

Robust Analysis and Synthesis for Linear Parameter Varying Systems

Pete Seiler

Department of Aerospace Engineering and Mechanics University of Minnesota Work with: G. Balas, A. Packard, H. Pfifer, S. Wang, R. Venkataraman, B. Taylor, C. Regan, & A. Hjartarson

Gary Balas (1960-2014)

1 Flexible Aircraft

2 Linear Parameter Varying Systems

3 Robustness Analysis

4 Summary

1 Flexible Aircraft

2 Linear Parameter Varying Systems

8 Robustness Analysis

4 Summary

Aeroelasticity

Efficient aircraft design

- lightweight structures
- high aspect ratios

Source: www.flightglobal.com

Breguet Range Equation

Breguet Range Equation

Induced Drag for elliptic (optimal) lift distribution:

Induced Drag =
$$\frac{\text{Lift}^2}{\pi \Lambda}$$

 \rightsquigarrow Maximize wing aspect ratio Λ

Breguet Range Equation

$$\mathsf{Range} = V \times \underbrace{I_{sp}}_{\mathsf{propulsion efficiency}} \times \underbrace{\frac{\mathsf{Lift}}{\mathsf{Drag}}}_{\mathsf{glide number}} \times \underbrace{\mathsf{ln}\left(\frac{m_{\mathsf{takeoff}}}{m_{\mathsf{landing}}}\right)}_{\mathsf{structural mass}}$$

Induced Drag for elliptic (optimal) lift distribution:

Induced Drag =
$$\frac{\text{Lift}^2}{\pi \Lambda}$$

 \rightsquigarrow Maximize wing aspect ratio Λ

Main contributions to total mass:

 $m_{\text{takeoff}} = m_{\text{structure}} + m_{\text{payload}} + m_{\text{fuel}}$

 $m_{\text{landing}} = m_{\text{structure}} + m_{\text{payload}}$

 \rightsquigarrow Minimize structural mass $m_{\text{structure}}$

Breguet Range Equation

$$\mathsf{Range} = V \times \underbrace{I_{sp}}_{\mathsf{propulsion efficiency}} \times \underbrace{\frac{\mathsf{Lift}}{\mathsf{Drag}}}_{\mathsf{glide number}} \times \underbrace{\mathsf{ln}\left(\frac{m_{\mathsf{takeoff}}}{m_{\mathsf{landing}}}\right)}_{\mathsf{structural mass}}$$

. . .

Induced Drag for elliptic (optimal) lift distribution:

Induced Drag =
$$\frac{\text{Lift}^2}{\pi \Lambda}$$

 \rightsquigarrow Maximize wing aspect ratio Λ

Main contributions to total mass:

 $m_{\text{takeoff}} = m_{\text{structure}} + m_{\text{payload}} + m_{\text{fuel}}$

 $m_{\text{landing}} = m_{\text{structure}} + m_{\text{payload}}$

 \rightsquigarrow Minimize structural mass $m_{\text{structure}}$

Light weight, high aspect ratio, flexible wings

Rigid Body Modes

0

Frequency

Flight Dynamics, Classical Flight Control

Aerospace Engineering and Mechanics

Flexible Aircraft Challenges

Aerospace Engineering and Mechanics

Flexible Aircraft Challenges

Aerospace Engineering and Mechanics

Flexible Aircraft Challenges

Coupling between Rigid Body and Aeroelastic Modes, Body Freedom Flutter

Flexible Aircraft Challenges

Coupling between Rigid Body and Aeroelastic Modes, Body Freedom Flutter

Body Freedom Flutter

Aeroservoelastic Model

Flight Dynamics

Rigid Body Dynamics

- Classical 6 degree of freedom equations of motion
- Steady aerodynamics

Aeroservoelastic Model

Aeroelasticity

Flexible Aircraft

- Rigid body dynamics (6 DoF)
- Structural dynamics (typically 6-8 modes)
- Unsteady aerodynamics (typically 2 lag states per mode)

Aeroservoelastic Model

Aeroservoelasticity

High dimensional, strongly coupled models

- Rigid body dynamics (from flight dynamics)
- Structural dynamics (from finite element method)
- Unsteady aerodynamics (from potential theory)

Body Freedom Flutter Vehicle

mini-MUTT Aircraft at UMN

UMN mini-MUTT

Key Features:

- Low-cost, modular flight research infrastructure
- Design based on the Lockheed Martin BFF vehicle
- Parallels X-56 Flight test program at NASA
- Fabricated completely in-house
- Detachable wings of various flexibility

Flight Test of Rigid Wing mini-MUTT

Current Status of the Flexible Wing

Next Steps:

- Finish building flexible wings
- Flight test campaign this summer

Limitation of Classical Approaches

Classical approaches are not suitable for control of flexible aircraft

Parameter Dependent Dynamics

Model Uncertainty

Aerodynamics:

- Simple potential theory based model
- Rational approximation of unsteady effects Structural Dynamics:
 - Simple beam model
 - Estimates of mass and inertia properties

1 Flexible Aircraft

2 Linear Parameter Varying Systems

8 Robustness Analysis

4 Summary

Aeroservoelastic Models

BFF Vehicle

Nonlinear equation of motion:

$$\begin{split} \dot{x}(t) &= f(x(t), u(t), \rho(t)) \\ y(t) &= h(x(t), u(t), \rho(t)), \end{split}$$

where ρ is a vector of measurable, exogenous signals, in this case airspeed.

Parameterized Trim Points: Assume there are trim points $(\bar{x}(\rho), \bar{u}(\rho), \bar{y}(\rho))$ parameterized by ρ :

$$0 = f(\bar{x}(\rho), \bar{u}(\rho), \rho)$$
$$\bar{y}(\rho) = h(\bar{x}(\rho), \bar{u}(\rho), \rho)$$

Aeroservoelastic Models

BFF Vehicle

Nonlinear equation of motion:

$$\begin{split} \dot{x}(t) &= f(x(t), u(t), \rho(t)) \\ y(t) &= h(x(t), u(t), \rho(t)), \end{split}$$

where ρ is a vector of measurable, exogenous signals, in this case airspeed.

Time-Varying Linearization: Linearize around $(\bar{x}(\rho(t)), \bar{u}(\rho(t)), \bar{y}(\rho(t)), \rho(t))$ $\dot{\delta}_x = A(\rho)\delta_x + B(\rho)\delta_u + \Delta_f(\delta_x, \delta_u, \rho) - \dot{x}(\rho)$ $\dot{\delta}_y = C(\rho)\delta_x + D(\rho)\delta_u + \Delta_h(\delta_x, \delta_u, \rho)$

where $A(\rho) := \frac{\partial f}{\partial x}(\bar{x}(\rho), \bar{u}(\rho), \rho)$, etc.

LPV Systems

$$\begin{split} \dot{x}(t) &= A(\rho(t))x(t) + B(\rho(t))u(t) \\ y(t) &= C(\rho(t))x(t) + D(\rho(t))u(t) \end{split}$$

Parameter vector ρ lies within a set of admissible trajectories

$$\mathcal{A} := \{ \rho : \mathbb{R}^+ \to \mathbb{R}^{n_{\rho}} : \rho(t) \in \mathcal{P}, \ \dot{\rho}(t) \in \dot{\mathcal{P}} \ \forall t \ge 0 \}$$

Comments:

- LPV theory is an extension of classical gain-scheduling used in industry, e.g. flight controls.
- Large body of literature in 90s: Shamma, Packard, Gahinet, Scherer, and many others.
- LPVTools: Toolbox developed by Balas, Packard, Seiler, and Hjartarson.

