

Uncertainty Analysis for Linear Parameter Varying Systems

Peter Seiler

Department of Aerospace Engineering and Mechanics University of Minnesota

Joint work with: H. Pfifer, T. Péni (Sztaki), S. Wang, G. Balas, A. Packard (UCB), and A. Hjartarson (MuSyn)

Research supported by: NSF (NSF-CMMI-1254129), NASA (NRA NNX12AM55A), and Air Force Office of Scientific Research (FA9550-12-0339)

Aeroservoelastic Systems

Objective: Enable lighter, more efficient aircraft by active control of aeroelastic modes.

http://www.uav.aem.umn.edu/

Boeing: 787 Dreamliner

AFLR/Lockheed/NASA: BFF and X56 MUTT

Supercavitating Vehicles

Objective: Increase vehicle speed by traveling within the cavitation bubble.

Ref: D. Escobar, G. Balas, and R. Arndt, "Planing Avoidance Control for Supercavitating Vehicles," ACC, 2014.

Wind Turbines

Clipper Turbine at Minnesota Eolos Facility

Objective: Increase power capture, decrease structural loads, and enable wind to provide ancillary services.

http://www.eolos.umn.edu/

Aerospace Engineering and Mechanics

Wind Turbines

Clipper Turbine at Minnesota Eolos Facility

Objective: Increase power capture, decrease structural loads, and enable wind to provide ancillary services.

http://www.eolos.umn.edu/

Outline

- Goal: Synthesize and analyze controllers for these systems.
- 1 Linear Parameter Varying (LPV) Systems
- **2** Uncertainty Modeling with IQCs
- **3** Robustness Analysis for LPV Systems
- **4** Connection between Time and Frequency Domain

5 Summary

Outline

Goal: Synthesize and analyze controllers for these systems.

1 Linear Parameter Varying (LPV) Systems

- **2** Uncertainty Modeling with IQCs
- **B** Robustness Analysis for LPV Systems
- **4** Connection between Time and Frequency Domain

5 Summary

Parameterized Trim Points

These applications can be described by nonlinear models:

$$\begin{split} \dot{x}(t) &= f(x(t), u(t), \rho(t)) \\ y(t) &= h(x(t), u(t), \rho(t)) \end{split}$$

where ρ is a vector of measurable, exogenous signals.

Assume there are trim points $(\bar{x}(\rho), \bar{u}(\rho), \bar{y}(\rho))$ parameterized by ρ :

$$0 = f(\bar{x}(\rho), \bar{u}(\rho), \rho)$$
$$\bar{y}(\rho) = h(\bar{x}(\rho), \bar{u}(\rho), \rho)$$

Linearization

Let $(x(t), u(t), y(t), \rho(t))$ denote a solution to the nonlinear system and define perturbed quantities:

$$\begin{split} \delta_x(t) &:= x(t) - \bar{x}(\rho(t)) \\ \delta_u(t) &:= u(t) - \bar{u}(\rho(t)) \\ \delta_y(t) &:= y(t) - \bar{y}(\rho(t)) \end{split}$$

Linearize around $(\bar{x}(\rho(t)),\bar{u}(\rho(t)),\bar{y}(\rho(t)),\rho(t))$

$$\dot{\delta}_x = A(\rho)\delta_x + B(\rho)\delta_u + \Delta_f(\delta_x, \delta_u, \rho) - \dot{\bar{x}}(\rho)$$
$$\dot{\delta}_y = C(\rho)\delta_x + D(\rho)\delta_u + \Delta_h(\delta_x, \delta_u, \rho)$$

where $A(\rho) := \frac{\partial f}{\partial x}(\bar{x}(\rho), \bar{u}(\rho), \rho)$, etc.

LPV Systems

This yields a linear parameter-varying (LPV) model:

$$\dot{\delta}_x = A(\rho)\delta_x + B(\rho)\delta_u + \Delta_f(\delta_x, \delta_u, \rho) - \dot{\bar{x}}(\rho)$$
$$\dot{\delta}_y = C(\rho)\delta_x + D(\rho)\delta_u + \Delta_h(\delta_x, \delta_u, \rho)$$

Comments:

- LPV theory a extension of classical gain-scheduling used in industry, e.g. flight controls.
- Large body of literature in 90's: Shamma, Rugh, Athans, Leith, Leithead, Packard, Scherer, Wu, Gahinet, Apkarian, and many others.
- $-\dot{\bar{x}}(
 ho)$ can be retained as a measurable disturbance.
- Higher order terms Δ_f and Δ_h can be treated as memoryless, nonlinear uncertainties.

