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Gary J. Balas (Sept. 27. 1960 – Nov. 12, 2014)
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Gary and Andy Packard
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Spreading the Word

MUSYN Robust Control Theory 
Short Course (Start: 1989)
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Software Development

µ-Analysis and Synthesis (µ-
Tools) Matlab Toolbox (1990)
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µ-Tools merged with the Matlab 
Robust Control Toolbox (2004) 
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Awards
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Schuck Award w/ T. Keviczky (‘05 ACC)
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Head of Aerospace Eng. & Mechanics (7/06-1/14)

7



AEROSPACE ENGINEERING AND MECHANICS

Students & Visitors
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and many others…
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Collaborations
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Enjoying Conferences
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ROCOND 2012
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Biking….All year round in Minnesota!
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Outline

• Applications

• Flexible Aircraft

• Wind Farms

• Numerical Tools

• LPVTools

• LPV Theory

• Lower Bounds

• Analysis with IQCs

• Model Reduction

• Jacobian Linearization
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Aeroservoelasticity (ASE)

Efficient aircraft design

• Lightweight structures

• High aspect ratios
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Classical Approach
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Flutter
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Source: NASA Dryden Flight Research
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Flexible Aircraft Challenges
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Flexible Aircraft Challenges
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Body Freedom Flutter
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Performance Adaptive Aeroelastic Wing (PAAW)

• Goal: Suppress flutter, control wing shape 
and alter shape to optimize performance

• Funding: NASA NRA NNX14AL36A

• Technical Monitor: Dr. John Bosworth 

• Two years of testing at UMN followed by two 
years of testing on NASA’s X-56 Aircraft
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Modeling and Control for Flex Aircraft

1. Parameter Dependent Dynamics

• Modes depend on airspeed due to 
structural/aero interactions

• LPV is a natural framework.

2. Model Reduction

• High fidelity CFD/CSD models have 
many (millions) of states.

3. Model Uncertainty

• Use of simplified low order models 
OR reduced high fidelity models

• Unsteady aero, mass/inertia & 
structural parameters
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Additional Details

• Webpages: All models, flight data, etc 
• http://paaw.net/

• http://www.uav.aem.umn.edu/

• References
• Burnett, et al., Ndof simulation model forflight control development with flight 

test correlation, AIAA 2010.

• Pfifer, et al., LPV Techniques Applied to Aeroservoelastic Aircraft: In Memory of 
Gary Balas, Thursday 14:00-14:20, ThP1T1.1.

• Dowell (Ed), A Modern Course in Aeroelasticity, 2004

• Schmidt, Modern Flight Dynamics, 2011.

• EU H2020 Project: “Flutter Free FLight Envelope eXpansion for 
ecOnomical Performance improvement” (FlexOp)

• B. Vanek, PI (Sztaki) with control design supported by T. Peni (Sztaki), A. Marcos 
(Bristol), and A. Wildschek (Airbus).

• Inspired by the work of Gary, aiming at developing active flutter mitigation 
control laws for industrial consideration.
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http://paaw.net/
http://www.uav.aem.umn.edu/
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Modeling and Control for Wind Farms

1. Parameter Dependent Dynamics

• Modes depend on windspeed due to 
structural/aero interactions

• LPV is a natural framework.

2. Model Reduction

• High fidelity CFD/CSD models have 
many (millions) of states.

3. Model Uncertainty

• Use of simplified low order models 
OR reduced high fidelity models

Refs:
J. Annoni and P. Seiler, Parameter varying dynamic mode decomposition, 
Submitted to Int. Journal of Robust and Nonlinear control, 2015.

J. Annoni, P.M.O. Gebraad, and P. Seiler, Wind farm modeling using 
input-output dynamic mode decomposition, Submitted to ACC, 2015.

J. Annoni, Modeling for Wind Farm Control, MS Thesis, 2014.
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Simulator for Wind Farm Applications, Churchfield & Lee

http://wind.nrel.gov/designcodes/simulators/SOWFA

Saint Anthony Falls: http://www.safl.umn.edu/

Eolos: http://www.eolos.umn.edu/

http://wind.nrel.gov/designcodes/simulators/SOWFA
http://www.safl.umn.edu/
http://www.eolos.umn.edu/
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Classes of LPV Models

LPV systems depend on a time varying parameter ρ(t) 

Three main classes of LPV systems

• Grid-based (Jacobian Linearization) Models

• A(ρ), B(ρ), C(ρ), and D(ρ) are arbitrary functions of ρ.

• State matrices defined on a grid of parameter values ρk

• Linear Fractional Transformation (LFT) Models 

• A(ρ), B(ρ), C(ρ), and D(ρ) are rational functions of ρ.

• Polytopic Models 

• A(ρ), B(ρ), C(ρ), and D(ρ) are polytopic functions of ρ.

• Affine models as a special case.

MUSYN Inc.
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LPVTools: Matlab Toolbox for LPV Systems

• Developed by MuSyn: Balas, Packard, Seiler, Hjartarson

• Funded by NASA SBIR contract #NNX12CA14C 

• Contract Monitor: Dr. Martin J. Brenner, NASA Armstrong.

• Goal: Unified framework for grid/LFT based LPV
• Modeling

• Synthesis

• Analysis 

• Simulation

• MATLAB/Simulink integration
• Compatible with Control Toolbox, Robust Control Toolbox, Simulink.

• Uses MATLAB object-oriented class programming
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(A Subset of) LPV Software Tools

• LFT
• SMAC, LFR, LFRT-SLK, and Robust Feedforward Design Toolboxes 

(ONERA: Magni, Biannic, Roos, Ferreres, Demourant,…)

• Enhanced LFR-toolbox (DLR: Hecker, Varga, Pfifer,…)

• LPV Robust Control Toolbox (Milan: De Vito, Lovera; NGC Aerospace: 
Kron, de Lafontaine)

• LFR-RAI (Siena: Garulli, Masi , Paoletti, Türkoğlu)

• LPV Analysis & Synthesis (Stuttgart: Scherer, Veenman, Köse, Köroğlu,…)

• Grid-based 
• LMI Control Toolbox, HINFSTRUCT, Simulink LPV Blocks (Matlab)

• Polytopic
• TP Toolbox (Sztaki: Baranyi, Takarics,…)
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Data Structures
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LPVTools
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LPVTools: Open Source Release

• Release 1.0:

• http://www.aem.umn.edu/~SeilerControl/software.shtml

• Google Search: SeilerControl

• Static release under GNU Affero GPL License

• Full documentation (manual, command line, Matlab “doc”)

• Ref: A. Hjartarson, A. Packard, and P. Seiler, LPVTools: A Toolbox for 
Modeling, Analysis, and Synthesis of Parameter Varying Control 
Systems.  Thursday 16:30-16:50, ThP2T1.1.

• Basic objects and results implemented

• LFT Analysis and Synthesis (Packard, Scherer, Gahinet, Apkarian, …)

• Gridded Analysis and Synthesis (Wu, Packard, Becker, … )

• Model Reduction with Generalized Gramians (Wood, Glover, 
Widowati, …)

• Simulink interface
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LPVTools: Open Source Release

Many gaps remain including

• LPV System identification (Toth, Verdult, Verhaegen, Lovera, van 
Wingerden, Gebraad, Lee, Poolla, Bamieh, …)

• Robust Synthesis / Full block S procedure (Scherer, Veenman, Köse, 
Köroğlu, …)

• Polytopic systems (Baranyi, Takarics,…)

• Large scale model reduction (Amsallem, Farhat, Carlberg, Poussot-
Vassal,…)

• Reduced complexity controllers (Scorletti, Fromion,…)

• LPV with Delays, Saturation (Wu, Briat, …)

• Large Scale Systems (Werner, Kulcsár, Mohammadpour, Grigoridis, …)

• FDI (Bokor, Vanek, Szabo, Peni, Sename, …)
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LPV Analysis

32

Gridded LPV System

Induced L2 Gain
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(Standard) Dissipation Inequality Condition

Comments

• Dissipation inequality can be expressed/solved as LMIs.
• Finite dimensional LMIs for LFT/Polytopic LPV systems

• Parameterized LMIs for Gridded LPV (requires basis functions, gridding, etc)

• Condition is IFF for LTI systems but only sufficient for LPV

33

Theorem

Proof:
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LPV Lower Bounds

• Questions: The dissipation inequality gives an upper 
bound  on the induced L2 gain. 

• Can we compute lower bounds?

• Can we compute “bad” parameter trajectories?

• Simple Approach: Frozen LTI Analysis

• Let              denote a set of  constant parameter trajectories.

• The system is LTI for each frozen

• Evaluate        norm on a grid of parameter values:
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LPV Lower Bounds

• Questions: The dissipation inequality gives an upper 
bound  on the induced L2 gain. 

• Can we compute lower bounds?

• Can we compute “bad” parameter trajectories?

• Enhanced Approach: Periodic LTV Analysis

• Let              denote a set of  PLTV parameter trajectories.

• Apply results to exactly compute the induced L2 gain for LTV 
and periodic systems (Colaneri, Varga, Cantoni/Sandberg, etc).

