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Spreading the Word

MUSYN Robust Control Theory 
Short Course (Start: 1989)
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Software Development

µ-Analysis and Synthesis (µ-
Tools) Matlab Toolbox (1990)
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µ-Tools merged with the Matlab 
Robust Control Toolbox (2004) 
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LPVTools: Matlab Toolbox for LPV Systems

• Developed by MuSyn: Balas, Packard, Seiler, Hjartarson

• Funded by NASA SBIR contract #NNX12CA14C

• Contract Monitor: Dr. Martin J. Brenner, NASA Armstrong.

• Goal: Unified framework for grid/LFT based LPV
• Modeling, Synthesis, Analysis, and Simulation

• Compatible with Control Toolbox, Robust Control Toolbox, & 
Simulink using Matlab object-oriented programming.

• Full documentation (manual, command line, Matlab “doc”)

• LPVTools is freely available under a GNU Affero GPL

• Google Search: SeilerControl

• www.aem.umn.edu/~SeilerControl/software.shtml
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http://www.aem.umn.edu/~SeilerControl/software.shtml
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Aeroservoelasticity
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Performance Adaptive Aeroelastic Wing (PAAW)

• Goal: Suppress flutter, control wing shape 
and alter shape to optimize performance

• Funding: NASA NRA NNX14AL36A

• Technical Monitor: Dr. John Bosworth 

• Two years of testing at UMN followed by two 
years of testing on NASA’s X-56 Aircraft
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Outline

• Linear Parameter Varying 
(LPV) Systems

• Applications

• Flexible Aircraft

• Wind Farms

• Theory for LPV Systems

• Robustness Analysis

• Model Reduction
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Modeling for Aircraft Control
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Modeling for Aircraft Control
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Modeling for Aircraft Control
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Modeling for Aircraft Control
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Modeling for Aircraft Control
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Modeling for Aircraft Control
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Aeroservoelasticity (ASE)

Efficient aircraft design

• Lightweight structures

• High aspect ratios
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Flutter
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Source: NASA Dryden Flight Research
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Classical Approach
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Flexible Aircraft Challenges
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Flexible Aircraft Challenges
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Body Freedom Flutter
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Modeling and Control for Flex Aircraft

1. Parameter Dependent Dynamics

• Models depend on airspeed due to 
structural/aero interactions

• LPV is a natural framework.

2. Model Reduction

• High fidelity CFD/CSD models have 
many (millions) of states.

3. Model Uncertainty

• Use of simplified low order models 
OR reduced high fidelity models

• Unsteady aero, mass/inertia & 
structural parameters
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Modeling and Control for Wind Farms
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Simulator for Wind Farm Applications, Churchfield & Lee

http://wind.nrel.gov/designcodes/simulators/SOWFA

Saint Anthony Falls: http://www.safl.umn.edu/

Eolos: http://www.eolos.umn.edu/

1. Parameter Dependent Dynamics

• Models depend on windspeed due to 
structural/aero interactions

• LPV is a natural framework.

2. Model Reduction

• High fidelity CFD/CSD models have 
many (millions) of states.

3. Model Uncertainty

• Use of simplified low order models 
OR reduced high fidelity models

http://wind.nrel.gov/designcodes/simulators/SOWFA
http://www.safl.umn.edu/
http://www.eolos.umn.edu/
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Outline

• Linear Parameter Varying 
(LPV) Systems

• Applications

• Flexible Aircraft

• Wind Farms

• Theory for LPV Systems

• Robustness Analysis (Pfifer, 
Wang, Hu, Lacerda, 
Venkataraman)

• Model Reduction
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LPV Analysis

27

Gridded LPV System

Induced L2 Gain
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(Standard) Dissipation Inequality Condition

Comments

• Dissipation inequality can be expressed/solved using LMIs.
• Finite dimensional LMIs for LFT/Polytopic LPV systems

• Parameterized LMIs for Gridded LPV (requires basis functions, gridding, etc)

• Condition is IFF for LTI systems but only sufficient for LPV
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Theorem (Wu, 1995)

Proof:
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• Goal: Assess the impact of model uncertainty/nonlinearities

• Approach: Separate nominal dynamics from perturbations
• Pert. can be parametric, LTI dynamic, and/or nonlinearities (e.g. saturation).

Uncertainty Modeling
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• Goal: Extend analysis tools to LPV uncertainty for an

• Approach:

• Use Integral Quadratic Constraints to model input/output 
behavior (Megretski & Rantzer, TAC 1997).

• Extend dissipation inequality approach for robustness analysis

• Results for Gridded Nominal system

• Parallels earlier results for LFT nominal system by Scherer, 
Veenman, Köse, Köroğlu.

Robustness Analysis for LPV Systems
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IQC Example: Passive System

Pointwise Quadratic Constraint
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General (Time Domain) IQCs

General IQC Definition:

32

Comments:
• Megretski & Rantzer (‘97 TAC) has a library of IQCs for various 

components.

• IQCs can be equivalently specified in the freq. domain with a multiplier P

• A non-unique factorization connects P=Y*MY. 

• Multiple IQCs can be used to specify behavior of .
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IQC Dissipation Inequality Condition
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Theorem

Proof:

Comment

• Dissipation inequality can be expressed/solved as LMIs.

• Extends standard D/G scaling but requires selection of basis 
functions for IQC.
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Less Conservative IQC Result
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Theorem

Technical Result

• Positive semidefinite constraint on V and time domain IQC 
constraint can be dropped.

• These are replaced by a freq. domain requirement on P=Y*MY.

• Some energy is “hidden” in the IQC.

Refs:
P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015.