Grid-based LPV Systems

$$\begin{split} \dot{x}(t) &= A(\rho(t))x(t) + B(\rho(t))d(t) \\ e(t) &= C(\rho(t))x(t) + D(\rho(t))d(t) \end{split}$$

Parameter vector $\boldsymbol{\rho}$ lies within a set of admissible trajectories

$$\mathcal{A} := \{ \rho : \mathbb{R}^+ \to \mathbb{R}^{n_{\rho}} : \rho(t) \in \mathcal{P}, \ \dot{\rho}(t) \in \dot{\mathcal{P}} \ \forall t \ge 0 \}$$

Grid based LPV systems

LFT based LPV systems

(Pfifer, Seiler, ACC, 2014)

(Scherer, Kose, TAC, 2012)

Outline

Goal: Synthesize and analyze controllers for these systems.

Linear Parameter Varying (LPV) Systems

2 Uncertainty Modeling with IQCs

B Robustness Analysis for LPV Systems

4 Connection between Time and Frequency Domain

5 Summary

Integral Quadratic Constraints (IQCs)

Let Ψ be a stable, LTI system and M a constant matrix. **Def.:** Δ satisfies IQC defined by Ψ and M if

$$\int_0^T z(t)^T M z(t) dt \ge 0$$

for all $v \in L_2[0,\infty)$, $w = \Delta(v)$, and $T \ge 0$.

(Megretski, Rantzer, TAC, 1997)

Aerospace Engineering and Mechanics

Example: Memoryless Nonlinearity

 $w = \Delta(v, t) \text{ is a memoryless nonlinearity}$ in the sector $[\alpha, \beta]$.

 $v \longrightarrow \Delta \longrightarrow w$

 $2(\beta v(t) - w(t))(w(t) - \alpha v(t)) \ge 0 \ \forall t$

Aerospace Engineering and Mechanics

Example: Memoryless Nonlinearity

Pointwise quadratic constraint

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

 Δ is a causal, SISO operator with $\|\Delta\| \leq 1.$

Ĥ

 $\|w\| \leq \|v\|$

Aerospace Engineering and Mechanics

$$\Delta \text{ is a causal, SISO operator with } \|\Delta\| \leq 1.$$

$$\|w\| \leq \|v\|$$

$$\|w\| \leq \|v\|$$

$$\int_{0}^{\infty} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} dt \geq 0$$
for all $v \in L_{2}[0, \infty)$ and $w = \Delta(v)$.
Infinite time horizon constraint

v

UNIVERSITY OF MINNESOTA Driven to Discover

Aerospace Engineering and Mechanics

$$\Delta \text{ is a causal, SISO operator with } \|\Delta\| \le 1.$$

$$\|w\| \le \|v\|$$

$$\|w\| \le \|v\|$$

$$\int_{0}^{T} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} dt \ge 0$$
for all $v \in L_{2}[0, \infty), w = \Delta(v)$, and $T \ge 0$
Causality implies finite-time constraint.

Aerospace Engineering and Mechanics

Aerospace Engineering and Mechanics

Aerospace Engineering and Mechanics

Example: Norm Bounded LTI Uncertainty

$$\int_0^T z(t)^T M z(t) \, dt \ge 0$$

$$\Psi = \begin{bmatrix} D & 0 \\ 0 & D \end{bmatrix} \text{ and } M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Equivalent to D-scales in μ -analysis

IQCs in the Time Domain

Let Ψ be a stable, LTI system and M a constant matrix. **Def.:** Δ satisfies IQC defined by Ψ and M if

$$\int_0^T z(t)^T M z(t) dt \ge 0$$

for all $v \in L_2[0,\infty)$, $w = \Delta(v)$, and $T \ge 0$.

(Megretski, Rantzer, TAC, 1997)

Outline

Goal: Synthesize and analyze controllers for these systems.

