largest disk that encircles -1 and does not intersect the Nyquist plot
of LI(jω).14–16 The disk margin disk passes through −d and −1/d where d denotes the disk margin. The
disk margin defines a set of simultaneous gain and phase variations for which the system is stable. This set
can be plotted with the Matlab function DMPLOT.17 The fifth row of Table 2 gives the minimum distance
from the Nyquist plot of LI to the critical point at -1.

Version 7 has smaller gain and phase margins than Version 12. However, the gain/phase margins for
Version 7 are not, on their own, indicative of a robustness issue. In fact the margins for Version 7 exceed the
typical flight control requirements for a gain margin of at least 6 dB (gain ≈ 2) and 45o of phase margin. The
high bandwidth of Version 7 results in much higher gain and phase margin frequencies than for Version 12.
This causes two issues. First, model uncertainties are typically larger at higher frequencies making it more
likely that the system margins will be exceeded. Second, phase margins at higher frequencies correspond
to smaller delay margins. This is evident in the third row of Table 2. Version 7 has a significantly smaller
delay margin than Version 12. The last two rows of Table 2 show that Version 7 also has smaller stability
margins than Version 12 with respect to the measures that allow for simultaneous phase and gain variations.
In particular, for Version 7 the minimum distance from the Nyquist plot of LI to the critical point is roughly
half of that corresponding to Version 12. It should be noted that for Version 7 the frequencies for all stability
margins occur between 8.42 and 14.49 rad/sec (≈ 1.34 to 2.31 Hz). This is in agreement with the 1.4 to 2
Hz energy observed in the FFT of the elevator command (Figure 2).

The minimum distance to the critical point can be used to construct a destabilizing perturbation. For
Version 7, the minimum distance to the critical point occurs at ωc = 11.25 rad/sec. At this frequency the
input loop transfer function is LI(ωc) = −0.597 − 0.221i and −1/LI(ωc) = 1.473 − 0.544i = 1.57e−0.354i.
−1/LI(ωc) can be rewritten as 1.57e−0.0315ωci. Thus the feedback system will be destabilized by a simul-
taneous gain of 1.57 and delay of 31.5 msec at the elevator input. This gain/delay perturbation places two
poles of the feedback system at ±11.25i. This perturbation was introduced into the nonlinear simulation to
verify the results of the linear analysis. The nonlinear simulation again refers to the GTM DesignSim with
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Figure 6. Bode plot of input loop transfer function for Version 7 (v7) and Version 12 (v12)

Table 2. Stability Margins

Version 7 (Sept. 2009) Version 12 (Mar. 2010)
Gain Margin 2.43 at 14.49 rad/sec 17.01 at 4.26 rad/sec
Phase Margin 46.3o at 8.42 rad/sec 56.8o at 0.43 rad/sec
Delay Margin 0.096 sec at 8.42 rad/sec 2.3 sec at 0.43 rad/sec
Disk Margin 1.79 at 10.8 rad/sec 3.18 at 0.35 rad/sec

minω |1 + LI(ω)| 0.46 at 11.25 rad/sec 0.91 at 2.77 rad/sec

the high fidelity 6DOF model of the GTM and the full longitudinal/lateral implementations of Version 7 of
the L1 adaptive control law. The simultaneous gain of 1.57 and delay of 31.5 msec was introduced at elevator
input to the plant. Figure 7 shows the system response to a 2o pulse angle of attack command. The drop
in velocity is due to the low-gain used for the proportional throttle control. The system has a pronounced
oscillation at approximately 11 rad/sec (1.75 Hz). Again, this is in agreement with the 1.4 to 2 Hz energy
observed in the FFT of the elevator command (Figure 2).

V. Conclusion

The L1 adaptive controller with piecewise constant adaptive laws was approximated by a linear time-
invariant system. This linear model was used to study the stability margins of the longitudinal axis of the
L1 controller. It was shown that the initial implementation of the L1 controller had low stability margins.
Moreover, the closest point from the Nyquist plot of the input loop transfer function to the critical point at
-1 occurs approximately at 1.7 Hz. This is in agreement with 1.4 to 2 Hz oscillations in the elevator command
that were observed during a flight test in September 2009. A revised L1 controller has significantly larger
stability margins and demonstrated good performance during subsequent flight tests in March and June
2010.
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