LPV Systems

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t)$$
$$y(t) = C(\rho(t))x(t) + D(\rho(t))u(t)$$

Parameter vector ρ lies within a set of admissible trajectories

$$\mathcal{A} := \{ \rho : \mathbb{R}^+ \to \mathbb{R}^{n_{\rho}} : \rho(t) \in \mathcal{P}, \dot{\rho}(t) \in \dot{\mathcal{P}} \, \forall t \ge 0 \}$$

Grid based LPV systems

1 Flexible Aircraft

2 Linear Parameter Varying Systems

3 Robustness Analysis

4 Summary

Integral Quadratic Constraints (IQCs)

IQCs provide a general framework for analysis of a known LTI system G under perturbations Δ (Megretski & Rantzer, '97 TAC).

Goal: Extend framework to cases where known system is **LPV**, e.g. robustness margins for flexible aircraft.

Example: Passive System

 $w = \Delta(v, t) \text{ is a passive system}$ (pointwise in time). $\bigcup_{2v(t)^T w(t) \ge 0 \ \forall t}$

Example: Passive System

 $w = \Delta(v, t) \text{ is a passive system}$ (pointwise in time). \bigcup $2v(t)^T w(t) \ge 0 \ \forall t$ \bigcup $\left[\begin{array}{c} v(t) \\ w(t) \end{array} \right]^T \begin{bmatrix} 0 & I \\ I & 0 \end{array} \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} \ge 0 \ \forall t$

Pointwise quadratic constraint

Analysis: Circle Criterion

Theorem: Assume:

- 1 Interconnection is well-posed.
- ${\it 2}$ Δ is (pointwise) passive.
- $\textbf{\textbf{3}} \exists V \geq 0 \text{ such that}$

$$\dot{V} + \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} < d^T d - e^T e$$

Then gain from d to e is ≤ 1 .

Analysis: Circle Criterion

Theorem: Assume:

- 1 Interconnection is well-posed.
- ${\it 2}$ Δ is (pointwise) passive.
- $\textbf{\textbf{3}} \exists V \geq 0 \text{ such that}$

$$\dot{V} + \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} < d^T d - e^T e$$

Then gain from d to e is ≤ 1 .

Proof: Let $d \in L[0,\infty)$ be any input signal and x(0) = 0. Integrate:

$$V(x(T)) + \int_0^T \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} dt < \int_0^T d(t)^T d(t) dt - e(t)^T e(t) dt$$

Left side is ≥ 0 by $V \geq 0$ and passivity.

Analysis: Circle Criterion

Theorem: Assume:

- 1 Interconnection is well-posed.
- ${\it O}$ Δ is (pointwise) passive.
- $\textbf{\textbf{3}} \exists V \geq 0 \text{ such that}$

$$\dot{V} + \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}^T \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix} < d^T d - e^T e$$

Then gain from d to e is ≤ 1 .

Comments:

1. The proof relied on $V \ge 0$ and the passivity constraint. More general integral quadratic constraints (IQCs) can be incorporated, e.g. Zames-Falb.

2. Eq (1) is a matrix inequality when G is LTI and V is quadratic. Convex optimization can be used to efficiently search over combinations of IQCs.

General IQCs (Megretski/Rantzer, '97 TAC)

Time Domain:

Let Ψ be a stable, LTI system and M a constant matrix.

 Δ satisfies IQC defined by Ψ and M if

$$\int_0^T z(t)^T M z(t) dt \ge 0$$

$$\forall v \in L_2[0,\infty)$$
, $w = \Delta(v)$, and $T \ge 0$.

General IQCs (Megretski/Rantzer, '97 TAC)

Time Domain:

Let Ψ be a stable, LTI system and M a constant matrix.

 Δ satisfies IQC defined by Ψ and M if

$$\int_0^T z(t)^T M z(t) dt \ge 0$$

$$\forall v \in L_2[0,\infty)$$
, $w = \Delta(v)$, and $T \ge 0$.