- Linear Parameter Varying (LPV) Systems
- **2** Uncertainty Modeling with IQCs
- **3** Robustness Analysis for LPV Systems
- **4** Connection between Time and Frequency Domain

6 Summary

Background

Nominal Performance of LPV Systems

Induced L_2 gain:

$$\|G_{\rho}\| = \sup_{d \neq 0, d \in L_{2}, \rho \in \mathcal{A}, x(0) = 0} \frac{\|e\|}{\|d\|}$$

Bounded Real Lemma like condition to compute upper bound

(Wu, Packard, ACC 1995)

Background

Nominal Performance of LPV Systems

Induced L_2 gain:

$$\|G_\rho\| = \sup_{d \neq 0, d \in L_2, \rho \in \mathcal{A}, x(0) = 0} \frac{\|e\|}{\|d\|}$$

Bounded Real Lemma like condition to compute upper bound

Integral Quadratic Constraints

- general framework for robustness analysis
- originally in the frequency domain
- known LTI system under perturbations

(Megretski, Rantzer, TAC, 1997)

Worst-case Gain

 Goal: Assess stability and performance for the interconnection of known LPV system G_ρ and "perturbation" Δ.

Worst-case Gain

- Goal: Assess stability and performance for the interconnection of known LPV system G_ρ and "perturbation" Δ.
- Approach: Use IQCs to specify a finite time horizon constraint on the input/output behavior of Δ.

Worst-case Gain

- Goal: Assess stability and performance for the interconnection of known LPV system G_ρ and "perturbation" Δ.
- Approach: Use IQCs to specify a finite time horizon constraint on the input/output behavior of Δ.
- Metric: Worst case gain

$$\sup_{\Delta \in IQC(\Psi,M)} \sup_{d \neq 0, d \in L_2, \rho \in \mathcal{A}, x(0) = 0} \frac{\|e\|}{\|d\|}$$

Aerospace Engineering and Mechanics

Worst-case Gain Analysis with IQCs

Approach: Replace "precise" behavior of Δ with IQC on I/O signals.

Aerospace Engineering and Mechanics

Worst-case Gain Analysis with IQCs

Approach: Replace "precise" behavior of Δ with IQC on I/O signals.

• Append system Ψ to $\Delta.$

Aerospace Engineering and Mechanics

Worst-case Gain Analysis with IQCs

Approach: Replace "precise" behavior of Δ with IQC on I/O signals.

- Append system Ψ to Δ .
- Treat w as external signal subject to IQC.

Worst-case Gain Analysis with IQCs

Approach: Replace "precise" behavior of Δ with IQC on I/O signals.

- Append system Ψ to Δ .
- Treat w as external signal subject to IQC.
- Denote extended dynamics by

$$\begin{split} \dot{x} &= F(x,w,d,\rho) \\ [\begin{smallmatrix}z\\e\end{smallmatrix}] &= H(x,w,d,\rho) \end{split}$$

Dissipation Inequality Condition

Theorem: Assume:

1 Interconnection is well-posed.

- **2** Δ satisfies IQC(Ψ, M)
- (3) $\exists V \ge 0$ and $\gamma > 0$ such that

$$\begin{aligned} \nabla V \cdot F(x, w, d, \rho) + z^T M z \\ < d^T d - \gamma^{-2} e^T e \end{aligned}$$

for all $x \in \mathbb{R}^{n_x}$, $w \in \mathbb{R}^{n_w}$, $d \in \mathbb{R}^{n_d}$.

Then gain from d to e is $\leq \gamma$.

Proof Sketch

Let $d \in L[0,\infty)$ be any input signal and x(0) = 0:

$$\nabla V \cdot F(x, w, d) + z^T M z < d^T d - \gamma^{-2} e^T e$$

Proof Sketch

Let $d \in L[0,\infty)$ be any input signal and x(0) = 0:

$$V(x(T)) - V(x(0)) + \int_0^T z(t)^T M z(t) dt < \int_0^T d(t)^T d(t) dt - \gamma^{-2} \int_0^T e(t)^T e(t) dt$$

Proof Sketch

Let $d \in L[0,\infty)$ be any input signal and x(0) = 0:

$$\nabla V \cdot F(x, w, d) + z^T M z < d^T d - \gamma^{-2} e^T e \\ \bigcup \quad \text{Integrate from } t = 0 \text{ to } t = T$$

$$V(x(T)) - V(x(0)) + \int_0^T z(t)^T M z(t) dt < \int_0^T d(t)^T d(t) dt - \gamma^{-2} \int_0^T e(t)^T e(t) dt$$