• Optimize lower bound over set of PLTV trajectories

35

Refs:
T. Peni & P. Seiler, Computation of lower bounds for the induced L2 norm of LPV systems, IJRNC, 2015.

M. Cantoni & H. Sandberg, Computing the L2 gain for linear periodic continuous-time systems. Aut. 2009.
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LPV Lower Bounds

• Questions: The dissipation inequality gives an upper 
bound  on the induced L2 gain. 

• Can we compute lower bounds?

• Can we compute “bad” parameter trajectories?

• Enhanced Approach: Periodic LTV Analysis

• Possible Extensions

• Improved algorithm (choice of bases functions, etc)

• Finite Horizon LTV analysis

• Uncertain LPV lower bounds

36

Refs:
T. Peni & P. Seiler, Computation of lower bounds for the induced L2 norm of LPV systems, IJRNC, 2015.

M. Cantoni & H. Sandberg, Computing the L2 gain for linear periodic continuous-time systems. Aut. 2009.
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Example: LPV Induced L2 Gain
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r(t)

r(t) s+1
1
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+

-

Note: Gain from d to e is 0 if r(t) is constant.
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Example: LPV Induced L2 Gain
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Lower Bound

Dissipation Ineq

Upper Bound

Rate Bound
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• Goal: Assess the impact of model 
uncertainty for an LPV system.

• Approach:

• LFT Model: Separate uncertainty D
from nominal system Gr .

• “Uncertainty” D can be parametric, 
LTI dynamic, and/or nonlinearities (saturation, etc).

• Use Integral Quadratic Constraints to model input/output 
behavior (Megretski & Rantzer, TAC 1997).

• Extend dissipation inequality approach for robustness analysis

• Results for Gridded Nominal system

• Parallels earlier results for LFT nominal system by Scherer, 
Veenman, Köse, Köroğlu.

Robustness Analysis for LPV Systems
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IQC Example: Passive System

Pointwise Quadratic Constraint
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General (Time Domain) IQCs

General IQC Definition:

42

Comments:
• Megretski & Rantzer (‘97 TAC) has a library of IQCs for various 

components.

• IQCs can be equivalently specified in the freq. domain with a multiplier P

• A non-unique factorization connects P=Y*MY. 

• Multiple IQCs can be used to specify behavior of D.
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IQC Dissipation Inequality Condition

43

Theorem

Proof:

Comment

• Dissipation inequality can be expressed/solved as LMIs.

• Extends standard D/G scaling but requires selection of basis 
functions for IQC.
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Less Conservative IQC Result
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Theorem

Technical Result

• Positive semidefinite constraint on V and time domain IQC 
constraint can be dropped.

• These are replaced by a freq. domain requirement on P=Y*MY.

• Some energy is “hidden” in the IQC.

Refs:
P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015.

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using 
Integral Quadratic Constraints, submitted to IJRNC, 2015.
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Time-Domain Dissipation Inequality Analysis

Summary: Under some technical conditions, the frequency-domain 
conditions in (M/R, ’97 TAC) are equivalent to the time-domain 
dissipation inequality conditions.

Applications:

1. LPV robustness analysis (Pfifer, Seiler, IJRNC)

2. General LPV robust synthesis (Wang, Pfifer, Seiler, submitted to Aut) 

3. LPV robust filtering/feedforward (Venkataraman, Seiler, in prep)
• Robust filtering typically uses a duality argument.  Extensions to the time domain?

4. Exponential rates of convergence (Hu,Seiler, submitted to TAC)
• Motivated by optimization analysis with ρ-hard IQCs (Lessard, Recht, & Packard)

5. Nonlinear analysis using SOS techniques

Item 1 has been implemented in LPVTools. Items 2 & 3 parallel 
results by (Scherer, Köse, and Veenman) for LFT-type LPV systems.
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LPV Model Reduction

• Both flexible aircraft and wind farms can be modeled with 
high fidelity fluid/structural models.

• LPV models can be obtained via Jacobian linearization:

• State dimension can be extremely large (>106)

• LPV analysis and synthesis is restricted to ≈50 states.

• Model reduction is required.
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LPV Balancing and Truncation

References

• Beck, Doyle, Glover, Model Reduction of Multi-Dimensional and Uncertain Systems, TAC, 1995.

• Wood, Control of parameter-dependent mechanical systems, Ph.D., Univ. Cambridge, 1995.

• Wood, Goddard, Glover, Approximation of linear parameter-varying systems, IEEE CDC, 1996.

• Widowati, Bambang, Model Reduction of LPV Control with Bounded Parameter Variation Rates, Asian CC, 2006.

48

Extends balanced truncation model reduction to gridded LPV 

• Solve LMIs to construct parameter-varying Gramians Xc(r) & Xo(r)

• The Hankel operator of the plant is bounded by the largest 
generalized Hankel singular value.

• Compute a parameter-varying transformation T(r) to balance 
generalized Gramians. Apply coordinate transform:

• Reduced order model can be obtained via truncation.
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LPV Balancing and Truncation

References

• Beck, Doyle, Glover, Model Reduction of Multi-Dimensional and Uncertain Systems, TAC, 1995.

• Wood, Control of parameter-dependent mechanical systems, Ph.D., Univ. Cambridge, 1995.

• Wood, Goddard, Glover, Approximation of linear parameter-varying systems, IEEE CDC, 1996.

• Widowati, Bambang, Model Reduction of LPV Control with Bounded Parameter Variation Rates, Asian CC, 2006.
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Issues:

1. Solving LMIs for generalized Gramians restricts the 
method to systems with moderate state order (<200).

2. Parameter-varying coordinate transformations T(r) 
a. Introduces rate dependence in model

b. Destroys state consistency across parameter domain
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High Order Model Reduction

Large literature with recent results for LPV and Param. LTI
• Antoulas, Amsallem, Carlberg , Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-

Vassal, Rowley, Schmid, Willcox, …

Two new results for LPV:

1. Input-Output Dynamic Mode Decomposition
• Combine subspace ID with techniques from fluids (POD/DMD).

• No need for adjoint models.  Can reconstruct full-order state.

2. Parameter-Varying Oblique Projection
• Petrov-Galerkin approximation with constant projection space and 

parameter-varying test space.

• Constant projection maintains state consistency avoids rate dependence.
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References

1A. Annoni  & Seiler, A method to construct reduced-order parameter varying models, submitted to IJRNC, 2015.

1B. Singh & Seiler, Model Reduction using Frequency Domain Input-Output Dynamic Mode Decomposition, sub. to ‘16 ACC.

2. Theis, Seiler, & Werner, Model Order Reduction by Parameter-Varying Oblique Projection, submitted to 2016 ACC.
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Example: Wind Farm Modeling

SOWFA: Simulator for On/Offshore Wind Farm Applications 

• 3D unsteady spatially filtered Navier-Stokes equations

• Two 5MW turbines with 126 m diam separated by 5 diams.

• # States≈3.6 Million (=1.6M grid points x 3 vel components)

Churchfield, Lee, https://nwtc.nrel.gov/SOWFA
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Results

• Simulated at 7 m/s with 6% turb. in neutral boundary layer

• Excited upstream blade pitch and collected measurements of 
fluid flow and key turbine inputs/outputs

• Used IODMD to construct 20th order model.
Ref: Annoni, Gebraad, Seiler, Wind farm flow modeling using input-output 
dynamic mode decomposition, sub. to ‘16 ACC.

Churchfield, Lee, https://nwtc.nrel.gov/SOWFA
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Flow Simulation

• Reconstruct the full-state using a reduced-order model
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Compare Individual Snapshots
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LTI Jacobian Linearization

• Autonomous Nonlinear System

• Let                be a parameterized collection of eq. points

• Assume frozen (constant) r and define
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LTI Jacobian Linearization

• Autonomous Nonlinear System

• Let                be a parameterized collection of eq. points

• Assume frozen (constant) r and define

Linearization is valid if solution remains near equilibrium 
point specified by r.
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LPV Jacobian Linearization

• Autonomous Nonlinear System

• Let                be a parameterized collection of eq. points

• Assume time-varying r(t) and define
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LPV Jacobian Linearization

• Autonomous Nonlinear System

• Let                be a parameterized collection of eq. points

• Assume time-varying r(t) and define

Linearization is valid if solution remains near equilibrium 
manifold specified by r(t). 
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Summary: Jacobian Linearization

• Linearization for Non-autonomous Systems

• Parameter variation appears as an input forcing.

• Can we develop analysis/synthesis conditions that 
exploit knowledge of this forcing?

Ref: B. Takaric and P. Seiler, Gain Scheduling for Nonlinear Systems via 
Integral Quadratic Constraints, ACC, 2015.

• Initial synthesis results assuming forcing is measurable disturbance.

• Also exploits IQCs to bound the effect of Taylor series errors.
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Conclusions

Gary had a significant technical 
impact in many areas.

• Applications

• Numerical Tools

• LPV Theory

Gary’s impact extended beyond 
his technical contributions.  He 
enjoyed the collaborations and 
friendships of the controls 
community.
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Appendix
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Body Freedom Flutter
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