Frequency Domain:

Let $\Pi: j\mathbb{R} \to \mathbb{C}^{m \times m}$ be Hermitian-valued. Δ satisfies IQC defined by Π if

$$\int_{-\infty}^{\infty} \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix}\right]^* \Pi(j\omega) \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix}\right] d\omega \geq 0$$

$$\forall v \in L_2[0,\infty) \text{ and } w = \Delta(v).$$

General IQCs (Megretski/Rantzer, '97 TAC)

Time Domain:

Let Ψ be a stable, LTI system and M a constant matrix.

 Δ satisfies IQC defined by Ψ and M if

 $\int_0^T z(t)^T M z(t) dt \ge 0$

$$\forall v \in L_2[0,\infty), w = \Delta(v), \text{ and } T \ge 0.$$

Frequency Domain:

Let $\Pi: j\mathbb{R} \to \mathbb{C}^{m \times m}$ be Hermitian-valued. Δ satisfies IQC defined by Π if

$$\int_{-\infty}^{\infty} \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix}\right]^* \Pi(j\omega) \left[\begin{smallmatrix} \hat{v}(j\omega) \\ \hat{w}(j\omega) \end{smallmatrix}\right] d\omega \geq 0$$

$$\forall v \in L_2[0,\infty) \text{ and } w = \Delta(v).$$

A non-unique factorization $\Pi=\Psi^{\sim}M\Psi$ connects the two definitions.

IQC Analysis (Megretski/Rantzer, '97 TAC)

Summary:

- **1** Analysis involves frequency domain conditions on *G* and IQC multiplier(s) Π.
- Proof uses a homotopy method.
- 4 LMI condition can be written as:

$$\dot{W} + z^T M z < d^T d - e^T e$$

Neither $V \ge 0$ nor $\int_0^T z(t)^T M z(t) dt \ge 0$ holds, in general.

Question:

Is there an equivalent dissipation inequality proof?

Equivalence of Approaches (Seiler, '15 TAC)

Summary:

Under some technical conditions, the frequency-domain conditions in (M/R, '97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Equivalence of Approaches (Seiler, '15 TAC)

Summary:

Under some technical conditions, the frequency-domain conditions in (M/R, '97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Def.: $\Pi = \Psi^{\sim} M \Psi$ is a J-Spectral factorization if $M = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ and Ψ, Ψ^{-1} are stable.

Thm.: If $\Pi = \Psi^{\sim} M \Psi$ is a J-spectral factorization then:

1 Δ satisfies the freq. domain IQC (Π) iff it satisfies the time domain IQC (Ψ, M).

2 All solutions of KYP LMI satisfy $P \ge 0$.

Proof: Uses LQ dynamic games, (Willems. '72 TAC) and (Engwerda, '05).

Equivalence of Approaches (Seiler, '15 TAC)

Summary:

Under some technical conditions, the frequency-domain conditions in (M/R, '97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Def.: $\Pi = \Psi^{\sim} M \Psi$ is a J-Spectral factorization if $M = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$ and Ψ, Ψ^{-1} are stable.

Thm.: If $\Pi = \Psi^{\sim} M \Psi$ is a J-spectral factorization then:

- **1** Δ satisfies the freq. domain IQC (Π) iff it satisfies the time domain IQC (Ψ, M).
- **2** All solutions of KYP LMI satisfy $P \ge 0$.

Proof: Uses LQ dynamic games, (Willems. '72 TAC) and (Engwerda, '05).

Thm.: Partition $\Pi = \begin{bmatrix} \Pi_{11} & \Pi_{21}^* \\ \Pi_{21} & \Pi_{22} \end{bmatrix}$. Π has a J-spectral factorization if $\Pi_{11}(j\omega) > 0$ and $\Pi_{22}(j\omega) < 0 \quad \forall \omega \in \mathbb{R} \cup \{+\infty\}$. **Proof**: Use equalizing vectors thm. of Meinsma (SCL, 1995) **I**.