 \bigcup IQC constraint, V nonnegative

$$\int_0^T e(t)^T e(t) dt < \gamma^2 \int_0^T d(t)^T d(t) dt$$

Hence $\|e\| \leq \gamma \|d\|$

Aerospace Engineering and Mechanics

Linear Matrix Inequality Condition

Extended System Dynamics:

$$\begin{split} \dot{x} &= A(\rho)x + B_1(\rho)w + B_2(\rho)d\\ z &= C_1(\rho)x + D_{11}(\rho)w + D_{12}(\rho)d\\ e &= C_2(\rho)x + D_{21}(\rho)w + D_{22}(\rho)d, \end{split}$$

What is the "best" bound on the worst-case gain?

Linear Matrix Inequality Condition

Theorem

The gain of $F_u(G_{\rho}, \Delta)$ is $< \gamma$ if there exists a matrix $P \in \mathbb{R}^{n_x \times n_x}$ and a scalar $\lambda > 0$ such that P > 0 and $\forall \rho \in \mathcal{P}$

$$\begin{bmatrix} PA(\rho) + A(\rho)^T P & PB_1(\rho) & PB_2(\rho) \\ B_1(\rho)^T P & 0 & 0 \\ B_2(\rho)^T P & 0 & -I \end{bmatrix} + \lambda \begin{bmatrix} C_1(\rho)^T \\ D_{11}(\rho)^T \\ D_{12}(\rho)^T \end{bmatrix} M \begin{bmatrix} C_1(\rho) & D_{11}(\rho) & D_{12}(\rho) \end{bmatrix} \\ + \frac{1}{\gamma^2} \begin{bmatrix} C_2(\rho)^T \\ D_{21}(\rho)^T \\ D_{22}(\rho)^T \end{bmatrix} \begin{bmatrix} C_2(\rho) & D_{21}(\rho) & D_{22}(\rho) \end{bmatrix} < 0$$

Linear Matrix Inequality Condition

Theorem

The gain of $F_u(G_{\rho}, \Delta)$ is $< \gamma$ if there exists a matrix $P \in \mathbb{R}^{n_x \times n_x}$ and a scalar $\lambda > 0$ such that P > 0 and $\forall \rho \in \mathcal{P}$

$$\begin{bmatrix} PA(\rho) + A(\rho)^T P & PB_1(\rho) & PB_2(\rho) \\ B_1(\rho)^T P & 0 & 0 \\ B_2(\rho)^T P & 0 & -I \end{bmatrix} + \lambda \begin{bmatrix} C_1(\rho)^T \\ D_{11}(\rho)^T \\ D_{12}(\rho)^T \end{bmatrix} M \begin{bmatrix} C_1(\rho) & D_{11}(\rho) & D_{12}(\rho) \end{bmatrix} \\ + \frac{1}{\gamma^2} \begin{bmatrix} C_2(\rho)^T \\ D_{21}(\rho)^T \\ D_{22}(\rho)^T \end{bmatrix} \begin{bmatrix} C_2(\rho) & D_{21}(\rho) & D_{22}(\rho) \end{bmatrix} < 0$$

Proof:

- Left/right multiplying by $[\boldsymbol{x}^T, \boldsymbol{w}^T, \boldsymbol{d}^T]$ and $[\boldsymbol{x}^T, \boldsymbol{w}^T, \boldsymbol{d}^T]^T$
- $V(x) := x^T P x$ satisfies dissipation inequality

Numerical Issues

Parameter dependent LMIs depending on decision variable $P(\rho)$

Approximations on the test conditions:

- grid over parameter space
- basis function for $P(\rho)$
- rational functions for Ψ

LPVTools toolbox developed to support LPV objects, analysis and synthesis.

(Simple) Numerical Example

Plant:

First order LPV system G_ρ

$$\begin{aligned} \dot{x} &= -\frac{1}{\tau(\rho)}x + \frac{1}{\tau(\rho)}u \quad \tau(\rho) = \sqrt{133.6 - 16.8\rho} \\ y &= K(\rho)x \qquad \qquad K(\rho) = \sqrt{4.8\rho - 8.6} \qquad \rho \in [2,7] \end{aligned}$$

More complex example: Hjartarson, Seiler, Balas, "LPV Analysis of a Gain Scheduled Control for an Aeroelastic Aircraft", ACC, 2014.

(Simple) Numerical Example

Time delay:

- 0.5 seconds
- 2nd order Pade approximation

Driven to Discover

Aerospace Engineering and Mechanics

(Simple) Numerical Example

Controller:

- Gain-scheduled PI controller C_{ρ}
- Gains are chosen such that at each frozen value ρ
 - Closed loop damping = 0.7
 - Closed loop frequency = 0.25•

Driven to Discover

Aerospace Engineering and Mechanics

(Simple) Numerical Example

Uncertainty:

- Causal, norm-bounded operator Δ
- $\|\Delta\| \le b$

Numerical Example

Numerical Example

Outline

Goal: Synthesize and analyze controllers for these systems.

- Linear Parameter Varying (LPV) Systems
- **2** Uncertainty Modeling with IQCs
- **B** Robustness Analysis for LPV Systems
- **4** Connection between Time and Frequency Domain

5 Summary

Aerospace Engineering and Mechanics

IQCs in the Frequency Domain

Let $\Pi : j\mathbb{R} \to \mathbb{C}^{m \times m}$ be Hermitian-valued.

Def.: Δ satisfies IQC defined by Π if

$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Pi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega \ge 0$$

for all $v \in L_2[0,\infty)$ and $w = \Delta(v)$.

(Megretski, Rantzer, TAC, 1997)

Frequency Domain Stability Condition

- $\textbf{Interconnection of } G \text{ and } \tau\Delta \text{ is } \\ \text{well-posed } \forall\tau\in[0,1] \\ \end{cases}$
- $2 \tau \Delta \in \mathsf{IQC}(\Pi) \ \forall \tau \in [0,1].$

 $\textbf{3} \ \exists \ \epsilon > 0 \text{ such that}$

$$\left[\begin{smallmatrix}G(j\omega)\\I\end{smallmatrix}\right]^*\Pi(j\omega)\left[\begin{smallmatrix}G(j\omega)\\I\end{smallmatrix}\right]\leq-\epsilon I\,\forall\omega$$

Then interconnection is stable.

Connection between Time and Frequency Domain

1. Time Domain IQC (TD IQC) defined by (Ψ, M) :

$$\int_0^T z(t)^T M z(t) \, dt \geq 0 \ \forall T \geq 0$$

where $z = \Psi \begin{bmatrix} v \\ w \end{bmatrix}$.

2. Frequency Domain IQC (FD IQC) defined by Π :

$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Pi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega \ge 0$$

A non-unique factorization $\Pi = \Psi^{\sim} M \Psi$ connects the approaches but there are two issues.

Aerospace Engineering and Mechanics

"Soft" Infinite Horizon Constraint

Freq. Dom. IQC:
$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Pi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega \ge 0$$

Aerospace Engineering and Mechanics

"Soft" Infinite Horizon Constraint

Freq. Dom. IQC:
$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Pi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega \ge 0$$

Ĵ

Factorization $\Pi = \Psi^{\sim} M \Psi$

$$\int_{-\infty}^{\infty} \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix} \right]^* \Psi(j\omega)^* M \Psi(j\omega) \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix} \right] d\omega = \int_{-\infty}^{\infty} \hat{z}^*(j\omega) M \hat{z}(j\omega) \ge 0$$

"Soft" Infinite Horizon Constraint

Freq. Dom. IQC:
$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Pi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega \ge 0$$

Į,

Factorization $\Pi = \Psi^{\sim} M \Psi$

$$\int_{-\infty}^{\infty} \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right]^* \Psi(j\omega)^* M \Psi(j\omega) \left[\begin{array}{c} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{array} \right] d\omega = \int_{-\infty}^{\infty} \hat{z}^*(j\omega) M \hat{z}(j\omega) \ge 0$$

Parseval's Theorem

"Soft" IQC:
$$\int_0^\infty z(t)^T M z(t) dt \ge 0$$

Issue # 1: DI stability test requires "hard" finite-horizon IQC

Aerospace Engineering and Mechanics

Sign-Indefinite Quadratic Storage

Factorize $\Pi = \Psi^{\sim} M \Psi$ and define $\Psi \begin{bmatrix} G \\ I \end{bmatrix} := \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$.

Aerospace Engineering and Mechanics

Sign-Indefinite Quadratic Storage

Factorize
$$\Pi = \Psi^{\sim} M \Psi$$
 and define $\Psi \begin{bmatrix} G \\ I \end{bmatrix} := \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$.

(*) KYP LMI:
$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \begin{bmatrix} C^T \\ D^T \end{bmatrix} M \begin{bmatrix} C & D \end{bmatrix} < 0$$

Sign-Indefinite Quadratic Storage

Factorize
$$\Pi = \Psi^{\sim} M \Psi$$
 and define $\Psi \begin{bmatrix} G \\ I \end{bmatrix} := \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$.

(*) KYP LMI:
$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \begin{bmatrix} C^T \\ D^T \end{bmatrix} M \begin{bmatrix} C & D \end{bmatrix} < 0$$

KYP Lemma: $\exists \epsilon > 0$ such that

$$\begin{bmatrix} G(j\omega) \\ I \end{bmatrix}^* \Pi(j\omega) \begin{bmatrix} G(j\omega) \\ I \end{bmatrix} \leq -\epsilon I$$

iff $\exists P = P^T$ satisfying the KYP LMI (*).

Lemma: $V = x^T P x$ satisfies

$$\begin{aligned} \nabla V \cdot F(x,w,d) + z^T M z \\ < \gamma^2 d^T d - e^T e \end{aligned}$$

for some finite $\gamma > 0$ iff $\exists P \ge 0$ satisfying the KYP LMI (*).

Sign-Indefinite Quadratic Storage

Factorize
$$\Pi = \Psi^{\sim} M \Psi$$
 and define $\Psi \begin{bmatrix} G \\ I \end{bmatrix} := \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$.

(*) KYP LMI:
$$\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \begin{bmatrix} C^T \\ D^T \end{bmatrix} M \begin{bmatrix} C & D \end{bmatrix} < 0$$

KYP Lemma: $\exists \epsilon > 0$ such that

$$\begin{bmatrix} G(j\omega) \\ I \end{bmatrix}^* \Pi(j\omega) \begin{bmatrix} G(j\omega) \\ I \end{bmatrix} \leq -\epsilon I$$

Lemma: $V = x^T P x$ satisfies

$$\begin{aligned} \nabla V \cdot F(x,w,d) + z^T M z \\ < \gamma^2 d^T d - e^T e \end{aligned}$$

iff $\exists P = P^T$ satisfying the KYP LMI (*).

for some finite $\gamma > 0$ iff $\exists P \ge 0$ satisfying the KYP LMI (*).

Issue # 2: DI stability test requires $P \ge 0$

Equivalence of Approaches (Seiler, 2014)

Def.: $\Pi = \Psi^{\sim} M \Psi$ is a J-Spectral factorization if $M = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ and Ψ, Ψ^{-1} are stable.

Equivalence of Approaches (Seiler, 2014)

Def.: $\Pi = \Psi^{\sim} M \Psi$ is a J-Spectral factorization if $M = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ and Ψ, Ψ^{-1} are stable.

Thm.: If $\Pi = \Psi^{\sim} M \Psi$ is a J-spectral factorization then:

- If $\Delta \in IQC(\Pi)$ then $\Delta \in IQC(\Psi, M)$ (FD IQC \Leftrightarrow Finite Horizon Time-Domain IQC)
- **2** All solutions of KYP LMI satisfy $P \ge 0$.
- Proof: 1. follows from Megretski (Arxiv, 2010)
- 2. use results in Willems (TAC, 1972) and Engwerda (2005). ■

Equivalence of Approaches (Seiler, 2014)

Def.: $\Pi = \Psi^{\sim} M \Psi$ is a J-Spectral factorization if $M = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ and Ψ, Ψ^{-1} are stable.

Thm.: If $\Pi = \Psi^{\sim} M \Psi$ is a J-spectral factorization then:

- If $\Delta \in IQC(\Pi)$ then $\Delta \in IQC(\Psi, M)$ (FD IQC \Leftrightarrow Finite Horizon Time-Domain IQC)
- **2** All solutions of KYP LMI satisfy $P \ge 0$.
- Proof: 1. follows from Megretski (Arxiv, 2010)
 2. use results in Willems (TAC, 1972) and Engwerda (2005). ■

Thm.: Partition $\Pi = \begin{bmatrix} \Pi_{11} & \Pi_{21} \\ \Pi_{21} & \Pi_{22} \end{bmatrix}$. Π has a J-spectral factorization if $\Pi_{11}(j\omega) > 0$ and $\Pi_{22}(j\omega) < 0 \ \forall \omega \in \mathbb{R} \cup \{+\infty\}$. **Proof**: Use equalizing vectors thm. of Meinsma (SCL, 1995) \blacksquare .