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using 
Integral Quadratic Constraints, submitted to IJRNC, 2015.
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Less Conservative IQC Result
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Theorem

Key Idea:

Refs:
P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015.

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using 
Integral Quadratic Constraints, submitted to IJRNC, 2015.

We only need the sum of the boxed terms to be ≥ 0, i.e. each term

individually need not be ≥ 0.
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Time-Domain Dissipation Inequality Analysis

Summary: Under some technical conditions, the frequency-domain 
conditions in (M/R, ’97 TAC) are equivalent to the time-domain 
dissipation inequality conditions.

Applications:

1. LPV robustness analysis (Pfifer, Seiler, IJRNC)

2. General LPV robust synthesis (Wang, Pfifer, Seiler, accepted to Aut) 

3. LPV robust filtering/feedforward (Venkataraman, Seiler, in prep)
• Robust filtering typically uses a duality argument.  Extensions to the time domain?

4. Exponential rates of convergence (Hu,Seiler, accepted to TAC)
• Motivated by optimization analysis with ρ-hard IQCs (Lessard, Recht, & Packard)

5. Nonlinear analysis using SOS techniques

6. Discrete-time IQC analysis (Hu, Lacerda, Seiler, submitted to IJRNC)

Item 1 has been implemented in LPVTools. Items 2 & 3 parallel 
results by (Scherer, Köse, and Veenman) for LFT-type LPV systems.
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Outline

• Linear Parameter Varying 
(LPV) Systems

• Applications

• Flexible Aircraft

• Wind Farms

• Theory for LPV Systems

• Robustness Analysis

• Model Reduction (Annoni, 
Theis, Singh)
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LPV Model Reduction

• Both flexible aircraft and wind farms can be modeled with 
high fidelity fluid/structural models.

• LPV models can be obtained via Jacobian linearization:

• State dimension can be extremely large (>106)

• LPV analysis and synthesis is restricted to ≈50 states.

• Model reduction is required.

38



AEROSPACE ENGINEERING AND MECHANICS

High Order Model Reduction

Large literature with recent results for LPV and Param. LTI
• Antoulas, Amsallem, Carlberg , Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-

Vassal, Rowley, Schmid, Willcox, …

Two new results for LPV:

1. Input-Output Reduced Order Models (Annoni)
• Combine subspace ID with techniques from fluids (POD/DMD).

• No need for adjoint models.  Can reconstruct full-order state.

2. Parameter-Varying Oblique Projection (Theis)
• Petrov-Galerkin approximation with constant projection space and 

parameter-varying test space.

• Constant projection maintains state consistency avoids rate dependence.

39
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Application: Large Eddy Simulation (LES)

• Simulator fOr Wind Farm Applications (SOWFA)

• 3D unsteady spatially filtered Navier-Stokes equations

• Simulation time (wall clock): 48 hours

Churchfield, Lee

https://nwtc.nrel.gov/SOWFA
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• Two turbine setup (NREL 5 MW turbines)

• Turbine Diameter D=126m

• Approximately 1.2 million grid points

• 3 velocity components → 3.6 million states

Wind Turbine Array Setup
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• Two turbine setup (NREL 5 MW turbines)

• Control inputs: Blade pitch angle

• Control outputs: Power at each turbine

• Exogenous Disturbance: Mean wind speed 

Wind Turbine Array Setup

Pitch(1) Power(1) Power(2)Pitch(2)

Wind 
Speed
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Discrete-Time Direct Subspace ID (Viberg, 95)

• Gather snapshots of inputs, outputs, and state

• Fit a linear state-space model to the data
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Reduced Order Model

• Compute SVD of state snapshot data:

• Project state data onto the POD modes:

• Fit a linear state-space model to the reduced data:

• Comments:

• SVD can be done on laptop in a few hours with Tall QR methods.

• This is a variation of DMDc by Proctor, et al, 2014.

• We can approximate the full state as  
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Summary

• SVD can be done on laptop in a few 
hours with Tall QR methods.

• This combines techniques from 
system ID and fluids (POD/DMD)

• The approach is a variation of DMDc by 
Proctor, et al, 2014.

• The method does not require adjoints or 
solution of Lyapunov Eqns.

• We can approximate the full state 
from the reduced state:

• The state consistency can be used to 
extend the approach to LPV model 
reduction.

• Annoni, Seiler, submitted to IJRNC, ‘16
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• Two turbine setup (NREL 5 MW turbines)

• D = turbine diameter (126 m) 

• Neutral boundary layer

• 7 m/s with 10% turbulence

Wind Turbine Array Setup
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• Two turbine setup (NREL 5 MW turbines)

IOROM with SOWFA
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Blade pitch angle 
changes from 0⁰ to 4⁰

Streamwise distance (x/D)
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Reconstructed Flow

• Model constructed using 20 modes
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• Validation case – same setup with a different input

Blade pitch angle 
changes from 0⁰ to 4⁰

Model applied to Validation Data

m
/s
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Video of reconstructed flow
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Conclusions

Main Contributions in LPV Theory:

• Robustness analysis tools

• Model reduction methods

Applications to:

• Flexible and unmanned aircraft

• Wind energy

• Hard disk drives
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• Scale       1:750
• 4.5 m/s
• 10% turbulence intensity

Model Turbines
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0.128 m 96 m

Photo credits: Kevin Howard
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SAFL Wind Tunnel
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Photo credits: Kevin Howard
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• Understand the input/output dynamics

• Square waves with varying frequencies: 0.02Hz to 10Hz
Output voltage          Power

Voltage Measurements
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Input voltage          generator torque
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Typical Result
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Dynamic Response
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Dynamic Park Model
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Dynamic Park Model

61