Utility of Time-Domain Approach

Summary:

Under some technical conditions, the frequency-domain conditions in (M/R, '97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Consequences:

The time-domain dissipation inequality conditions can be extended for:

- LPV robustness analysis (Pfifer & Seiler, '14 IJRNC); (Pfifer & Seiler, in prep.)
- LPV robust synthesis for general case (Wang, Pfifer, & Seiler, submitted to Aut) and robust filter/feedforward synthesis (Venkataraman & Seiler, in prep.)
- **6** Optimization analysis with ρ -hard IQCs (Lessard, Recht, & Packard)
- Onlinear analysis using SOS techniques

Item 1 has been implemented in LPVTools. Item 2 parallels results by (Scherer, Kose, and Veenman) for LFT-type LPV systems.

1 Flexible Aircraft

2 Linear Parameter Varying Systems

8 Robustness Analysis

Upcoming Flight Test Plans

NASA X-56a:

- A. Hjartarson (Musyn) used LPVTools to synthesis (nominal) LPV controllers and assess robustness.
- NASA designed their own gain-scheduled control law.

UMN mini-MUTT:

- Finish flex wing and begin flight tests.
- Validate control-oriented aeroelastic models incorporating data from flight tests and high fidelity CFD/CSD models.
- New approaches for model order reduction required to obtain LPV models suitable for control design.
- Other team members (D. Schmidt, STI, Va. Tech, CMSoft, Aurora) will play key roles in modeling, design and analysis.

Lockheed Martin X-56a

UMN mini-MUTT

Acknowledgements

- NASA NRA NNX14AL36A: "Lightweight Adaptive Aeroelastic Wing for Enhanced Performance Across the Flight Envelope,", Technical Monitor(s): Dr. John Bosworth and Daniel Moerder (Interim).
- National Science Foundation under Grant No. NSF-CMMI-1254129 entitled "CAREER: Probabilistic Tools for High Reliability Monitoring and Control of Wind Farms," Program Manager: Dr. George Chiu.
- NASA Langley NRA NNX12AM55A: "Analytical Validation Tools for Safety Critical Systems Under Loss-of-Control Conditions," Technical Monitor: Dr. Christine Belcastro.
- Ø Air Force Office of Scientific Research: Grant No. FA9550-12-0339, "A Merged IQC/SOS Theory for Analysis of Nonlinear Control Systems," Technical Monitor: Dr. Fariba Fahroo.

Summary

Conclusions:

- More efficient, flexible aircraft require integrated flight control systems.
- IQCs can be used in time-domain dissipation-inequalities without loss of conservatism.

Additional Details:

- 1 http://www.aem.umn.edu/~SeilerControl/
- http://paaw.net/

Brief Summary of LPV Lower Bound Algorithm

There are many exact results and computational algorithms for LTV and periodic systems (Colaneri, Varga, Cantoni/Sandberg, many others)

The basic idea for computing a lower bound on $||G_{\rho}||$ is to search over periodic parameter trajectories and apply known results for periodic systems.

$$\|G_{\rho}\| := \sup_{\rho \in \mathcal{A}} \sup_{u \neq 0, u \in \mathcal{L}_2} \frac{\|G_{\rho}u\|}{\|u\|} \ge \sup_{\rho \in \mathcal{A}_h} \sup_{u \neq 0, u \in \mathcal{L}_2} \frac{\|G_{\rho}u\|}{\|u\|}$$

where $A_h \subset A$ denotes the set of admissible *periodic* trajectories.

Ref: T. Peni and P. Seiler, Computation of lower bounds for the induced \mathcal{L}_2 norm of LPV systems, submitted to the 2015 CDC.

Numerical example

Simple, 1-parameter LPV system:

with $-1 \leq \delta(t) \leq 1$, and $-\overline{\mu} \leq \dot{\delta}(t) \leq \overline{\mu}$

The upper bound was computed by searching for a polynomial storage function.

Upper and Lower Bounds

Question: Can this approach be extended to compute lower bounds for uncertain LPV systems?