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Outline

• Fly-by-wire overview and design challenges

• Analytical redundancy is rarely used

• Certification issues

• Analysis of analytical fault detection systems

• Motivation for model-based fault detection and isolation (FDI)

• Probabilistic systems analysis 

• Time-correlated residuals: Operator Power Iteration

• Conclusions and future work
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Commercial Fly-by-Wire

Boeing 787-8 Dreamliner

• 210-250 seats

• Length=56.7m,  Wingspan=60.0m

• Range < 15200km, Speed< M0.89

• First Composite Airliner

• Honeywell Flight Control Electronics 

Boeing 777-200

• 301-440 seats

• Length=63.7m,  Wingspan=60.9m

• Range < 17370km, Speed< M0.89

• Boeing’s 1st Fly-by-Wire Aircraft

• Ref: Y.C. Yeh, “Triple-triple redundant  

777 primary flight computer,” 1996.
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777 Primary Flight Control Surfaces [Yeh, 96]

• Advantages of fly-by-wire:

• Increased performance (e.g. reduced drag with smaller rudder), increased 
functionality (e.g. “soft” envelope protection), reduced weight, lower 
recurring costs, and possibility of sidesticks.

• Issues: Strict reliability requirements 

• <10-9 catastrophic failures/hr

• No single point of failure
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Classical Feedback Diagram
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Triplex Control System Architecture
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777 Triple-Triple Architecture [Yeh, 96]
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777 Triple-Triple Architecture [Yeh, 96]
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Distribution of 777 Primary Actuators [Yeh, 96]
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Degraded Modes [Yeh, 96]
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Degraded functionality as system failures occur
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Ram air turbine:  F-105 (Left) and Boeing 757 (Right)

http://en.wikipedia.org/wiki/Ram_air_turbine
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Redundancy Management

• Main Design Requirements: 

• < 10-9 catastrophic failures per hour

• No single point of failure

• Must protect against random and common-mode failures

• Basic Design Techniques

• Hardware redundancy to protect against random failures

• Dissimilar hardware / software to protect against common-mode failures

• Voting: To choose between redundant sensor/actuator signals

• Encryption: To prevent data corruption by failed components

• Monitoring: Software/Hardware monitoring testing to detect latent faults

• Operating Modes:  Degraded modes to deal with failures

• Equalization to handle unstable / marginally unstable control laws

• Model-based design and implementation for software

• Analytical redundancy is rarely used in commercial aircraft
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Analytical Redundancy

• Analytical Redundancy / Model-based Fault Detection

• Use relations between disparate measurements to detect faults

• Willsky, Ding, Chen, Patton, Isermann, others

Example: Parity-equation architecture
14
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Generic filter / threshold architecture
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Motivation: Reduce Size, Weight, and Power
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Many safety-critical applications can not support 

the high size, weight, power, and monetary costs 

associated with physical redundancy.

NASA Crew

Exploration Vehicle
Automotive

Active Safety

Unmanned Aerial

Vehicles
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Model-based FDI for Safety Critical Applications

• FAA reauthorization requires a plan to certify UAVs for 

integration in the airspace by Sept. 30, 2015.

• Design: Can high levels of reliability be achieved using 

analytical redundancy? 

• Analysis: How can analytically redundant systems be certified?

• Research

• Design: Data-driven vs. model-based (Freeman, Balas)

• Design: Robust fault detection (Vanek, Bokor, Balas)

• Analysis: Probabilistic performance (Hu, Wheeler, Packard)

17
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Certification of Analytically Redundant Systems

• Certification for physically redundant systems
• Failure Modes and Effects Analysis

• Fault Trees Analysis: Analyze system failure modes in terms of 

probabilities of lower-level events.

• Many issues for analytically redundant systems
• Mixture of component and algorithm (HW+SW) failures

• Nonlinear dynamics, model uncertainty, variation with flight condition

• Correlated residuals

• Strict reliability requirements

• Proposed Approach: Rigorous linear analysis at many 

flight conditions + nonlinear Monte Carlo simulations

• Analogous procedure used to certify flight control laws

19
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Dual-Redundant Architecture

Objective: Efficiently compute the probability PS,N that 

the system generates “bad” data for N0 consecutive 

steps in an N-step window.

20
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Assumptions

1. Knowledge of probabilistic performance

a. Sensor failures: P[ Ti=k ] where Ti := failure time of sensor i

b. FDI False Alarm: P[ TS≤N | T1=N+1 ]

c. FDI Missed Detection: P[ TS≥k+N0 | T1=k ]

2. Neglect intermittent failures

3. Neglect intermittent switching logic

4. Sensor failures and FDI logic decision are independent

• Sensors have no common failure modes.

21
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Failure Modes
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System Failure Probability

• Apply basic probability theory:
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System Failure Probability
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• Sensor Failures: Geometric distribution with parameter q

• Residual-based threshold logic

Example

27
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Example

• Per-frame false alarm probability can be easily computed

• Approximate per-hour false

alarm probability
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System Failure Rate

• Notation:

• Approximate system failure probability:

29

Sensor failure per hour 

False alarm per hour 

Detection per failure
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System Failure Rate

• Notation:

• Approximate system failure probability:
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System Failure Rate
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• Example analysis assumed IID fault detection logic.

• Many fault-detection algorithms use dynamical models 

and filters that introduce correlations in the residuals.

• Question: How can we compute the FDI performance 

metrics when the residuals are correlated in time?

• FDI False Alarm: P[ TS≤N | T1=N+1 ]

• FDI Missed Detection: P[ TS≥k+N0 | T1=k ]

Correlated Residuals

32
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False Alarm Analysis with Correlated Residuals

• Problem: Analyze the per-hour false alarm probability for a simple 

first-order fault detection system:

• The N-step false alarm probability PN is the conditional probability 

that dk=1 for some 1≤k≤N given the absence of a fault.
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False Alarm Analysis

• Residuals satisfy the Markov property:

• PN can be expressed as an N-step iteration of 1-

dimensional integrals:

34

∫

∫

∫

−

−

−
−−−

−=

=

=

=

T

T
N

T

T

T

T
NNNNNNN

NN

drrprfP

drrrprfrf

drrrprfrf

rf

11111

2122211

111

)()(1

)()()(

)()()(

1)(

M

kkkk fnarr ++=+1 ( ) ( )kkkk rrprrrp 111 ,, ++ =L

( ) ( ) ( ) ( )
111211 ,, rprrprrprrp kkkR ⋅= − LL

∫ ∫
− −

−=
T

T

N

T

T

NRN drdrrrpP LL
11

),...,(1

This has the appearance of a power iteration ANx



AEROSPACE ENGINEERING AND MECHANICS

False Alarm Probability

• Theorem: Let λ1 be the maximum eigenvalue and ψ1

the corresponding eigenfunction of 

Then where 

• Proof

• This is a generalization of the matrix power iteration

• The convergence proof relies on the Krein-Rutman theorem 

which is a generalization of the Perron-Frobenius theorem.

• For a=0.999 and N=360000, the approximation error is 10-156

35

1

1

−≈ N

N cP λ

∫−=
T

T
dyxypyx )|()()( 111 ψψλ
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Results: Effects of Correlation
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False Alarm Probabilities and Bounds for N=360,000

For each (a,T), P1 = 10-11

which gives NP1=3.6 x 10-6

Neglecting correlations

is accurate for small a

…but not for 

a near 1.
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Conclusions

• Commercial aircraft achieve high levels of reliability.

• Analytical redundancy is rarely used (Certification Issues)

• Model-based fault detection methods are an alternative that 

enables size, weight, power, and cost to be reduced.

• Certification Approach:

• Use linear analysis to prove performance  at many flight 

conditions (Initial result on effect of correlated residuals)

• Use high fidelity Monte Carlo simulations to confirm (or 

reject) linear results.

• Future Work: Need to consider model uncertainty and worst-

case trajectories.
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Motivation: Increased Reliability

• Air data measurements used to 

estimate critical flight data 

(airspeed / angle of attack)

• Air data failures are the suspected 

root cause in several accidents.
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Year Flight Suspected Cause

1974 NW6231 Iced Pitot

1996 Birgenair301 Blocked Pitot (Insects)

1996 AeroPeru603 Blocked Static (Tape)

2008 B-2 Moisture 

2009 AirFrance447 Pitot Malfunction

Analytical air data estimates can 

protect against common failure 

modes. 
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Certification of Analytically Redundant Systems 
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Ref: J. Renfrow, S. Liebler, and J. Denham. “F-14 Flight 

Control Law Design, Verification, and Validation Using 

Computer Aided Engineering Tools,” 1996.

Analogy to V&V of Flight CLAWs:

• Use linear analysis to prove 

performance  at many flight 

conditions

• Use high fidelity Monte Carlo 

simulations to confirm (or 

reject) linear results.

• Research: Extend linear analysis 

tools to polynomial systems
http://www.aem.umn.edu/~AerospaceControl/