Outline

Goal: Synthesize and analyze controllers for these systems.

- Linear Parameter Varying (LPV) Systems
- **2** Uncertainty Modeling with IQCs
- **B** Robustness Analysis for LPV Systems
- **4** Connection between Time and Frequency Domain

Summary

Conclusions:

- Developed conditions to assess the stability and performance of uncertain (gridded) LPV systems.
- Provided connection between time and frequency domain IQC conditions.

Future Work:

- Robust synthesis for grid-based LPV models (Shu, Pfifer, Seiler, submitted to CDC 2014)
- Lower bounds for (Nominal) LPV analysis: Can we efficiently construct "bad" allowable parameter trajectories? (Peni, Seiler, submitted to CDC 2014)
- Operation of a state of a stat

Acknowledgements

- National Science Foundation under Grant No. NSF-CMMI-1254129 entitled "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms," Program Manager: George Chiu.
- NASA Langley NRA NNX12AM55A: "Analytical Validation Tools for Safety Critical Systems Under Loss-of-Control Conditions," Technical Monitor: Dr. Christine Belcastro.
- 3 Air Force Office of Scientific Research: Grant No. FA9550-12-0339, "A Merged IQC/SOS Theory for Analysis of Nonlinear Control Systems," Technical Monitor: Dr. Fariba Fahroo.

Brief Summary of LPV Lower Bound Algorithm

There are many exact results and computational algorithms for LTV and periodic systems (Colaneri, Varga, Cantoni/Sandberg, many others)

The basic idea for computing a lower bound on $||G_{\rho}||$ is to search over periodic parameter trajectories and apply known results for periodic systems.

$$\|G_{\rho}\| := \sup_{\rho \in \mathcal{A}} \sup_{u \neq 0, u \in \mathcal{L}_2} \frac{\|G_{\rho}u\|}{\|u\|} \ge \sup_{\rho \in \mathcal{A}_h} \sup_{u \neq 0, u \in \mathcal{L}_2} \frac{\|G_{\rho}u\|}{\|u\|}$$

where $\mathcal{A}_p \subset \mathcal{A}$ denotes the set of admissible *periodic* trajectories. Ref: T. Peni and P. Seiler, Computation of lower bounds for the induced \mathcal{L}_2 norm of LPV systems, submitted to the 2015 CDC.

Numerical example

Simple, 1-parameter LPV system:

with $-1 \leq \delta(t) \leq 1$, and $-\overline{\mu} \leq \dot{\delta}(t) \leq \overline{\mu}$

The <u>upper bound</u> was computed by searching for a polynomial storage function.

Upper and Lower Bounds

Question: Can this approach be extended to compute lower bounds for uncertain LPV systems?

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

$$\text{Truncated signal } \tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases} \text{ and } \tilde{w} = \Delta(\tilde{v})$$

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

 $\tilde{w}(t) = w(t)$ for $t \leq T$

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

 $\tilde{w}(t) = w(t)$ for $t \leq T$

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$
$$0 \leq \int_0^\infty \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$

UNIVERSITY OF MINNESOTA Driven to Discover

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

$$0 \leq \int_0^\infty \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$
$$\leq \int_0^T \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$

Truncation of v:

UNIVERSITY OF MINNESOTA Driven to Discover

Aerospace Engineering and Mechanics

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

$$0 \leq \int_0^\infty \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$
$$\leq \int_0^T \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$
$$\leq \int_0^T \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} dt$$

Causality of Δ :

UNIVERSITY OF MINNESOTA Driven to Discover

Example: Norm Bounded Uncertainty

Truncated signal
$$\tilde{v}(t) = \begin{cases} v(t) & \text{for } t \leq T \\ 0 & \text{for } t > T \end{cases}$$
 and $\tilde{w} = \Delta(\tilde{v})$

$$0 \leq \int_0^\infty \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$
$$\leq \int_0^T \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \tilde{v}(t) \\ \tilde{w}(t) \end{bmatrix} dt$$
$$\leq \int_0^T \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} dt$$

Finite time horizon constraint