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Abstract— This paper considers the problem of certifying
the performance of a class of model-based fault detection
schemes. The underlying plant is assumed to be a linear
time-varying (LTV) system subject to a Markov-switching fault
input. The fault detection scheme consists of two parts: an
LTV component that produces a scalar residual and a static
nonlinear function that infers the presence of a fault based on
this residual. Probabilistic performance metrics are presented
and the complexity of computing these metrics is analyzed. It is
shown that under a set of realistic assumptions, this complexity
is reduced to polynomial time. An aerospace example, involving
a pitot-static probe subject to random bias faults, is used to
demonstrate the usefulness of this analysis.

I. INTRODUCTION

In safety critical applications, a system must not only
be highly reliable, but that reliability must be certifiable.
This is particularly true in civil aviation, where the FAA
requires fly-by-wire control systems to have fewer than 10−9

catastrophic failures per flight-hour [1]. Such system-wide
failures can occur if the system is rendered inoperable by a
critical component failure or if the system performs poorly
because of an undetected component failure. One approach,
commonly found in avionics systems, is to use parallel
redundant components, which ensures the availability of the
system, even in the presence of component failures [1], [2],
[3]. A failed component is detected by directly comparing
the behavior of each redundant component. Hence, these
schemes tend to detect faults accurately, and their perfor-
mance is simple to certify using fault trees [4].

However, in some applications, such as Unmanned Aerial
Vehicles (UAVs), the designer cannot afford the extra weight,
size, and power needed to support identical redundant
components. To prevent system-wide failures due to an
undetected component failure, the analytical redundancies
between components can be exploited to detect faults.
For example, if three measurements m1, m2, and m3 are
available, and these quantities are known to satisfy the
analytical relations m1 = f1(m2,m3), m2 = f2(m1,m3), and
m3 = f3(m1,m2), then the residuals r1 = m1 − f1(m2,m3),
r2 = m2 − f2(m1,m3), etc. can be used to detect failures
in the components that produce these measurements. This
approach certainly reduces the number of individual compo-
nents needed; however, there are two main drawbacks to con-
sider. First, merely identifying a fault cannot prevent system-
wide failure if the failed component is indispensable (i.e. no
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other components can perform the same critical function).
Second, the performance of fault detection schemes based
on analytical redundancy can be difficult to certify if the
analytical relationships are dynamic or nonlinear. While the
first difficulty is unavoidable, this paper addresses the second
difficulty.

Although there is a vast body of literature on model-
based fault detection and identification (FDI) (e.g., [5], [6],
[7]), little attention is given to the rigorous evaluation of the
performance and reliability metrics required to certify safety-
critical aerospace systems. Monte Carlo methods [8] provide
a statistically rigorous approach to performance analysis, but
it can difficult to quantify the error present in the results. The
goal of this paper is to define a set of performance metrics
that can be computed analytically and to provide a class of
systems for which these metrics can be computed efficiently.

The problem of fault detection is modeled by the inter-
connection of systems shown in Fig. 1. Section II provides
a detailed description of the plant P, the fault detection
scheme (F,δ ), and the associated input and output signals.
The framework presented here is a generalization of the
fault detection problem considered in [9]. To quantify the
performance of a fault detection scheme that falls within
this framework, a set of performance metrics is defined in
Section II-C. The analysis in Section III demonstrates that, in
general, computing these metrics is an intractable problem,
but for a specific class of fault detection problems these
metrics can be computed in polynomial time. Section III-
C presents conditions under which this complexity can be
further reduced to quadratic or linear time. In Section IV,
this analysis is applied to a fault detection problem involving
a pitot-static probe subject to randomly occurring bias faults.
Finally, Section V discusses the conclusions of this work, as
well as avenues of future research.

II. PROBLEM STATEMENT

First, we establish some notation. Let (Ω,F ,P) be the
underlying probability space, and let K := {k ∈ Z |k ≥ 0}
be the discrete time index set. For any stochastic process
v : Ω×K → Rn, the notation {vk}k∈K or {vk} represents
the entire process. For each k ∈K , the notation vk represents
the random variable vk : ω 7→ vk(ω). For i, j ∈K with i≤ j,
define the partial sequence vi: j := {vi,vi+1, . . . ,v j}.

A. Plant Model

Assume that the plant, labeled P in Fig. 1, is of the form

xk+1 = Âkxk + B̂u,kuk + B̂v,kvk + fk(θ0:k)

yk = Ĉkxk + D̂u,kuk + D̂v,kvk + fk(θ0:k),
(1)
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Fig. 1. Block diagram showing the plant P subject to a deterministic input
u, a noise process v, and a random fault signal f (θ). The shaded region
is the fault detection scheme (F,δ ), and the output d is the decision or
inference made by (F,δ ).

where {uk} is a known deterministic input and {vk} is an
i.i.d., Gaussian stochastic process with vk ∼ N (0, I), for
all k. The random occurrence of faults is modeled by a time-
homogeneous Markov chain {θk} with a finite state space
M := {0,1, . . . ,m}, transition probability matrix

Πi j := P(θk+1 = j |θk = i), i, j ∈M ,

and initial distribution π0 [10]. The random variable θk is
called the mode of the system at time k. The signal { fk}
is a sequence of deterministic functions that map the mode
sequence θ0:k to an additive fault input fk(θ0:k), such that
for all k, θk = 0 implies that fk(θ0:k) = 0. That is, the event
{θk = 0} occurs when the system (1) is in the nominal
mode (i.e., no faults) at time k. Conditional on the event
{θ0:k = θ̂0:k}, the system (1) is a linear time-varying (LTV)
Gaussian system driven by the known deterministic inputs
{uk} and { fk(θ̂0:k)} and the random input {vk}. Hence,
the system (1) belongs to the class of conditionally linear-
Gaussian systems [11].

B. Fault Detection Scheme
Since the random occurrence of faults is modeled by the

Markov chain {θk}, the general purpose of fault detection
and identification is to infer something about the current
value of {θk}. More precisely, if for some s the set M is
partitioned into s disjoint subsets M0,M1, . . . ,Ms−1 and we
define D = {0,1, . . . ,s− 1}, then the goal is to determine
for which d ∈ D is the event {θk ∈Md} most likely at
time k. In this paper, we consider the simplest case, called
fault detection, where M0 := {0}, M1 := {1,2, . . . ,m}, and
D := {0,1}. In other words, the objective is to determine if
the system is in the nominal mode or in some fault mode.

Assume that fault detection scheme, labeled F and δ in
Fig. 1, is modeled as a deterministic LTV system F given by

ξk+1 = Ãkξk + B̃u,kuk + B̃y,kyk,

rk = C̃kξk + D̃u,kuk + D̃y,kyk,
(2)

and a sequence of static, memoryless, deterministic functions
{δk}, where each δk : R→ D is called a decision function.
The output {dk}, given by dk = δk(rk) ∈ D , indicates the
decision or inference made by the fault detection scheme.
The role of the system F is to generate an output {rk}, known
as the residual, that has small mean and variance when {θk}
is in M0 and has large mean and large variance otherwise.
The complementary role of each decision function δk is to
determine when the residual rk is large enough to indicate
that the event {θk ∈M1} is likely at time k. A commonly-
used decision function is

δ (r) = I(|r|> ε),

where I is the indicator function and ε > 0 is the threshold.

C. Probabilistic Analysis

For each k ∈K , define the events

H0,k := {θk ∈M0}, R0,k := {dk = 0},
H1,k := {θk ∈M1}, R1,k := {dk = 1}.

The reliability of the plant is given by H0,k and H1,k, while
the behavior of the fault detection scheme is given by R0,k
and R1,k [12]. Note that {H0,k,H1,k} and {R0,k,R1,k} both
form partitions of the sample space Ω. For each k ∈ K ,
the performance of the fault detection scheme, with respect
to the plant, is given by the following four events: a true
negative, R0,k ∩H0,k; a false positive, R1,k ∩H0,k; a false
negative, R0,k ∩H1,k; and a true positive, R1,k ∩H1,k [12].
These events also form a partition of the sample space Ω,
and their corresponding probabilities are denoted

PTN
k = P(R0,k ∩H0,k), (3)

PFP
k = P(R1,k ∩H0,k), (4)

PFN
k = P(R0,k ∩H1,k), (5)

PTP
k = P(R1,k ∩H1,k). (6)

These probabilities provide all the necessary information,
because their values can be used to compute the probability
of any event in the σ -algebra generated by the collection
{R0,k,R1,k,H0,k,H1,k}. Since the values of (3)–(6) sum to one,
only three of the four quantities must be computed.

Although the probabilities (3)–(6) provide all the neces-
sary information, their numerical values can be difficult to
interpret. For example, suppose that P(H1,k) ≈ 0 for k =
0,1, . . . ,T . This implies that

P(H1,k) = PFN
k +PTP

k ≈ 0.

Since both PFN
k and PTP

k are small, it is difficult to get a
sense of how well the fault detection scheme will perform
in the presence of a fault at times k ∈ {0,1, . . . ,T}. In this
case, it is beneficial to consider the relative magnitudes of
PFN

k and PTP
k . This approach gives rise to two conditional

probabilities: the probability of detection

PD
k := P(R1,k |H1,k) =

PTP
k

PFN
k +PTP

k
, (7)

and the probability of a false alarm

PF
k := P(R1,k |H0,k) =

PFP
k

PTN
k +PFP

k
. (8)

If the probability P(H1,k) is known, equations (7) and (8)
can be rearranged to compute the probabilities (3)–(6) from
PD

k , PF
k , and P(H1,k).

III. COMPUTATIONAL ISSUES

For each k ∈K , the joint density of the residual rk and
the mode θk is given by

p(rk,θk) = ∑
θ0:k−1∈M k

p(rk,θ0:k) = ∑
θ0:k−1∈M k

p(rk |θ0:k)p(θ0:k). (9)



This density can be used to compute probabilities (3)–(6);
for instance,

PTP
k =

m

∑
θk=1

∫
δ
−1
k (1)

(
∑

θ0:k−1∈M k

p(rk |θ0:k)p(θ0:k)

)
drk. (10)

There are two difficulties inherent in computing this formula.
The first is the number of mode sequences θ0:k that must
be considered; in total, there are m · |M |k = O(mk+1) terms
in the sum. Second, even though the conditional density
p(rk |θ0:k) is Gaussian, the sets δ

−1
k (0) and δ

−1
k (1) may be

too complex to compute the necessary integrals. Thus, in
the general case, computing the performance metrics (3)–(6)
is intractable. To ameliorate this complexity, we establish a
sufficient set of restrictions on the structure of the Markov
chain {θk} and the form of the decision functions {δk}, so
that the performance metrics can be computed efficiently.

A. Sufficient Restrictions

First, we address the complexity issues arising from
Markov chain {θk}. There are many approximate methods,
such as the Interacting Multiple Model and Generalized
Pseudo-Bayesian algorithms [13], that reduce the complexity
by effectively consolidating information about the past and
considering only a fixed number of terms in the joint
density (9). In our approach, we compute the exact solution
for a special class of Markov chains that are well-suited to
fault detection problems.

Assume that P(θ0 = 0) = 1, i.e., the system almost surely
starts in the nominal mode. Suppose that the system has `
components that fail independently, and assume that once
a component fails, it remains in a failed state indefinitely.
The set of components that have failed at or before a given
time can be encoded by a binary string of length `, where
a 1 indicates a failure. Note that there are 2` such binary
strings, and each can be identified with a member of the
state space M := {0,1, . . . ,2`− 1}. The assumption that a
failed component must remain in a failed state is captured
by the transition probability matrix Π. For example, suppose
`= 2. If the binary strings are labeled as

M = {0,1,2,3}↔ {00,10,01,11},

then Π must be of the form

Π =


∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 1


where ∗ indicates a possibly nonzero entry. Note that re-
labeling the binary sequences would just permute the rows
and columns of Π. Under these assumptions, a fault model
consisting of ` components has only O(k`) mode sequences
θ0:k ∈M k+1 with nonzero probability.

Second, we address the problem of computing integrals of
the form ∫

δ
−1
k (dk)

p(rk |θ0:k)drk,

where k ∈K , dk ∈ D and θ0:k ∈M k+1. Assume that each
decision function δk is a threshold function

δk(rk) := I(|rk|> εk), εk > 0.

If z is some Gaussian random variable with z ∼N (µ,σ2)
and ε > 0, then P(−ε < z < ε) is given by∫

ε

−ε

p(z)dz =
1
2

[
erf
(

ε−µ√
2σ

)
− erf

(
−ε−µ√

2σ

)]
,

where erf : R→ [−1,1] is the error function. Analytically,
erf( ·) can be approximated by a rational function with
maximum relative error less than 10−19 [14]. Evaluating the
rational approximation requires a fixed number of floating
point operations. Thus, the probability P(−ε < z < ε) can be
computed accurately in O(1) time. We conclude that once
the densities p(rk |θ0 : k) and p(θ0:k) have been calculated
(see Section III-B), the performance metrics can be evaluated
with O(k`) calls to erf( ·) in O(k`) time.

B. Computational Procedure

Because of their linear structure, systems (1) and (2) can
be combined into a single system

ηk+1 = Akηk +Bu,kuk +Bv,kvk +B f ,k fk(θ0:k),

rk =Ckηk +Du,kuk +Dv,kvk +D f ,k fk(θ0:k),
(11)

where ηk := (xk,ξk) is the combined state. For each k ∈K ,
define η̂k := E(ηk |θ0:k = θ̂0:k) and r̂k := E(rk |θ0:k = θ̂0:k).
Strictly speaking, we should write η̂k(θ̂0:k) and r̂k(θ̂0:k), but
we omit this argument when the sequence θ̂0:k is clear from
context. The sequences {η̂k} and {r̂k} are given by

η̂k+1 = Akη̂k +Bu,kuk +B f ,k fk(θ̂0:k),

r̂k =Ckη̂k +Du,kuk +D f ,k fk(θ̂0:k).
(12)

Similarly, for each k, define the conditional covariance ma-
trices Pk := var(ηk |θ0:k = θ̂0:k) and Qk := var(rk |θ0:k = θ̂0:k).
Then, {Pk} and {Qk} are given by

Pk+1 = AkPkA∗k +Bv,kB∗v,k,

Qk =CkPkC∗k +Dv,kD∗v,k.
(13)

Each update (from k to k+1) of equations (12) and (13)
takes constant time, so for a fixed final time T ∈K and a
given mode sequence θ̂0:T , the sequences r̂0:T and Q0:T can
be computed in O(T ) time. Since {θk} is a Markov process,

p(θ0:k) = p(θk |θk−1)p(θ0:k−1) = Πθk−1θk p(θ0:k−1),

and P(θ0:k = θ̂0:k) can be recursively computed from
P(θ0:k−1 = θ̂0:k−1) with a single multiplication. Since there
are O(T `) mode sequences, the entire joint density (9) can
be computed in O(T `+1) time.

C. Special Case

Recall that the Markov chain {θk} is interpreted as the
status of ` components that fail randomly. We consider a
special class of fault signals { fk( ·)} of the form

fk(θ0:k) =
`

∑
i=1

λi

(
k−Ti(θ0:k)

)
, k ∈K , (14)



TABLE I
TIME-COMPLEXITY OF COMPUTING THE PERFORMANCE METRICS.

Fault Model Simulations Calls to erf( ·)

General Markov Chain O(mT+1) O(T mT+1)
Restricted Markov Chain O(T `) O(T `+1)
Special case (LTV) O(`T ) O(T `+1)
Special case (LTI) O(`) O(T `+1)

where each λi is a deterministic function and Ti(θ0:k) is the
time at which the ith component fails in the mode sequence
θ0:k. If the ith component does not fail, we take Ti(θ0:k) = ∞.
Assume that λi(s) = 0 for s < 0. In other words, λi “switches
on” when component i fails. Since system (11) has linear
structure, we can use superposition to significantly reduce the
amount of computation needed to compute {r̂k} and {Qk}.

For i = 1,2, . . . , ` and τ = 1,2, . . . ,T , define θ
(i,τ)
0:T to

be the mode sequence for which Ti = τ and Tj = ∞, for
i 6= j. Suppose that for all such (i,τ) pairs, we set η̂0 = 0,
uk = 0, for all k, and simulate equation (12) with the input
{ fk(θ

(i,τ)
0:k )} to obtain the corresponding conditional mean

r̂(i,τ)0:T . Also, let r̂(0,0)0:T be the result of simulating equation (12)
with the original values of η̂0 and u0:T but with no faults.
Then, the value of r̂0:T corresponding to an arbitrary mode
sequence θ̂0:T can be obtained by superposing r̂(i,τ)0:T for
the appropriate pairs (i,τ). Using superposition the number
of simulations needed is reduced from O(T `) to O(`T ).
Moreover, if the system (11) is LTI then for each i and j,
r̂(i,1)0:T can be shifted τ time-steps to obtain r̂(i,τ)0:T , which further
reduces the number of simulations to O(`). However, in
these special cases, the error function must still be evaluated
O(T `+1) times to compute the performance metrics. These
time-complexity results are summarized in Table I.

IV. APPLICATION: PITOT-STATIC PROBE

Nearly all aircraft use a pitot-static probe to determine
airspeed V and altitude h. Because these data are essential
for flying, the pitot-static probe is integrated into the flight
control feedback loop. These sensors are prone to a number
of failures, such as icing and blockage, that cause them to
produce incorrect values. If such a failure goes undetected,
the autopilot system or the pilot may use the erroneous values
to issue commands that cause the aircraft to crash. To avoid
such disasters, large commercial aircraft, such as the Boeing
777 [2], [3], have multiple pitot-static probes in different
locations. However, most aircraft designers have developed
a set of standard operating procedures that allow safe re-
covery of the aircraft when a pitot-static probe failure is
detected [15]. In this application we explore the detection of
such faults by exploiting the analytical redundancy between
airspeed, altitude, and flight path angle. Hansen et al. [16]
present a similar example, which uses the methods of statis-
tical change-point detection [17], [18] to model sensor faults.

A. System Description

Consider the fault detection problem shown in Fig. 2. The
pitot tube measures the total pressure pt , and the static port

F

φ

ψ
∫

W

pt

ps

vt + ft

vs + fs

γ

r

V̂

ĥ

h̃

−

Fig. 2. Block diagram of a pitot-static probe with a fault detection scheme
based on analytical redundancy. The map φ (shown graphically in Fig. 3)
represents the plant P, while the shaded region, labeled F , is the dynamic
portion of the fault detection scheme.

measures the static pressure ps. These measurements are
corrupted by Gaussian white noise processes, vt and vs, and
randomly occurring bias faults, ft and fs. The airspeed and
altitude are derived using the relations (see Fig. 3)

[
V
h

]
= φ(pt , ps) :=

sign(pt−ps)c3

(∣∣∣(pt−ps
p0

+1
)c4
−1
∣∣∣)1

2

c1

(
1−
( ps

p0

)c2
)

,
where the constants c1 = 44.331km, c2 = 0.1903, c3 =
760.427 m/s, c4 = 2/7, and p0 = 101.325kPa model the tropo-
sphere (h≤ 17km) [1]. We use the notation V̂ for the derived
airspeed and ĥ for the derived altitude to indicate that these
quantities are corrupted by random disturbances and faults.
Note φ actually gives the indicated airspeed, but we ignore
this issue for the sake of simplicity.

The fault signals are defined as ft(t) := bt I(t ≥ Tt) and
fs(t) := bs I(t ≥ Ts), for t ≥ 0, where bt and bs are known,
fixed biases and Tt and Ts are independent exponential
random variables Tt ∼ Exp(λt) and Ts ∼ Exp(λs).

The dynamic portion of the fault detection scheme F is
contained in the shaded region of Fig. 2. The input γ is the
flight path angle of the aircraft, which we assume is measured
exactly with no noises or faults. Consider the following
analytical relationship between V , h, and γ:

h(t) = h(0)+
∫ t

0
ψ
(
V (τ),γ(τ)

)
dτ =

∫ t

0
V (τ)sinγ(τ)dτ,

which is used to derive h̃ from γ and V̂ . The fault detection
scheme attempts to detect the faults ft and fs by analyzing
the difference ĥ− h̃. However, as the noisy signal ψ(V̂ ,γ)
passes through the integrator, the noise accumulates and h̃
diverges from ĥ. To counteract this effect, a high-pass or
“washout” filter of the form

W (s) =
s

s+a
, a > 0,

is applied to the difference ĥ− h̃ to produce the residual r.
The drawback of using this filter is that it removes the DC
component from the signal ĥ− h̃. The decision function (not
depicted in Fig. 2) is a threshold function with threshold
ε > 0, and the same decision function is used at each k ∈K .

B. Applying the Framework

To apply the framework developed in Sections II and III,
the plant P must be LTV. As shown in Fig. 3, the map φ

is only mildly nonlinear for modest changes in differential
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Fig. 3. Plot of (a) the (indicated) airspeed V as a function of differential
pressure pd = pt − ps and (b) the altitude h as a function of static pressure
ps. The values plotted here are typical for subsonic flight in the troposphere.

pressure pd := pt− ps and static pressure ps, so we take the
first-order approximation

φ(pt + vt + ft , ps + vs + fs)≈ φ(pt , ps)+Φ

[
vt
vs

]
+Φ

[
ft
fs

]
,

where Φ := (Dφ)(pt , ps) is the Jacobian linearization of φ at
(pt , ps). Using this linearization, the continuous-time version
of the combined system (11) is

η̇ =−aη +
[

sin(γ) a
](

u+Φ(t)(v+ f )
)

r =−η +
[
0 1

](
u+Φ(t)(v+ f )

)
,

(15)

where u := φ(pt , ps), v := [vt vs]
T , and

f :=
[

ft
0

]
+

[
0
fs

]
.

At time t = 0, the residual has zero mean if η(0) = h(0).
The system (15) is discretized as follows: fix a sample time

∆t ; then, for all k ∈ K , sample a trajectory (pt,k, ps,k,γk),
compute the input uk = φ(pt,k, ps,k), and compute the state-
space data Φk =(Dφ)(pt,k, ps,k) and sin(γk). In discrete-time,
Tt and Ts are replaced by geometric random variables τt ∼
Geo(qt) and τs ∼ Geo(qs), where qt = 1− exp(−λt∆t) and
qs = 1−exp(−λs∆s). This ensures that P(Tt < k∆t) = P(τt <
k) and P(Ts < k∆t) = P(τs < k). The corresponding Markov
chain has state space M = {0,1,2,3}, initial distribution
π0 = [1 0 0 0], and transition probability matrix

Π =


(1−qt)(1−qs) qt(1−qs) qs(1−qt) qtqs

0 (1−qs) 0 qs
0 0 (1−qt) qt
0 0 0 1

 .
C. Numerical Results

For this analysis, we use the following parameter val-
ues: ∆t = 0.05s, V = 45 m/s, γ = 0.5 ◦, h0 = 200m, bt =
−40Pa, bs = 50Pa, and vt,k ∼ N (0,0.297Pa2) and vs,k ∼
N (0,0.297Pa2), for all k ∈ K . The component failure
probabilities are qt = qs = 1.389 · 10−7, which corresponds
to a mean time-to-failure (MTTF) of 1000 hrs [4].

To get a sense of how each fault affects system (15),
we plot the change in the residual’s statistics due to a
particular fault. Fig. 4 shows the change due to ft occurring at
Tf = 1min, and Fig. 5 shows the residual due to fs occurring
at Ts = 1min. Three cases are plotted: nominal (black), fault

with a = 0.003 (blue), and fault with a = 0.0075 (green).
In each case, the region within three standard deviations
of the mean is shaded in the appropriate color. Note that
the green lines reach steady-state more quickly, but the
blue lines achieve more separation between the nominal
and faulty cases. Hence, there is a trade-off between how
quickly the faults can be detected and how easily the fault is
distinguished from the nominal case. The instantaneous jump
shown in Fig. 5 is due to the direct feedthrough from fs to
r in (15). This makes it difficult to detect the fault between
3 and 8 min, when the residual changes sign.

In Fig. 6, the performance metrics {PTN
k } (solid lines)

and {PFP
k } (dashed lines) are plotted for a = 0.003 and

ε = 2m,3.5m,5m (blue, green, and red, respectively). The
curves {PFN

k } and {PTP
k } are omitted, because their values

are approximately zero over the time window plotted. Hence,
this plot does not provide information about the relative
performance of each scheme when a fault occurs.

In Fig. 7, the performance metrics {PD
k } (solid lines)

and {PF
k } (dashed lines) are plotted for a = 0.003 and

ε = 2m,3.5m,5m (blue, green, and red, respectively). Recall
that PD

k accounts for all possible faults up to time k. For
small k, the instantaneous jump shown in Fig. 5 dominates,
which causes a peak in the {PD

k } curve at 4min. However,
as k increases, these early faults begin to settle and there
are more faults to consider, so the curve {PD

k } becomes
smoother. The values plotted in Fig. 6 and Fig. 7 allow us to
directly compare the performance of different fault detection
schemes and certify the time-varying reliability of the system
under each scheme.

V. CONCLUSIONS

The reliability of safety-critical systems must be certified,
but there is little work in the literature that rigorously
analyzes the performance of model-based fault detection
systems. The framework presented in this paper provides a
class of model-based fault detection problems for which the
performance can be computed analytically. Is is shown that,
under a reasonable set of assumptions, this computation can
be carried out in polynomial time. This analysis is applied to
a model of a pitot-static probe subject to randomly occurring
bias faults with known magnitudes, which are detected using
analytical redundancy. The data obtained from this analysis
(shown in Fig. 6 and Fig. 7) can be used to certify the
performance of a fault detection scheme.

Future work on this topic will include the study of more
complex decision functions, such as the likelihood ratio test

dk = δ
LRT
k (r0:k) := I

(
p(r0:k |H1,k)

p(r0:k |H0,k)
> εk

)
,

and the up-down counter, which is defined by the recurrence

ck+1 = ck +CupI(|rk|> εk)−CdownI(|rk| ≤ εk),

dk = I(ck > τk),

where c0 = 0, Cup ≥Cdown > 0, and εk,τk > 0. The likelihood
ratio test has desirable theoretical properties [12], and the up-
down counter is commonly used in avionics applications [1].



Fig. 4. Plot of the residual due to a fault in the total pressure (pt ) channel.
The solid lines are the means, and the shaded region is three standard
deviations away from the mean. Here, black represents the residual with no
faults, blue corresponds to a = 0.003, and green corresponds to a = 0.0075.

Fig. 5. Plot of the residual due to a fault in the static pressure (ps) channel.
The solid lines are the means, and the shaded region is three standard
deviations away from the mean. Here, black represents the residual with no
faults, blue corresponds to a = 0.003, and green corresponds to a = 0.0075.

Also, since the analysis in Section IV was carried out over
a particular flight path, it would be useful to find the input u
that gives the worst fault detector performance. Similarly, if
there is parametric model uncertainty in the plant P, it would
be useful to find the worst-case uncertainty parameter value.
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