

A Holistic View of Wind Farm Control

Peter Seiler February 11, 2014 Seminar: Saint Anthony Falls Laboratory

- James Blyth, 1887: 1st electric wind turbine in Marykirk, Scotland. (Not Shown)
- Turbine Shown, ~1890: Enough power "to light ten 25-volt bulbs." [Ref: Hardy, 2010]

2

 Charles Brush, 1888: 1st automatic electric wind turbine in Cleveland, OH. (17m diam, 12kW)

 Clipper Liberty, 2012: Modern utility scale turbine in Rosemount, MN. (96m diam, 2.5MW)

• C_{p,Liberty}/C_{p,Brush}=6.5

Outline

- Individual Turbine Control
- Modeling and Control of a Wind Farm
- Conclusions

Outline

- Individual Turbine Control
- Modeling and Control of a Wind Farm
- Conclusions

Performance Objectives

1. Maximize captured power

$$P = \frac{1}{2} \rho A v^3 C_p$$

Power in Wind

Power Coefficient: Function of turbine design, wind conditions, and control

- 2. Minimize structural loads
- 3. Reduce operational downtime

Turbine Components

Figure from the US DOE

Simple Rigid Body Model

Newton's second law for rotational systems

Power Coefficient, C_p

•
$$C_p := \frac{P_{captured}}{P_{wind}} = C_p(\beta, \lambda)$$

- β= Collective blade pitch
- λ = Tip speed ratio = ωR_{ν}
- Aerodynamic torque

Cp for NREL CART 600kW, 21.7m turbine

Figure from:

K. Johnson, L. Pao, M. Balas, and L. Fingersh, Control of Variable Speed Wind Turbines, IEEE Control Systems Magazine, June 2006

Wind Turbine Control

- Control strategies depend on the wind conditions
 - Supervisory control and mode logic
 - Yaw control
 - Power capture at low wind speeds
 - Rated power + load reduction at high wind speeds

Good Survey References

- K. Johnson, L. Pao, M. Balas, and L. Fingersh, Control of Variable Speed Wind Turbines, IEEE Control Systems Magazine, June 2006.
- T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, Chapter 8: The Controller, 2001.
- J. Laks, L. Pao, and A. Wright, Control of Wind Turbines: Past, Present and Future, American Control Conference, 2009.

Simplified Turbine Operating States

Typical Operating ("Run") Modes

Plot based on Clipper Liberty C100 2.5MW turbine assuming $C_{p,max} = 0.4$ (Theoretical bound for power capture given by Betz Limit: $C_{p,Betz} = 0.59$)

Region 2: Standard Controller

$$\tau_g = K\omega^2$$
 where $K = \frac{1}{2}\rho A R^3 \frac{C_{p,\text{max}}}{\lambda_{\text{max}}^3}$

Convergence to optimal power capture (λ converges to λ_{max}) in steady wind. [Ref: Johnson, et al, Control System Mag., 2006]

Region 3: Blade Pitch Control

ν

$$\beta(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \dot{e}(t)$$

where $e(t) = \omega_{rated}(t) - \omega(t)$
Ref: Laks, et. al., ACC, 2009

Source: http://www.windurance.com/pitch.html

Active Power Control

- Operate turbine to follow power commands
 - Uses: First Response (Frequency Control), Secondary response (automatic generation control), Ancillary Services.
 - Ref. 1: Aho, Buckspan, Pao, Fleming, AIAA, 2013, •
 - Ref. 2: Jeong, Johnson, Fleming, Wind Energy, 2013.

Gain-Scheduled Active Power Control

• Ref: Wang and Seiler, AIAA 2014.

Active Power Control: Low Wind Speeds

Active Power Control: High Wind Speeds

Outline

- Individual Turbine Control
- Modeling and Control of a Wind Farm
- Conclusions

Wind Farm Control

- Wind Farm Control
 - Maximize Power
 - Mitigate Loads
 - Enable operation similar to conventional power plants
- Understand aerodynamic interactions in a wind farm

Horns Rev 1 (Photographer: Christian Steiness)

Turbine Model: Actuator Disk + Park Model

Turbine Efficiency:Velocity Deficit (Jensen, 83): $C_P(a) = 4a(1-a)^2$ $k(x) = 2\left(\frac{D}{D+2k_rx}\right)^2$

Derivation of Park Model

Coordinated Control: Two Turbines

24

N-turbine Linear Array

• **Objective:** Determine (quasi-steady) control inputs to maximize power produced by an array of turbines

Ref: Bitar and Seiler, ACC, 2013

Power Maximization: Near Field

- Problem: Determine joint induction factor a = (a₁, a₂, ···, a_N) to maximize total power J(a, v_∞) = Σ^N_{i=1} P_i(a_i, v_i).
- Optimal induction factors obtained via Dynamic Programming

Bellman Equation: Solve backwards iteration for value function (power produced by turbines i,...,N with inlet velocity v)

$$J_{i}^{\circ}(v) = \max_{a \in \mathcal{A}_{i}} \left\{ P_{i}(a, v) + J_{i+1}^{\circ}(v(1 - a \kappa_{i,i+1})) \right\}$$

Boundary Condition:

$$J_N^{\circ}(v) = \max_{a \in \mathcal{A}_N} P_N(a, v)$$

Power Maximization: Near Field

- Problem: Determine joint induction factor a = (a₁, a₂, ···, a_N) to maximize total power J(a, v_∞) = Σ^N_{i=1} P_i(a_i, v_i).
- Dynamic Programming Results

Optimal Induction Factors: Obtained via backwards iteration

$$a_{i}^{\circ} = \frac{1}{3} \left(\frac{2 - 3\phi\kappa^{2} - \sqrt{1 - 12\phi\kappa^{2} + 9\phi\kappa + 3\phi\kappa^{3}}}{1 - \phi\kappa^{3}} \right)$$

$$\phi_{i} = (1 - a_{i}^{\circ}\kappa_{i,i+1})^{3}\phi_{i+1} + a_{i}^{\circ}(1 - a_{i}^{\circ})^{2} \quad (BC: \phi_{N+1} = 0)$$
For $k_{r} = 0$

$$a_{i}^{\circ} = \frac{1}{2(N - i) + 3} \quad a_{i}^{\circ} \underbrace{1/3}_{i}$$

$$\frac{1/3}{i}$$
For uniformly spaced infinite arrays
$$\frac{C_{P}^{\circ} - \overline{C}_{P}}{\overline{C}_{P}} = 8.33\%$$

Issue: Limited Fidelity of Park Model

Key Questions

- 1. What is the impact of the control law on the trailing wake?
- 2. What is appropriate level of model fidelity required for coordinated wind turbine control?
- 3. Can we take advantage of wake interactions to better integrate wind into the energy system?

SAFL Large Eddy Simulation

- Approach: Use high fidelity simulations
 - Flow: 3-D incompressible Navier-Stokes equations
 - Turbine: Fixed speed or tip speed ratio
- **Opportunity:** Integrate Clipper dynamics/control law
 - Joint work with Yang, Annoni, and Sotiropoulos

Axial Induction Control

• De-rate 1st turbine \rightarrow Maximize Power in Turbine Array

LINIVERSITY OF MINNESOTA

LES With Clipper Controller

Wind Tunnel and Field Tests

• Approach: Use LIDAR measurements of wake

- Clipper Turbine: Measurements made at 1.5D, 2D, 2.5D, and 3D
- Opportunity: Integrate Clipper dynamics/control law
 - Joint work with Howard, Annoni, and Guala

LIDAR at UMore Park

Clipper Turbine

Wind Tunnel and Field Tests

• Approach: Wind tunnel tests using a 3 turbine array

- Experiments with turbine spacing by fixing 1st and 3rd turbine
- De-rating first turbine
- Opportunity: Understand wake interactions and potential gains from coordinated turbine control
 - Joint work with Howard, Annoni, and Guala

Wind Farm in Wind Tunnel

Photo Credits: Kevin Howard

Outline

- Individual Turbine Control
- Modeling and Control of a Wind Farm

• Conclusions

Conclusions

- Control systems increase power capture and reduce structural loads on utility-scale wind turbines.
- Performance and reliability trade-offs are becoming more difficult with trends to larger / off-shore turbines.
- Potential to coordinate all turbines in a wind farm in order to increase power and reduce overall loads
 - Requires a better understanding of trailing wakes and how these are affected by the control algorithms.

Acknowledgments

- Institute for Renewable Energy and the Environment
 - Grant No. RL-0010-12: "Design Tools for Multivariable Control of Large Wind Turbines."
 - Grant No. RL-0011-13: "Innovating for Sustainable Electricity Systems: Integrating Variable Renewable, Regional Grids, and Distributed Resources."
- US Department of Energy
 - Grant No. DE-EE0002980: "An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training"
- US National Science Foundation
 - Grant No. NSF-CMMI-1254129: "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms"