

High Reliability Monitoring and Control of Wind Turbines

Peter Seiler Department of Aerospace Engineering & Mechanics University of Minnesota

Turbine Components

Performance Objectives

1. Maximize captured power

$$P = \frac{1}{2} \rho A v^3 C_p$$

Power in Wind

Power Coefficient: Function of turbine design, wind conditions, and control

- 2. Minimize structural loads
- 3. Reduce operational downtime

Outline

Overview of UMN
 / Eolos Research

2. Redundancy Management in Commercial Aviation

3. Blade health monitoring using energy harvesting

4. Conclusions...

Eolos Consortium

Collaboration with Mesabi Range CTC

Overview of Research Projects

V27 Control (Thorson, Janisch)

Blade Health Monitoring (Lim, Mantell, Yang)

Wind Farm Control (Annoni, Yang, Sotiropolous, Bitar)

Distributed Estimation (Showers)

1.38

x 10⁵

1.36

9.2 9.4 96

Active Power Control (Wang)

Tip Speed Ratio

Multivariable **Design Tools** (Ozdemir, Escobar Sanabria, Balas)

V27 Control Design

Accomplishments:

- Mesabi Range rewired turbine, removed stock controller and installed Master/Slave CRIOs
- UMN designed turbine state logic and rotor speed tracking.

Future: Fixed speed power generation

References:

- Vestas V27 Test, Petersen, 90
- CART Commissioning, Fingersh/Johnson 02, 04

Wind Farm Modeling and Control

Objectives:

- Develop control-oriented models
- Design control laws for increased power capture and load mitigation (Bitar, Seiler, '13 ACC)

Simulators:

- Saint Anthony Falls Virtual Wind Simulator (Yang, Kang, Sotiropoulos 2012; Chamorro, Porte-Agel 2011)
- NREL SOWFA (Churchfield, Lee, Michalakes, Moriarty, 2012)

Selected References:

- Jensen, '83 Risø Report
- Steinbuch, de Boer, Bosgra, Peters, Ploeg, '88 JWEIA
- Johnson, Thomas, '09 ACC
- Pao, Johnson, '09 ACC
- Brand, Soleimanzadeh, 11 EWEA
- Marden, Ruben, Pao, '12 ASM
- Wagenaar, Machielse, Schepers, 12 EWEA
- Fleming, Gebraad, van Wingerden, Lee, Churchfield, Scholbrock, Michalakes, Johnson, Moriarty, '13 EWEA

SAFL Wind Tunnel Tests (Chamorro, Porte-Agel)

CFD Results

Decreasing Lead Turbine Induction Factor

Park Model (Jensen, '83):

$$v = v_{\infty}(1 - \delta v)$$
 where $\delta v = 2a \left(\frac{D}{D + 2kx}\right)^2$

Simulation: Turbine Located at x=0.5 Park model fit shown with k=0.01

Summary: Opportunity to optimize total power output but validated control-oriented models are needed.

Active Power Control

Objectives:

- Use gain-scheduling to track arbitrary power setpoint commands (Wang, Seiler, '13 Draft)
- Investigate feasibility for ancillary services

Selected References:

- Kirby, Dyer, Martinez, Shoureshi, Guttromson, '02 Oak Ridge Report
- Keung, Li, Banakar, Ooi, '09 TPS
- Juankorena, Esandi, Lopez, Marroyo, '09 CPEEED
- Spudić, Jelavić, Baotić, Perić, '10 Torque
- Tarnowski, Kjaer, Dalsgaard, Nyborg, '10 PES
- Laks, Pao, Wright, '12 ACC
- Aho, Buckspan, Pao, Fleming, '13 ASM
- Jeong, Johnson, Fleming, '13 WE

Multivariable Control Design

Objective:

- Develop a framework to easily tune advanced (robust) control designs for wind turbines (Ozdemir, '13 PhD)
- Integrate advanced sensors (LIDAR) for preview control (Ozdemir, Seiler, Balas, '12 ASM, '12 ACC, '13 ASM, '13 TCST)
- Optimal Multi-Blade Coordinate Transformation (Seiler, Ozdemir, '13 ACC)

Selected (LIDAR) References:

- Harris, Hand, and Wright, '06 NREL Report
- Laks, Pao, Wright, '09 ASM
- Mikkelsen, Hansen, Angelou, Sjöholm, Harris, Hadley, Scullion, Ellis, Vives, '10 AWEA
- Schlipf, Schuler, Grau, Allgöwer, Kühn, '10 Torque
- Laks, Pao, Wright, Kelley, B. Jonkman, '10 ASM
- Laks, Pao, Simley, Wright, Kelley, '11 ASM
- Dunne, Pao, Wright, B. Jonkman, Kelley, Simley, '11 ASM
- Korber, King, '11 AWEA

Distributed Estimation

Objectives:

- Identify turbine model from real-time data
- Use measurements from upstream turbines to estimate wind for use as feedforward signal for downstream turbines.

Selected References:

- Odgaard, Damgaard, Nielsen, '08 IFAC
- Knudsen, Bak, Soltani, '11 WE
- Van Wingerden, Houtzager, Felici, Verhaegen, 09 IJRNC
- Gebraad, van Wingerden, Fleming, Wright, 11 CCA

Overview of Research Projects

V27 Control (Thorson, *Janisch*)

Wind Farm Control (Annoni, Yang, Sotiropolous, Bitar)

Blade Health Monitoring (Lim, *Mantell, Yang*)

Distributed Estimation (Showers)

Active Power Control (Wang)

Multivariable Design Tools (Ozdemir, Escobar Sanabria, *Balas*)

Motivation for Monitoring

Damaged Gearbox (Image courtesy of Mesabi Range Community and Tech. College)

Failures Rates

Table from: "Wind turbine downtime and its importance for offshore deployment", Faulstich, Hahn, Tavner, Wind Energy, 2010.

Motivation for Monitoring

- Cost of wind energy dominated by capital (installation)
 + operations & maintenance
- Monitoring can be used to reduce O&M costs
 - Preventative maintenance during low wind
 - Continued operation after failures
- Large literature of wind turbine monitoring
 - 2011 IFAC Competition (Benchmark from Odgaard, Stoustrup, and Kinnaert, 2009 SAFEPROCESS).
 - Variety of methods including model-based, data-driven, physical redundancy
- Question: Can design techniques developed for aerospace systems be applied for turbines?

Commercial Fly-by-Wire

Boeing 787-8 Dreamliner

- 210-250 seats
- Length=56.7m, Wingspan=60.0m
- Range < 15200km, Speed < M0.89
- First Composite Airliner
- Honeywell Flight Control Electronics

Boeing 777-200

- 301-440 seats
- Length=63.7m, Wingspan=60.9m
- Range < 17370km, Speed < M0.89
- Boeing's 1st Fly-by-Wire Aircraft
- *Ref: Y.C. Yeh, "Triple-triple redundant 777 primary flight computer," 1996.*

777 Primary Flight Control Surfaces [Yeh, 96]

- Advantages of fly-by-wire:
 - Increased performance (e.g. reduced drag with smaller rudder), increased functionality (e.g. "soft" envelope protection), reduced weight, lower recurring costs, and possibility of sidesticks.
- Issues: Strict reliability requirements
 - <10⁻⁹ catastrophic failures/hr
 - No single point of failure

Classical Feedback Diagram

Reliable implementation of this classical feedback loop adds many layers of complexity.

Triplex Control System Architecture

777 Triple-Triple Architecture [Yeh, 96]

777 Triple-Triple Architecture [Yeh, 96]

Ram Air Turbine

Ram air turbine: F-105 (Left) and Boeing 757 (Right) <u>http://en.wikipedia.org/wiki/Ram_air_turbine</u>

Summary of Redundancy Management

- Main Design Requirements:
 - < 10⁻⁹ catastrophic failures per hour
 - No single point of failure
 - Must protect against random and common-mode failures
- Basic Design Techniques
 - Hardware redundancy to protect against random failures
 - Dissimilar hardware / software to protect against common-mode failures
 - Voting: To choose between redundant sensor/actuator signals
 - Encryption: To prevent data corruption by failed components
 - Monitoring: Software/Hardware monitoring testing to detect latent faults
 - Operating Modes: Degraded modes to deal with failures
 - Equalization to handle unstable / marginally unstable control laws
 - Model-based design and implementation for software

Blade Structural Health Monitoring (SHM)

SHM benefits

- Preventative maintenance
- Shortened down time
- Good for unpredictable

working conditions

SHM Example (Rumsey, Paquette, White, Werlock, Beattie, Pitchford, van Dam, Structural health monitoring of wind turbine blades, 2008)

Challenges

- Data/Power transportation to/from sensors
- *Retrofit capability desirable (no cabling)*

Proposed SHM System

Issues:

- 1. Low power in blade vibration
- 2. Blade loading difficult to model / measure

Proposed SHM System

Solution:

- 1. Use harvested energy as the sensor
- 2. Rely on triple redundant measurements

Approach

- Estimate harvested energy
 - Properties of energy harvester (size, efficiency, etc)
 - Power available in blade vibrations
- Design low-rate health monitoring algorithm
- Assess feasibility of proposed SHM algorithm

Harvested
Strain Energy
$$W_{strain} = \eta V_0 \frac{E}{E_0} \cdot E_0 \varepsilon^2 f \cdot \Delta t$$

EH Design Variables:

EH Design Variables:

EH Design Variables:

Experimental Set-up

SMART MATERIAL MFC P2 M2814 Energy Harvester

Experimental Set-up

SMART MATERIAL MFC P2 M2814 Energy Harvester

Modeling Blade Strain

Ref. Jonkman, J. M., Buhl Jr, M. L., "FAST user's guide," NREL, Golden, Colorado, USA, 2005.

Modeling Blade Strain

Wind Turbine Case Studies

Characterize the strain energy available for typical wind turbines:

Wind Conditions : 6 m/s, Rated Speed, 24 m/s + Low / High Turbulence

Strain Simulation in Time & Span

Strain Analysis

Available Strain Power in Blade Span

📇 University of Minnesota 👘

Available Strain Power

Harvested
Strain Energy (
$$\mu J$$
)
 $W_{strain} = K_{EH} \cdot P_{avail} \cdot \Delta t$

Available for 5MW WT
Power
$$P_{avail} = 60, 40, 13 \text{ W/m}^3$$

Harvested
Strain Energy (μJ)
 $W_{strain} = K_{EH} \cdot P_{avail} \cdot \Delta t$
92.4 μJ , Transmission only

Ref. G. Zhu, et al. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, 2010

Proposed SHM Algorithm

Turbine

Key idea: Transmit single pulse when harvested energy exceeds threshold (Harvested energy is correlated with damage)

Problem Set-up

Simplified Damage Model

(Paquette, et al. 46th AIAA ASM, '08)

FAST Simulation Result (OS5MW WT)

Clipper Raw Data Result (Healthy)

Clipper Data (same data) with Synthetic Fault

Conclusions

- Advanced monitoring and control techniques can continue to reduce the costs of wind energy.
- Energy harvesting can be used to power sensors
 - Max. strain: ~20 to 33% of the blade length
 - Max. available strain power for harvesting: ~60 W/m³
 - Long charging time is required given current EH technology
- Total harvested energy can be used to monitor blade
 - Harvested energy is correlated with damage
 - Transmit single pulse when harvested energy exceeds threshold
 - Rely on triple redundant measurements

Future Work

- **1**. Experimental validation of proposed SHM algorithm
 - Build test beam specimens with variety of damage types
 - Design a power conditioner/booster to maximize EH performance (matched resistance).
 - Vibrate test specimen to mimic realistic operating conditions
 - Evaluate ability of SHM algorithm to detect damage
- 2. EH development: ZnO Nanowire array
 - Ref: Zhu, Yang, Wang, Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, '10 Nano Letters

Acknowledgments

- Institute for Renewable Energy and the Environment
 - Grant No. RL-0010-12: "Design Tools for Multivariable Control of Large Wind Turbines."
 - Grant No. RS-0039-09: "Improved Energy Production for Large Wind Turbines."
 - Grant No. RS-0029-12: "Development of self-powered wireless sensor for structural health monitoring in wind turbine blades"
- US Department of Energy
 - Grant No. DE-EE0002980: "An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training"
 - Eolos Wind Energy Consortium: Provided Liberty data
- US National Science Foundation
 - Grant No. NSF-CMMI-1254129: "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms"