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Abstract

Adaptive control algorithms have the potential to improve performance and reliability

in flight control systems. Implementation of adaptive control on commercial and

military aircraft requires validation and verification of the control system robustness

to modeling error and uncertainty. Currently, there is a lack of tools available to

rigorously analyze the performance and robustness of adaptive systems due to their

inherently nonlinear dynamics. This thesis addresses the development of nonlinear

robustness analysis tools for adaptive flight control systems. First, a model reference

adaptive controller is derived for an aircraft short period model. It is noted that the

controller is a polynomial system. Polynomial optimization tools are then applied to

the closed-loop model to assess its robustness to time delays. Time delay margins are

computed for various tuning of design parameters in the adaptive law, as well as in

the presence of model uncertainty.
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Chapter 1

Introduction

Adaptive control laws show great potential to improve the performance and relia-

bility of flight control systems. Adaptive control laws are typically nonlinear and

time-varying. Generally, few tools exist to rigorously analyze the robustness and

performance of such systems. The lack of tools available to verify performance and

robustness is a significant roadblock to the implementation of adaptive controllers on

military and civilian aircraft.

The objective of this thesis is to demonstrate the suitability of sum-of-squares poly-

nomial optimizations for the analysis of adaptive flight control systems. There has re-

cently been significant research on sum-of-squares optimization problems [1–3]. These

optimization problems involve constraints on polynomial functions and can be used

to analyze the performance and robustness of systems described by polynomial dy-

namics. Computational algorithms have been developed for estimating regions of at-

traction, reachability sets, input-output gains, robustness with respect to uncertainty,

and time delay margins [4–20]. Moreover, there is freely available software to solve

sum-of-squares optimizations, which allows for easy application of these techniques

to aerospace systems [21–23].

This thesis demonstrates that sum-of-squares optimization tools can be applied to

assess the robustness of adaptive flight control laws. The approach has been previ-

ously applied to simple one-state model reference adaptive control systems [17,24]. In

this thesis, a more insightful aircraft model is considered for model reference adaptive

control.
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An important and meaningful robustness metric for the analysis of adaptive flight

control systems is the time delay margin. The sum-of-squares approach is used to

calculate lower bounds on this robustness metric. The analysis in this thesis focuses

on a realistic flight control problem and the engineering insight that can be drawn

from the nonlinear analysis.

The following structure outlines the flow of the thesis. In Chapter 2, a model reference

adaptive controller is defined for the linear short period dynamics of an aircraft. It is

noted that this controller is a polynomial system, hence the full closed-loop system can

be modeled as a polynomial dynamical system. Sum-of-squares optimization tools are

ideally suited to analyze the robustness of such systems because they are governed by

polynomial dynamics. Chapter 3 provides a brief theoretical background description

of sum-of-squares optimizations. An overview of the freely available analysis tools

related to the optimizations is also included. Chapter 4 derives a set of sum-of-

squares conditions for calculating lower bounds on the time delay margin. Chapter 5

properly formulates a time delayed version of the closed-loop model reference adaptive

control system as a sum-of-squares optimization problem. Chapter 6 summarizes the

findings from the analysis. Chapter 7 serves as a wrap-up and conclusion for the

thesis.
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Chapter 2

Aircraft Dynamics and Adaptive

Control

Simple linear dynamical systems are convenient from an analysis and computational

perspective. However, real engineering systems are frequently complicated and non-

linear. A useful mathematical model must sufficiently emulate the real system for the

results to be applicable, but also retain computational tractability. Implementing the

right quantity of model complexity is crucial towards obtaining meaningful results

from analysis.

Aircraft systems are governed by highly coupled and nonlinear dynamics. The longi-

tudinal flight dynamics can be decoupled from the rest, which is very useful for model

simplification. Under normal flight conditions, i.e. when the aircraft is not stalled,

linearlized longtitudinal dynamics accurately predict the behavior of the real system.

Therefore, linear dynamics comprise a reasonable abstraction of the true aircraft in

this case. The dynamics can be further broken into two modes, each with a drastically

different time scale. The faster of the two is usually referred to as the short period.

The short period dynamics overwhelmingly dominate the aircraft response relevant

to handling and control in the longitudinal axis [25]. Hence, these linear dynamics

are suitable for the focus of analysis because they are simple, yet closely approximate

the behavior of the real system.

Adaptive control is attractive because it has potential to improve the reliabilty of

aircraft control systems. Generally, it provides an efficient and automatic way to
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handle modeling uncertainty. A multitude of adaptive control architectures have been

proposed over the past decades. Most include nonlinear components in their control

law definitions. A well-studied such example is model reference adaptive control

(MRAC). Applying MRAC to aircraft short period dynamics forms a relatively simple

model with nonlinear characteristics. This model is useful for developing nonlinear

analysis tools needed for validating the robustness of adaptive control laws.

2.1 Short Period Aircraft Dynamics

The longitudinal dynamics for conventional aircraft can be linearized about equi-

librium flight conditions, commonly referred to as trim conditions. From a trim

condition, small perturbations result in linear responses from the system. Altitude

is a component of the longitudinal axis dynamics, but is neglected in this analysis.

Assuming level flight, altitude variations are small and have a negligible effect on the

aircraft. Altitude enters the equations of motion through changes in the static air

pressure, which are insignificant when considering small perturbations from trim.

The resulting linear system is fully described by four states: angle-of-attack, pitch

rate, pitch angle, and velocity. Eigenvalue decomposition of the corresponding state

matrix reveals that the longitudinal dynamics are goverened by two oscillatory modes:

the phugoid and the short period. The phugoid is a lightly damped mode with

a long period of oscillation, on the order of 0.1 rad/sec. It dominates the pitch

angle and velocity state responses. The short period is also lightly damped but, as

its name implies, has a quicker transient, on the order of 1 rad/sec. It dominates

the angle-of-attack and pitch rate states. From a handling and control perspective,

the short period dynamics have a greater influence on the quality of flight than the

phugoid [25]. The aircraft model used in this analysis is a linear, two state short

period approximation of longitudinal dynamics.

A short period model for the NASA X-15 hypersonic aircraft is taken from Ref.

26. The X-15 was an experimental rocket propelled aircraft flown in the 1960s.

This particular aircraft model in closed-loop with MRAC has been studied previously

and analyzed for robustness. In the interest of proper comparison of results from

different analyses, the same aircraft model and MRAC are used in this thesis as in

past research [26]. The short period model for the X-15 is given in the standard
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state-space format by the system in Eq. 2.1.

ẋ = Aλx+Bu

y = Cx (2.1)

The states of the system in Eq. 2.1 are angle-of-attack α and pitch rate q, given

by x = [α (deg), q (deg/sec)]T . The input to the system is elevator deflection u =

δelev (deg). The output is the angle-of-attack y = α (deg). λ denotes parametric

model uncertainty. The subscript λ on the state matrix A denotes the dependence of

the state matrix on this parametric uncertainty.

More specifically, the state, input, and output matrices for the X-15 short period

model are defined with Eq. 2.2 through Eq. 2.4.

Aλ =

[
−0.2950 1.0000

−13.0798λα −0.2084λq

]
(2.2)

B =

[
0

−9.4725

]
(2.3)

C =
[
1 0

]
(2.4)

The aircraft model is given the symbol Pλ, indicating that it is an uncertain system.

The parameter λ has the structure λ = [λα, λq]
T . It models uncertainty in two aero-

dynamic coefficients. The uncertainty enters directly into the derivative calculation

of pitch rate. Angle-of-attack is only affected through coupling in the equations. In

robust control theory, this structure represents a type of parametric uncertainty [27].

Defining an appropriate parameter space for the uncertainty is required for analysis.

100 % parametric uncertainty is considered by allowing λ to vary freely on the in-

terval [0 2]. It is important to note that the short period dynamics remain stable

throughout the entire uncertainty envelope. However, the dynamics are marginally

stable for λ = 0.

The nominal model, denoted as Anom, corresponds to λα = 1 and λq = 1. Eigenvalue

decomposition of the nominal state matrix reveals that the short period mode has

a damping ratio ζ = 0.07 at a frequencey of 3.63 rad/sec. Indeed, the short period

dynamics are lightly damped. One of the goals of the control design is to reduce the

amplification of the oscillations corresponding to this mode.
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2.2 Model Reference Adaptive Control

One of the most basic and intuitive architectures for adaptive systems is direct model

reference adaptive contol (MRAC) [28]. The simplicity of MRAC makes it suitable for

demonstrating capabilities of nonlinear analysis tools for evaluating robustness, and

its intuitive structure makes its behavior predictable. Although the MRAC is simple

and intuitive, its dynamics are inherently nonlinear. This renders classical tools for

robustness analysis useless. For example, a control system with MRAC cannot be

analyzed using gain and phase margins to determinte robustness. Hence, the short

period aircraft model with MRAC presents a fitting example problem for nonlinear

robustness analysis.

The MRAC used in this analysis is taken directly from Ref. 26. This is a well-

researched implementation of MRAC for longitudinal aircraft dynamics. The mo-

tivation for selecting this particular controller is the ability to use past robustness

results as benchmarks for evaluating the new analysis tools. With data available for

comparison, it is possible to make claims about the capabilites and effectiveness of

the new approach.

The MRAC has four main components: a reference model, an adaptive law, and two

constant gain blocks. The resulting sub-system is nonlinear, adaptive, and produces

the control signal u. The system interconnection is shown in Fig. 2.1. Note that

signal ref is the α reference command, x is the aircraft state, and y is the output α.

ref

-

-Reference
Model

xm - e -
e

Adaptive
Law

-uad e u -

Kref

?
Pλ -y = α

x = [α; q]

6
-

Kx

6

6
MRAC

Figure 2.1: System interconnection for aircraft model with MRAC.
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From the system interconnection diagram in Fig. 2.1, the control signal u is a sum-

mation of three separate components. These components originate from the state

feedback block Kx, the reference feedforward block Kref , and the adaptive law block.

The resulting signal u is the input to the aircraft model Pλ. Accordingly, the control

law is defined by Eq. 2.5.

u = Kxx+Krefref + uad (2.5)

The state feedback term Kx is designed first. It is a constant gain matrix in full-state

feedback with the aircraft model Pλ. It is designed as a stability agumentation system

to increase damping in the short period oscillatory mode of the nominal model. The

controller is designed using the LQR method, minimizing the cost function J in Eq.

2.6.

J =

∫
x(t)TR1 x(t) + u(t)TR2 u(t) dt (2.6)

In the cost function J , the parameter weights R1 and R2 are selected as I2 and 1,

respectively. The resulting matrix Kx is shown in Eq. 2.7. Note that the Matlab LQR

solver assumes negative state feedback. For consistency with the interconnection in

Fig. 2.1, which shows to have positive feedback, a negative sign is included directly

in the matrix Kx.

Kx =
[
0.0577 0.9843

]
(2.7)

The LQR result is intuitive from a qualitative standpoint. Aircraft dynamics have

historically been defined with the property that a positive actuator deflection results

in a negative response [25]. Due to this negative sign inherent to aircraft dynamics,

positive feedback is required when implementing control. This corresponds to the

positive entries in Kx and the positive feedback junction in Fig. 2.1. The resulting

inner-loop system is overdamped with eigenvalues at -2.14 and -7.69. To aid in the

design process, Gil(s) is defined as the inner-loop transfer function. It is given by Eq.

2.8.

Gil(s) = C[ sI2 − (Anom +BKx) ]−1B (2.8)
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The feedforward gain Kref is designed to ensure the closed-loop gain of the whole

system is 1 at low frequency. As a result, the output angle-of-attack y tracks the angle-

of-attack command input ref . To achieve this, Kref must invert Gil(0), resulting in

a system DC gain of 1.To this end, Kref is defined by Eq. 2.9.

Kref = [ −C(Anom +BKx)
−1B ]−1 = −1.7354 (2.9)

Finally, the control signal u is augmented with component uad, corresponding to the

adaptive law. This is the central feature of the MRAC. The relationship is defined in

Eq. 2.10.

uad = θTx (2.10)

In this relationship, θ is a vector of adaptation parameters. If the adaptation param-

eters were constant, this augmentation would be a time-invariant stability augmen-

tation system like Kx. However, the adaptation parameters are states of a dynamical

system. This dynamical system is called the parameter update law, and is defined in

Eq. 2.11.

θ̇ = −κxeTPB − σθ (2.11)

These dynamic gains in the feedback loop give rise to a nonlinear adaptive control

system. The adaptive law is a function of the aircraft state x and the error signal

e. Signal e is the difference between state x and the reference model state xm. The

reference model is defined as the nominal aircraft model in feedback with Kx and

with Kr as a feedforward gain. In other words, the reference model is the transfer

function KrGil(s). The system in Eq. 2.12 summarizes the structure of the reference

model.

ẋm = (Anom +BKx)xm +BKru

= Amxm +Bmu

ym = Cxm (2.12)

Given these definitions, signal e is a characterization of deviation from the nominal

aircraft model by the true model. This error is the main driver in the adaptive law. If

the aircraft model has no uncertainty, x and xm are identically equal to each other. In
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this case, the adaptive law is deactivated since the error is zero. Hence, the adaptive

law is actually driven by uncertainty in the aircraft model.

There are two tuning parameters in the parameter update law given by Eq. 2.11. κ is

the adaptation gain, and σ is the sigma modification gain. The adaptation gain sets

how quickly the θ dynamics evolve. The sigma modification gain adds robustness to

the system by ensuring boundedness of the θ parameters. In the analysis, κ and σ

are varied and robustness of the closed-loop is also examined.

The symmetric matrix variable P in Eq. 2.11 is a control design parameter. It is

calculated by solving the Lyapunov equation ATmP + PAm = −Q, where Q = 2I2.

Details on the selection of P are provided in the next section. The value of P used

in the control design is shown in Eq. 2.13.

P =

[
1.8136 0.0341

0.0341 0.1085

]
(2.13)

With these components, the MRAC is fully defined. It is a nonlinear system with

adaptive gains. The adaptation parameters attempt to estimate uncertainty in the

aircraft model, and drive the closed-loop dynamics towards the nominal condition.

The next section highlights a few important points about the MRAC.

2.3 Key Properties of the Closed-Loop System

A major assumption is made about the uncertainty in the aircraft model. It is as-

sumed that the uncertainty is matched. Matched uncertainty is defined as uncer-

tainty belonging to the range space of the control authority. It can be completely

accounted for and eliminated with a properly selected control signal. More precisely,

it is assumed that for all uncertainties λ, there exists an ideal gain θ∗ such that

Aλ +B(Kx + θ∗T ) = Am. From this relation, the ideal gain is derived in Eq. 2.14.

Bθ∗T = Am − Aλ −BKx = Anom − Aλ (2.14)

The value of θ∗ depends on λ, meaning that the optimal gain depends on the particular

value of the uncertainty. The Bθ∗T term is a direct measure of deviation from the

nominal state matrix by the uncertain state matrix. For the nominal case, where

Aλ = Anom, it is clear that θ∗ is zero. Hence, adaptation is not required.

9



For convenience, define the parameter error as θ̃ = θ − θ∗. This represents the

difference between actual adaptive gain and ideal gain for any particular uncertainty

value. Given the definition of error signal e = x− xm, the error dynamics for the full

MRAC system in closed-loop are derived. These error dynamics are summarized in

Eq. 2.15.

ė = ẋ− ẋm
= (Aλ +BKx +BθT )x+BKrefref − (Amxm +Bmref)

= (Aλ +BKx +BθT )x+BKrefref − Amxm −BKrefref

= (Aλ +BKx +BθT )x− Amxm
= (Aλ +BKx +Bθ∗T )x− Amxm +BθTx−Bθ∗Tx

= Amx− Amxm +BθTx−Bθ∗Tx

= Ame+Bθ̃ Tx (2.15)

Letting P = P T > 0, and solving the Lyapunov equation ATmP +PAm = −Q for any

Q > 0 yields a meaningful stability result. Consider the Lyapunov function candidate

in Eq. 2.16 where κ > 0 is a scalar constant.

V = eTPe+
1

κ
θ̃T θ̃ (2.16)

The time derivative function V̇ is calculated in Eq. 2.17 using the error dynamics

from Eq. 2.15 and the parameter update law in Eq. 2.11. To first show a notable

result for purely adaptive systems without sigma modification, the sigma modification

term in the parameter update law is neglected.

V̇ = ėTPe+ eTP ė+
1

κ
˙̃θ T θ̃ +

1

κ
θ̃ T ˙̃θ

= [Ame+Bθ̃ Tx]TPe+ eTP [Ame+Bθ̃x]−BTPexT θ̃ − θ̃ TxeTPB

= eT [ATmP + PAm]e+ xT θ̃BTPe+ eTPBθ̃ Tx−BTPexT θ̃ − θ̃ TxeTPB

= −eTQe (2.17)

Note that the terms xT θ̃ and θ̃ Tx in the derivation are scalar. Hence, they commute

within their respective terms. Using this property, the cross terms in the derivation

cancel, leading to the result in Eq. 2.17.
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The structure of Eq. 2.17 is a standard adaptive control stability result [28]. The

function V̇ is only negative semidefinite, since the adaptation parameters do not

appear explicitly in the final result. Convergence of e to the origin follows from

Lyapunov theory and Barbalat’s Lemma. However, no conclusion is drawn about the

convergence of the adaptation parameters [29].

The sigma modification term in Eq. 2.11 is used in the parameter update law to

ensure boundedness of the adaptation parameters [28]. The time derivative function

V̇ is recomputed using the sigma modified adaptive law, and shown in Eq. 2.18.

V̇ = −eTQe− 2σ

κ
θ̃ T θ (2.18)

Eq. 2.18 is not negative semidefinite for small values of e, since the second term is not

sign definite. Hence, the inclusion of sigma modification in the dynamics renders the

original Lyapunov function candidate useless in proving stability. It is a known result

that sigma modification increases robustness at the expense of the precise convergence

of e to the origin. However, all signals remain bounded, and e converges to a small

closed region near the origin [28].

The nonlinear analysis approach used in the forthcoming sections can only be applied

to systems governed by polynomial dynamics. The short period MRAC closed-loop

is a polynomial model. There are two polynomial sub-systems in the MRAC. The

MRAC’s parameter update law in Eq. 2.11 includes a product of x and e. Expanding

e, the parameter update law has two nonlinear terms. The first is governed by xxT ,

and the second by xxTm. Note that these nonlinear terms are polynomial. The MRAC

control signal’s adaptive component uad defined in Eq. 2.10 is also nonlinear and

polynomially governed by the product of θTx. The remaining components in the

closed-loop system are linear. The aircraft model is linear, as are the constant gains

and the reference model. A key observation is that the MRAC closed-loop system is

a polynomial system. It can be written in the form shown by the system in Eq. 2.19.

ż = f(z, ref)

y = h(z, ref) (2.19)

In Eq. 2.19, z = [θ, xm, x]T is the MRAC state augmented with the aircraft state,

and ref is the input. The output y is still the angle-of-attack. Given the system
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dynamics, f and h are polynomial functions.
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Chapter 3

Sum-of-Squares Optimization

The underlying mathematical theory behind the analysis approach in this thesis is

related to the properties of sum-of-squares (SOS) polynomials. This section provides

a brief review of SOS polynomials and the optimizations that exploit their properties.

Background and more detailed information can be found in Refs. 1–3.

A polynomial p is said to be SOS if there exist polynomials {fi}mi=1 such that p =∑m
i=1 f

2
i . For example, p = x2 − 4xy + 7y2 is SOS because p = f 2

1 + f 2
2 , where

f1 = (x − 2y)2 and f2 = 3y2. Note that any SOS polynomial is a globally positive

semidefinite function. The sign definite property of these polynomials will be used

in a particular way to construct Lyapunov functions and make arguments about the

stability of a system.

Quadratic form polynomials can be always be expressed in the form p(x) = xTQx,

where Q is a symmetric matrix. Similarly, polynomials of degree ≤ 2d can be ex-

pressed as p(x) = z(x)TQz(x), where the vector z contains all monomials of degree

≤ d. This is commonly known as the Gram matrix form. In general, the Gram

matrix Q is not unique. For a given polynomial p, there may exist many Q which

satisfy the equality. A key and very useful property is that p(x) is an SOS polyno-

mial if and only if there exists a symmetric positive semidefinite matrix Q such that

p(x) = z(x)TQz(x). This property is a vital connection between SOS polynomials

and positive semidefinite matrices.

An SOS program is an optimization problem with a linear cost and SOS constraints on

the decision variables [21]. The optimization problem is summarized by the statement

13



in Eq. 3.1.

min
u∈Rn

cTu (3.1)

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ SOS (k = 1, . . . Ns)

The vector c ∈ Rn and polynomials ak,j are specified as part of the optimization setup.

u ∈ Rn is the vector of decision variables found by the optimization. SOS programs

can be converted to semidefinite programs (SDP) using the connection between SOS

polynomials and positive semidefinite matrices. SOSTOOLS [21], Yalmip [22], and

SOSOPT [23] are freely available MATLAB toolboxes for solving SOS optimizations.

In particular, SOSOPT is used in this analysis. These packages allow the user to

specify the polynomial constraints using a symbolic toolbox. They convert the SOS

optimization into an SDP, which is solved with SeDuMi [30,31] or another SDP solver.

Finally, the solution of the SDP is converted back to a polynomial solution.

A major drawback of this approach is the rapid increase in size of the resulting SDP as

a function of the number of variables and the polynomial degree. For a generic degree

2d polynomial with n variables, the Gram matrix representation involves lz =
(
n+d
d

)
monomials. An SOS constraint is enforced via the positive semidefinite constraint

on Q, which is an lz × lz Gram matrix. For example, Q has dimension lz = 495 for

a generic degree 8 polynomial in 8 variables. The size of this matrix constraint is

near the limits of current SDP solvers. The problem structure can be exploited [32],

but this computational growth is a generic trend in SOS optimizations. For analysis

of polynomial systems, this roughly limits the approach to systems with fewer than

8-10, states and cubic degree models. Polynomial models of higher degree can be

handled if there are fewer states.

As mentioned previously, SOS polynomials are globally positive semidefinite. Lya-

punov based analysis is generally centered around satisfying non-negativity conditions

on functions and their time derivatives, which involve the governing system dynam-

ics. If the Lyapunov function candidate is polynomial, stability certificates can be

obtained using SOS optimization. This SOS approach is ideally suited for control

systems governed by polynomial dynamics. For problems involving non-polynomial

dynamics, they must be approxiamted as such.

Many types of nonlinear analysis problems can be formulated as polynomial opti-
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mization problems with SOS constraints. Some of these include estimating regions of

attraction, reachability sets, local input-output gains, input-output gains with other

signal norms, robustness with respect to parametric uncertainty, and time delay mar-

gin [4–20]. The analysis in this thesis focuses on estimating time delay margin for the

MRAC system. This SOS optimization is applicable because the MRAC closed-loop

system is governed by polynomial dynamics.

15



Chapter 4

Stability Analysis

The notion of linear robustness metrics, such as gain and phase margin, do not extend

to nonlinear systems. Even for the case of polynomial dynamics, more advanced

approaches for evaluating robustness to uncertainty are required. A logical extension

of the phase margin for nonlinear systems is the time delay margin. In real systems,

where transport or telemetry delay are often quantifiable measures, knowledge of the

time delay margin is crucial to making claims about stability and robustness. An

approach to estimating the time delay margin for polynomial systems using SOS

optimization was proposed in Ref. 19 and refined in Ref. 20. In this chapter, the

approach in Ref. 19 is derived in detail towards the analysis of the MRAC aircraft

system.

4.1 Global Stability Conditions

Common practices towards estimating the time delay margin for nonlinear systems

rely on exhaustive Monte Carlo simulations. Such approaches lack the rigor and

strength of robustness analysis tools available for linear systems. An analytical and

more rigorous approach is desired for nonlinear systems. To develop this approach,

it is first assumed that the system dynamics can be reduced to a model of the form

in Eq. 4.1.

ẋ(t) = f(x(t), x(t− r)) (4.1)
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In this model, x(t) is the current state vector, and x(t−r) is the delayed state vector.

The function f is an nx×1 vector-valued polynomial function of x(t) and x(t−r) such

that f(0, 0) = 0. Implicitly, this system is infinite dimensional. The current derivative

depends explicitly on the current state and the delayed state. However, knowledge of

the entire state vector time history on the time delay interval is required for predicting

future states. This infinite dimensional time history is denoted x(m), where m ∈
[t− r, t]. Although restricting the model to this structure appears limiting, many real

systems can be modeled in this way. Controller computation, communication, and

transport delay are examples of delays in systems representable by Eq. 4.1.

Time delay systems with finite time delay margins are said to be delay-dependent

stable. In such systems, there exists a time delay r large enough to cause instability.

This is analogous to a finite phase margin in linear systems. The largest r for which

the system is stable is defined as the time delay margin. The largest r for which

stability can be numerically certified is a lower bound of that margin.

A set of Lyapunov conditions is formulated for analyzing the stability of polynomial

systems with time delay. This set of conditions is used to calculate a lower bound on

the time delay margin. The conditions are satisfied by numerically certifying their

global non-negativity for time delays up to size r. If satisfied, the system is guaranteed

to be stable for time delays up to size r. The lower bound of the time delay margin is

calculated by attempting to certify the conditions through a bisection algorithm on

r.

The dynamics in Eq. 4.1 are assumed to be nonlinear and polynomial. Therefore,

the quadratic form Lyapunov functions used in linear analysis are not sufficient to

guarantee stability. A more complex Lyapunov function candidate is proposed in Eq.

4.2. Specifically, it is a functional because its argument is x(m). Eq. 4.2 maps a

vector space x(m) into real numbers.

V (x(m)) = V0(x(t)) +

∫ 0

−r
V1(τ, x(t), x(t+ τ)) dτ +

∫ 0

−r

∫ t

t+τ

V2(x(ξ)) dξ, dτ (4.2)

In Eq. 4.2, the functions V0, V1, and V2 are polynomials. The polynomial functional

V (x(m)) depends on the current state and the entire interval of the state trajectory

inside the window of the time delay. For systems without time delay, V0 alone would

be a logical choice of Lyapunov function candidate. The integral terms are included
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to account for the time delay. Note that the integration bounds correspond to the

time delay interval.

The function V must be positive definite to show stability with Lyapunov theory.

Positive definiteness of each term is sufficient but not necessary. Given at least one

positive definite term, the others can be positive semidefinite. V0 is constrained to be

positive definite, allowing slack in the remaining terms. The kernels of the integral

terms are constrained to be positive semidefinite. Indeed, the integral of a positive

semidefinite function is positive semidefinite itself.

The time derivative V̇ must also be negative semidefinite to ensure stability with Lya-

punov theory. Arriving at an elegant form of this derivative from V is not straight-

forward. In particular, the derivative of the second term V1 requires algebraic manip-

ulation, shown in the derivation arriving at Eq. 4.3.

d

dt

∫ 0

−r
V1 dτ =

∫ 0

−r

∂V1
∂τ

dτ

dt
+

∂V1
∂x(t)

dx(t)

dt
+

∂V1
∂x(t+ τ)

dx(t+ τ)

dt
dτ

=

∫ 0

−r

∂V1
∂x(t)

f +
∂V1

∂x(t+ τ)

dx(t+ τ)

dτ
dτ

=

∫ 0

−r

∂V1
∂x(t)

f +
∂V1

∂x(t+ τ)

dx(t+ τ)

dτ
+
∂V1
∂τ
− ∂V1

∂τ
dτ

=

∫ 0

−r

∂V1
∂x(t)

f − ∂V1
∂τ

dτ +

∫ 0

−r

∂V1
∂x(t+ τ)

dx(t+ τ)

dτ
+
∂V1
∂τ

dτ

=

∫ 0

−r

∂V1
∂x(t)

f − ∂V1
∂τ

dτ +

∫ 0

−r

dV1
dτ

dτ

=

∫ 0

−r

∂V1
∂x(t)

f − ∂V1
∂τ

dτ + V1(0, x(t), x(t))− V1(−r, x(t), x(t− r)) (4.3)

Taking the derivative of the first and third terms in V is straightforward. With the

result in Eq. 4.3, the full time derivative of V is composed and shown in Eq. 4.4.

d

dt
V =

dV0
dx(t)

f + V1(0, x(t), x(t))− V1(−r, x(t), x(t− r))

+

∫ 0

−r

∂V1
∂x(t)

f − ∂V1
∂τ

+ V2(x(t))− V2(x(t+ τ))dτ (4.4)

Note that the terms outside the integral in Eq. 4.4 have no dependence on the variable

of integration. For simplicity, they can be included in the integral term with a scaling
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factor 1
r
. Hence, the derivative of V can be expressed as a single integral. This is

desirable because its kernel can easily be constrained to be negative semidefinite by

the same logic that constrained the kernels of the integral terms in V .

A set of sufficient conditions for global stability of the polynomial time delay system

in Eq. 4.1 is formulated in Lemma 1. The structure of V defined in Eq. 4.2 is the

foundation of this lemma.

Lemma 1 Assume the origin is an equilibrium point for the system in Eq. 4.1,

polynomials V0, V1, and V2 exist, and that ψ(x(t)) is a positive definite polynomial

function such that:

1) V0(x(t))− ψ(x(t)) ≥ 0

2) V1(τ, x(t), x(t+ τ)) ≥ 0 ∀τ ∈ [−r, 0]

3) V2(x(ξ)) ≥ 0

4) 1
r
dVo
dx(t)

f + 1
r
V1(0, x(t), x(t))− 1

r
V1(−r, x(t), x(t− r)) + ∂V1

∂x(t)
f − ∂V1

∂τ
+ V2(x(t))

− V2(x(t+ τ)) ≤ 0 ∀τ ∈ [−r, 0]

then the origin is a globally stable equilibrium for time delays up to size r.

The first condition in Lemma 1 is equivalent to ensuring that V0(x(t)) ≥ ψ(x(t)).

Since ψ(x(t)) is positive definite by definition, the inequality guarantees that V0 is

also positive definite, which is a requirement for Lyapunov stability. Rather than

constraining V0 to be positive definite directly, condition 1 is used because SOS op-

timization is limited to semidefinite constraints. The second and third conditions in

Lemma 1 ensure that the kernels of the integral terms in V are positive semidefinite.

Since V0 is already positive definite, the conditions on the remaining terms can be re-

laxed to positive semidefinite directly. Hence, the overall positive definiteness of V is

ensured. The fourth condition constrains the derivative V̇ to be negative semidefinite.

The next section is dedicated to transforming the inequality stability conditions in

Lemma 1 to SOS stability conditions. As such, the stability conditions can be certi-

fied using optimization methods. The SOS conditions are then relaxed from global

to local conditions. Certifying global stability is conservative for nonlinear systems,
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where stability around an equilibrium point is typically a sufficient result. Global

stability can even perhaps be infeasible, since multiple equilibria may exist. Guaran-

teed local stability inside a specified box in the system state space is often sufficient

for engineering applications.

4.2 Local Sum-of-Squares Stability Conditions

Each term in the conditions of Lemma 1 is a polynomial function. However, the

time delay interval restriction τ ∈ [−r, 0] in conditions 2 and 4 is not a polynomial

object. To certify stability by SOS optimization, conditions 2 and 4 must be converted

to purely polynomial constraints. Neglecting the interval restriction completely, the

conditions would become valid SOS constraints. However, SOS optimization would

then seek to satisfy the constraints for all values of τ . This certificate would imply

stability for all time delays, which is conservative since a finite margin is expected.

Instead, a variant of the S-procedure is used for constraint relaxation to create SOS

conditions.

The term V1 in condition 2 is required be positive semidefinite on the interval τ ∈
[−r, 0]. A special polynomial function h(τ) = τ(τ + r) = τ 2 + τr is defined. This

function is negative semidefinite on the interval τ ∈ [−r, 0], and positive definite

elsewhere. Augmenting h(τ) to condition 2, and using an SOS multiplier p1, the

relaxed SOS constraint in Eq. 4.5 is composed.

V1(τ, x(t), x(t+ τ)) + p1(τ, x(t), x(t+ τ)) h(τ) ∈ SOS (4.5)

Certifying that Eq. 4.5 is SOS implies that V1 is positive semidefinite for all τ ∈
[−r, 0]. Since the total constraint is SOS, and h(τ) is negative semidefinite on the

interval, V1 must be positive semidefinite on the interval. Outside this interval, where

the system may actually be unstable, V1 is allowed to be negative. But outside the

interval, h(τ) is positive and able to cancel out the potentially negative V1. The

key point is that the total constraint can still be SOS without requiring that V1 be

positive definite for all values of time delay. An illustrative example of S-procedure

constraint relaxation is shown in Fig. 4.1.
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Figure 4.1: Graphical interpretation of S-procedure constraint relaxation.

For the example in Fig. 4.1, stability must be certified for |x| ≤ 4. A Lyapunov

function that is positive definite in this region must be found. The function V (x) in

Fig. 4.1 is positive definite in the required region and would be sufficient to prove

stability. However, it would not be considered by the SOS optimization because is

not globally positive semidefinite or SOS. The function h(x) is negative semidefinite

for |x| ≤ 4 and positive definite otherwise. Augmenting V (x) with h(x) results in a

globally positive definite function. This function can therefore be constructed with

SOS optimization. The existence of this constructed SOS function together with

the sign conditions on h(x) guarantee that V (x) is positive definite in the region of

interest. Hence, stability is certified for all values of |x| ≤ 4. This type of constraint

relaxation is referred to as the S-procedure.

Applying the S-procedure, the fourth condition in Lemma 1 is augmented and con-

verted into an SOS constraint using multiplier p2. Since the interval restriction on

τ is the same as in condition 2, the same function h(τ) is used. Conditions 2 and 4

are thus valid SOS constraints that can be certified using SOS optimization. How-

ever, these conditions still certify global stability in terms of the system state space.

This is conservative, and further constraint relaxation from global to local stability

is necessary.
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Limiting the certification of the SOS constraints to a box in state space around the

origin implies that there exists a local stability region in this box. In particular, the

largest level set of the Lyapunov function fully contained in the box is an invariant

set. Hence, every trajectory originating from that level set is stable. The magnitude

of the box is defined by |xi| ≤ ζi. Each xi represents an individual state, and to allow

flexibility, each direction is constrained independently in terms of ζi. The S-procedure

is utilized again to relax the global SOS conditions into local SOS conditions.

The S-procedure augments the global conditions with a set of specially defined poly-

nomial functions to create local conditions. These functions are similar in structure to

the h(τ) function used previously. They are negative semidefinite in the local region

defined by the box in state space, and positive definite elsewhere. Since x(t), x(t+τ),

and x(t− r) are treated as separate sets of state variables in the optimization, three

sets of hji functions are defined. Each state variable set is denoted with the j index.

The i index is reserved for the individual state in a particular variable set. Consider

the structure of hji functions shown in Eq. 4.6 through Eq. 4.8.

h1i = (xi(t)− ζi) (xi(t) + ζi) (4.6)

h2i = (xi(t+ τ)− ζi) (xi(t+ τ) + ζi) (4.7)

h3i = (xi(t− r)− ζi) (xi(t− r) + ζi) (4.8)

These hji polynomial functions are defined to augment V and V̇ , generating local con-

straints. Including hji functions in conditions 1 and 4 is sufficient for the augmenting

terms to appear once in V and V̇ , respectively. Hence, the global constraints are

relaxed into local constraints. The hji polynomials enter the conditions with respec-

tive SOS multiplier functions qji. The resulting local SOS conditions are sufficient

to prove local stability for time delays up to a size r. The final SOS conditions are

summarized with the Lemma 2.
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Lemma 2 Assume that the origin is an equilibrium point for the system in 4.1, that

polynomials V0, V1, and V2 exist. Further, assume that ψ(x(t)) is a positive definite

SOS polynomial and that p1, p2, and qji are SOS polynomials such that:

1) V0(x(t))− ψ(x(t)) +
∑n

i=1 q1ih1i is SOS

2) V1(τ, x(t), x(t+ τ)) + p1h(τ) is SOS

3) V2(x(ξ)) is SOS

4) −r ∂V1
∂x(t)

f − dVo
dx(t)

f + r ∂V1
∂τ
− rV2(x(t)) + rV2(x(t+ τ))− V1(0, x(t), x(t))

+ V1(−r, x(t), x(t− r)) + p2h(τ) +
∑n

i=1(q1ih1i + q2ih2i + q3ih3i) is SOS

then the origin is a locally stable equilibrium for time delays up to size r.

The conditions in Lemma 2 are local SOS constraints that can be checked with SOS

optimization. A bisection algorithm on values of r calculates a lower bound on the

time delay margin for the system. The bisection is necessary because the fourth

constraint is bilinear in the decision variables. The unknown r and the coefficients of

V1 and V2 enter the fourth condition bilinearly.
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Chapter 5

Problem Formulation

Up to this point in the thesis, two distinct topics have been explored. First, an air-

craft model implementing a simple MRAC was defined. This model is a nonlinear

adaptive control system governed by polynomial dynamics. Then, a theoretical ap-

proach to nonlinear robustness analysis was outlined. This approach relies on SOS

optimization to calculate a lower bound on time delay margin for polynomial systems.

What remains is the unification of these two related, yet still disjoint, topics. This

chapter focuses on casting MRAC robustness analysis as a properly formulated SOS

optimization problem.

Time delay margin is a crucial robustness metric for the closed-loop MRAC system.

A guaranteed lower bound for this stability margin is required before the architecture

can be implemented safely. The goal of this analysis is to use SOS optimization to

satisfy the conditions in Lemma 2 for the MRAC system. This would guarantee the

stability of the system in the presence of a particular time delay.

A pure time delay of magnitude τ seconds is introduced in the system dynamics

between the controller and the aircraft model. This time delay can be interpreted

physically as a computation, sampling, or network delay. A single time delay is

considered in the dynamics for simplicity. Fig. 5.1 shows the time delayed MRAC

closed-loop system architecture. The only update to this diagram is that the control

signal u is delayed by τ seconds before reaching the aircraft model.
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Figure 5.1: System interconnection for time delayed aircraft model with MRAC.

The diagram in Fig. 5.1 indicates the location of the time delay in the MRAC

closed-loop system interconnection. The control signal is delayed by τ seconds before

reaching the aircraft model.

A final point must be addressed before SOS optimization can be applied to this

system. Recall from the derivation of the stability analysis that the model is assumed

to take the form of Eq. 4.1. Thus, it is required that that model is an autonomous

system. The input signal ref must be neglected in the dynamics to satisfy this

condition. What remains is an autonomous polynomial system modeled by Eq. 4.1.

Hence, the SOS optimization aims to certify the stability of a local set of initial

conditions in the presence of time delay for the MRAC system.

Neglecting the input signal ref may appear limiting for a nonlinear system. The

choice of input and its size can generally lead to degradation of stability margins

in nonlinear systems. In the case of the MRAC system, however, analysis with the

particular input choice ref = 0 still leads to insightful results. The input ref = 0

is just one selection from the set of all possible inputs. Analysis resulting from this

particular input choice serves as a best-case scenario for robustness margins. It is

not possible to increase the set of valid inputs and gain improvement in margins.

Considering non-zero input signals can only degrade the time delay margin found for

ref = 0.

The absence of the input signal ref alters the MRAC system dynamics. The effect of

the feedforward gain Kref is completely eliminated. The reference model state xm is
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also zero for all time. This change implies that the error signal e is always equivalent

to the true aircraft state x, altering the parameter update law. The parameter update

law in the absence of the reference signal is shown in Eq. 5.1. Note that the adaptive

term is governed by the quadratic term xxT , instead of xeT .

θ̇ = −κxxTPB − σθ (5.1)

The simplified system dynamics are represented by an updated interconnection, shown

in Fig. 5.2. Although the system dynamics are different from the original MRAC,

a key point is that the new dynamics remain polynomial. Hence, their robustness

properties can be analyzed with the proposed SOS optimization.

Adaptive
Law

-uad e u - Pλ- -y

x

-

Kx

6

6

e−sτ

Figure 5.2: Simplified system interconnection neglecting input reference signal.

SOS optimization attempts to construct a Lyapunov function sufficient to prove local

stability in the presence of time delay. This optimization is performed on the MRAC

system dynamics where the input reference signal ref is neglected. The construction

of such Lyapunov functions is not at odds with known results about MRAC systems

with sigma modification. Recall that the simple Lyapunov function V in Eq. 2.16

could not prove stability even in the absence of time delay due to the effects of sigma

modification. Proving stability for the system without delay was not possible. Thus,

attempting to prove stability with delay in the system does not follow. However,

the inability to prove stability occurred under the assumption that a reference signal

existed. Omitting the reference signal, the dynamics change. It then becomes trivial

to construct quadratic Lyapunov functions that show convergence of both e and

θ to the origin in the absence of time delay. The key point is that constructing

simple Lyapunov functions for asymptotic convergence in the absence of time delay

is possible when the reference signal is omitted. Similarly, SOS optimization extends

this by constructing Lyapunov functions for asymptotic convergence in the presence
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of time delay.

For the SOS optimization, a box in the MRAC closed-loop system’s state space must

be defined for which the stability conditions in Lemma 2 are satisfied. Ideally, this

box should be as big as possible yet remain fully contained in the nonlinear system’s

stable region around the origin. If not entirely contained, it is not feasible to construct

Lyapunov functions proving local stability. However, the size of this stable region is

unknown for the MRAC system. Monte Carlo simulations of the nominal, undelayed

closed-loop system provide insight into the size of the region. Initial conditions in the

aircraft state are randomly selected, while the adaptation parameters are initialized at

zero. For the MRAC design, the value 1 is selected for the adaptation gain and sigma

modification. Fig. 5.3 suggests that trajectories originating from randomly sampled

initial conditions inside a particular box of the aircraft state space are stable.

Figure 5.3: Randomly selected initial condition trajectories.

In Fig. 5.3, trajectories of the adaptation parameters are shown on the left, and

trajectories of the aircraft state are shown on the right. The results indicate that the

locally stable region is at least ± 2 deg on α and ± 5 deg/sec on q. These dimensions

are used to define the corresponding box in the aircraft state space. The definition

of a box in the adaptation parameter θ space is also required. Based on the results

in Fig. 5.3, trajectories of the two states in the parameter update law satisfy a box

constrained by ± 0.8 and ± 1.4 in each direction, respectively. Together, the four
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state space constraints form a four dimensional box that contains all admissible initial

conditions and their trajectories.

The SOS optimization constructs a Lyapunov function valid inside the defined box

in the closed-loop state space by satisfying the conditions in Lemma 2. However,

this result does not prove that the entire box is a locally stable region. Lemma 2

only guarantees that V is positive definite, and that V̇ is negative semidefinite in the

box. To find the guaranteed locally stable region, the Lyapunov function must be

characterized by its level sets. Consider Fig. 5.4 as an illustrative example. For this

example, a two dimensional slice of the four dimensional state space is shown.

Figure 5.4: Level sets of Lyapunov function and box in state space.

Fig. 5.4 illustrates the box defined in α and q state space. Note that V is positive

definite and that V̇ is negative semidefinite in the box. The largest level set of the

Lyapunov function fully contained in the box is the guaranteed locally stable region.

That level set is labeled V = 2 in Fig. 5.4. Trajectories originating from this region

are stable, and the region comprises an invariant set for the closed-loop system. The

illustrative example in Fig. 5.4 displays the largest level set of the Lyapunov function
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in two dimensional space. The actual Lyapunov function for the MRAC system has

four dimensions.
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Chapter 6

Results

Time delay margin analysis is useful for the verification of robustness requirements

in nonlinear systems. The MRAC closed-loop aircraft system is nonlinear, hence a

direct method for calculating the time delay margin exactly does not exist. The SOS

optimization approach is used to find a lower bound on the margin. Monte Carlo

simulations provide an upper bound. Since the exact margin is unknown, both the

upper and lower bounds are needed for analysis. The lower bound is meaningful

if falls above the minimum required value of time delay margin, certifying the ro-

bustness requirement. Conversely, the upper bound is meaningful if falls below the

requirement. It cannot be determined if the requirement has been met if the bounds

straddle the requirement. In this case, however, the bounds can provide qualitative

insight into trends in the time delay margin evaluated over a certain parameter space.

A reasonable minimum time delay margin requirement for the MRAC closed-loop

system is inferred from the open-loop aircraft model. This requirement scales with

the bandwidth of the closed-loop system. However, since the controller does not

aim to alter the bandwidth, the requirement can be approximated directly from the

open-loop aircraft model. The frequency response of the open-loop aircraft transfer

function from elevator input δelev to angle-of-attack output α is shown in Fig. 6.1.

The frequency response of the inner-loop transfer function Gil(s) for the same input-

output pair is also shown. Recall that the inner-loop is designed with full state

feedback to increase damping.
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Figure 6.1: Bode plot of open-loop aircraft model and inner-loop.

The results in Fig 6.1 confirm that the inner-loop controller increases damping in the

closed-loop system. The inner-loop has slightly lower bandwidth than the open-loop,

but generally the same low and high frequency characteristics. Bandwidth is roughly

estimated by the frequency at which the magnitude of a transfer function drops under

3 dB below DC gain [33]. This frequency is indicated for the open-loop aircraft by

the highlighted point at 5.6 rad/sec in Fig 6.1. A typical performance and robustness

phase margin requirement at the system bandwidth is 45 deg [33]. At 5.6 rad/sec, this

requirement translates to a time delay margin of about 140 msec. Thus, a reasonable

minimum time delay margin requirement for the MRAC closed-loop system is also

140 msec.

The parameter update law in the MRAC is tuned by adjusting the adaptation gain

and sigma modification. Tuning the parameter update law determines the adaptive

contribution to the MRAC control signal. If the adaptive component is turned off, the

MRAC becomes a linear system. Hence, the full closed-loop system is linear, and a
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precise time delay margin can be calculated. This time delay margin is calculated us-

ing the loop transfer function L(s) = KxP (s), in which the aircraft model is assumed

to be nominal. With adaptation turned off, the time delay margin for the system is

around 151 msec. This calculated margin exceeds the minimum requirement of 140

msec.

The calculation of time delay margin is desired for the MRAC closed-loop system with

active adaptation. The following sections explore the effects on time delay margin

by tuning the parameter update law. Specifically, the effects due to variation in the

adaptation rate and sigma modification are examined. The effects due to uncertainty

in the aircraft model are also analyzed. The results are interpreted in terms of trends

in the upper and lower bounds and the satisfaction of the minimum time delay margin

requirement.

6.1 Adaptation Rate

The central feature of the MRAC architecture is the adaptive term in the parameter

update law. The adaptive term is tuned by adjusting the adaptation rate κ. This

determines the rate of adaptation in the parameter dynamics. However, selecting an

appropriate adaptation rate is not intuitive because the adaptive term is nonlinear.

Simulations are used to gain intuition of the effects of varying the adaptation rate on

the closed-loop response of the aircraft. Initial conditions used for the aircraft states

are α = 1 deg and q = 2 deg/sec. The adaptation parameters are initialized at zero,

and the sigma modification is turned off. Generally, low adaptation rates reduce the

adaptive contribution to the control signal. A critical point in the adaptation rate

parameter space is the minimum value that has an influence on the aircraft response.

From that point, the trend in response due to increases in κ are studied. Simulation

results exploring these effects are summarized in Fig. 6.2 and Fig. 6.3
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Figure 6.2: Finding minimum influential adaptation rate: κ = [0, 0.5].

Figure 6.3: Trend in response due to increasing adaptation rate: κ = [0.5, 1, 2, 5].

The results in Fig. 6.2 roughly identify the minimum value of κ for which the adaptive

law has a noticible effect on the aircraft dynamics. There are two simulation results

in Fig. 6.2, one for κ = 0 and one for κ = 0.5. The κ = 0.5 results are highlighted

with markers to indicate the change in response. The adaptation parameter response

is shown on the left. For κ = 0, there is no response in the adaptation parameters

since the adaptive law is not active. However, when κ = 0.5, the parameters react and

level to non-zero steady state. Recall that for these simulations, sigma modification is

turned off. Hence, the adaptation parameters do not converge near the origin. Sigma

modification is turned off to isolate the effects due to changes in the adaptation rate.

33

pseiler
Highlight

pseiler
Note
What does this mean?  Noticeable to the eye?

Sp---Noticible is not spelled correctly.



The aircraft state response is shown on the right. The response deviates slightly

by changing κ = 0 to κ = 0.5. Thus, in terms of the aircraft dynamics, κ = 0.5

approximates the minimum influential rate in the adaptive law.

Higher adaptation rates are simulated and the results are shown in Fig. 6.3. The

sequence κ = [0.5, 1, 2, 5] is used to illustrate trends in system response. Arrows

indicate these trends with increasing adaptation rate. Larger values of κ cause more

significant responses in the adaptation parameters, confirmed by the results in Fig.

6.3 on the left. The aircraft state response is shown on the right. Higher adaptation

rate lowers the overshoot peak in the immediate transient. However, it also slightly

increases the settling time. There is a trade-off between improving the immediate

transient response versus the settling time.

The effect of extreme adaptation on the aircraft dynamics is also explored. It is im-

portant to have insight into the upper limit of desirable adaptation rates. Simulations

are conducted for increasing κ at extreme values. The results are summarized in Fig.

6.4.

Figure 6.4: Trend in response due to increasing adaptation rate: κ = [5, 100, 500].

The simulation results in Fig. 6.4 suggest that increasing the adaptation rate in-

definitely provides diminishing returns with respect to the aircraft dynamics. The

sequence κ = [5, 100, 500] of adaptation rates are simulated. As κ increases, the

adaptation parameters reach steady state more rapidly. The effect of increasing κ to

extreme values is limited to altering the immediate transient in the aircraft response.

34



The settling time is not sensitive to changes in κ at extreme values. Increasing

κ = 100 to κ = 500 has a negligible effect on the α response. Hence, only two curves

appear to be plotted in Fig. 6.4. The response in q is affected by this change, but

limited to a minimal reduction in overshoot. After 1.5 sec, the q response for κ = 5

is indistinguishable from κ = 100. It only takes 0.3 seconds for the κ = 100 and

κ = 500 responses to converge. Thus, it is concluded that increasing the adaptation

rate beyond 100 has minimal effects on the aircraft dynamics. A key observation

is that the aircraft response is sensitive to varying adaptation rate on the interval

κ ∈ [0.5, 100].

The effect of varying adaptation rate on the robustness of the MRAC closed-loop

system is explored by investigating time delay margins. The sigma modification term

is constant at 1 for this analysis. The use of sigma modification is necessary in

order to construct Lyapunov functions. An upper bound for the time delay margin is

calculated using Monte Carlo simulations. The lower bound is calculated with SOS

optimization. Time delay margin trends caused by variations in adaptation rate are

summarized in Fig. 6.5.

Figure 6.5: Time delay margin bounds as functions of adaptation rate.

The upper bound in Fig. 6.5 approaches the linear margin as adaptation rate de-

creases. Recall that the linear margin is found by turning off the adaptation. Upper
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bound results confirm that decreasing κ leads to the convergence of the closed-loop

system to the linear inner-loop. For κ = 0.001, the upper bound time delay margin

converges to the linear margin. For higher adaptation gains, the upper bound de-

creases. For κ higher than 0.01, the minimum time delay margin requirement of 140

msec is no longer satisfied. At the same time, the smallest κ with influence on the

aircraft dynamics is κ = 0.5. This result serves as a significant design constraint for

the MRAC. The upper bound implies that it is impossible to design a controller that

both benefits from adaptation and satisfies the robustness requirement.

Although the upper bound provides crucial insight, it alone is not sufficient to make

claims about trends in the time delay margin. The upper bound is based on Monte

Carlo simulations sampling random initial conditions and finding the lowest time

delay causing resulting in trajectories. Generally, it is unclear how much sampling is

needed to obtain an accurate upper bound. This is particularly the case for nonlinear

systems, where potentially unforeseen nonlinear regions may exist in the state space.

Thus, the upper bound may not accurately capture the trend in time delay margin.

However, the existence of a lower bound with a similar trend increases confidence.

The lower bound in Fig. 6.5 is calculated with SOS optimization. It exhibits the

same trend as the upper bound. The gap between the bounds is significant for

low adaptation rates. However, the trend in the true time delay margin is obvious.

Together, the upper and lower bounds show that the time delay margin is highly

sensitive to changes in the adaptation rate when κ ∈ [0.5, 100]. This is a region

of interest because the adaptive law has influence over the aircraft dynamics on this

interval. Awareness of robustness sensitivity to changes in tuning parameters is crucial

in control design. Although the MRAC does not satisfy the robustness requirements

in the region of interest for adaptation rate, the relationship between adaptation

rate and time delay margin is revealed. Such insight cannot be drawn without the

existence of a calculated lower bound.

6.2 Sigma Modification

The parameter update law can also be tuned by varying sigma modification. Sigma

modification is used in the MRAC architecture to guarantee the boundedness of states

and to increase robustness. This parameter was held constant in the previous analysis.

This section explores the reverse scenario by varying sigma modification for constant
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adaptation rate. The adaptation rate is held constant at 1 for this analysis. This

value belongs to the appropriate interval κ ∈ [0.5, 100] discovered previously.

The main goal of using sigma modification is to increase robustness without sacrificing

the benefits of adaptation. This is accomplished by ensuring that the adaptation

parameters tend to the origin over time without dirupting their adaptive transient

response. However, high values of sigma modification cause interference with the

adaptive law and reduce its benefits. Extreme values can deactivate the adaptation

completely. Simulations are used to provide insight into the appropriate range of

sigma modification.

For the simulations, initial conditions in the aircraft state are α = 1 deg and q = 2

deg/sec. These are the same conditions used in the previous section. The adaptation

parameters are again initialized at the origin. The results in Fig. 6.6 identify the

maximum allowable value of sigma modification with respect to the adaptive aircraft

response.

Figure 6.6: Finding maximum sigma modification value: σ = [0, 2].

System response simulations for σ = [0, 2] are shown in Fig. 6.6. The response for

σ = 2 is distinguished with markers to highlight differences. Adaptation parameter

response is shown on the left. For σ = 0, the adaptation parameters reach non-

zero steady state. As desired, active sigma modification attracts them to the origin.

The immediate transient is altered, but not significantly. The aircraft state response

is shown on the right. For values less than 2, sigma modification has negligible
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effects on the aircraft response. Beyond σ = 2, interference with the adaptive law

becomes significant. Thus, σ = 2 represents the maximum allowable value of sigma

modification for the closed-loop MRAC system. From a control design perspective,

it is desirable to utilize as much sigma modification as possible to maximize system

robustness.

In general, higher values of sigma modification result in more robustness to time delay.

Extremely high values effectively turn off the parameter update law by holding the

adaptation parameters near the origin. As such, the closed-loop system converges to

the linear inner-loop. Recall that the time delay margin for this case is 151 msec. This

is the expected time delay margin for extremely high values of sigma modification.

Time delay margin upper and lower bounds are calculated for the MRAC closed-loop

system for varying sigma modification values. The upper bound is found with Monte

Carlo simulations. The approach to the simulations is the same as in the previous

section to find the upper bound. The lower bound is calculated using SOS optimiza-

tion. The results in Fig. 6.7 summarize the effect of varying sigma modification on

the lower and upper bounds of time delay margin.

Figure 6.7: Time delay margin bounds as functions of sigma modification.

The upper bound in Fig. 6.7 suggests that robustness to time delay increases with
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sigma modification. Further, it implies that the closed-loop system converges to the

inner-loop for values above 1000. It is impossible to design an MRAC that meets the

robustness requirement with sigma modification less than 300. However, selecting

such a high value is not possible without reducing or eliminating the benefits of

adaptation. Recall that the maximum beneficial value of sigma modification is σ = 2.

The lower bound results Fig. 6.7 exhibit a similar increasing trend as the upper

bound. There is a constant 40 msec gap between the bounds as sigma modification

varies. For values of sigma modification below 1, the lower bound is constant at 5

msec. The bound shows a steep increasing trend for values between 10 and 100, and

levels out beyond 1000 at around 100 msec. The lower bound is not able to show that

the minimum time delay margin robustness requirement is met for any value of sigma

modification. However, it provides evidence that sigma modification cannot increase

robustness without sacrificing performance in the adaptation.

Although the lower bound appears to be conservative, the bounds in Fig. 6.7 provide

significant insight into the qualitative trend of the true time delay margin. The

bounds imply that the time delay margin is constant for very low and very high

values of sigma modification. They also indicate the range of values for which the

time delay margin is most sensitive to changes in sigma modification. Knowledge of

such sensitivities is crucial in control design. This type of insight cannot be drawn

from the upper bound alone since it does not provide any analytically rigorous results.

However, in conjunction with a guaranteed lower bound, the qualitative trends can

be interpreted with more confidence.

6.3 Aircraft Model Uncertainty

The use of adaptive control is motivated by the need to account for uncertainty in the

aircraft model without sacrificing performance. The goal of the MRAC is to ensure

nominal aircraft performance in the presence of variations in the system dynamics.

Uncertainty is represented through the λ scaling parameters in the state matrix of

the aircraft model. Each parameter varies on the interval [0.25, 1.75] to encompass

75% uncertainty. A family of inner-loop transfer functions from elevator input to

angle-of-attack output is calculated for this interval. Fig. 6.8 shows the frequency

response of this family of transfer functions to illustrate the effect of uncertainty on

the aircraft dynamics.
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Figure 6.8: Bode plot illustrating aircraft model uncertainty.

The results in Fig. 6.8 suggest that uncertainty in the aircraft model is limited to

changes in the low frequency chacteristics of the inner-loop system. The nominal

model is highligted with the darker line on the plot. Deviations from the nominal

model increase and decrease the DC gain of the system. The bandwidth of the system

varies, but this fluctuation does not affect the high frequency asymptote. Hence, the

roll-off of the system is not affected. This implies that the modes of the system do

not vary independently due to uncertainty.

Another way to gain insight into the uncertainty is to explore the location of the

inner-loop poles. Direct analysis of pole location can indicate movement towards the

imaginary axis. It can also indicate the transition from real poles to complex poles.

Fig. 6.9 shows the loci of the inner-loop poles by sweeping over possible combinations

of the uncertainty parameters.
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Figure 6.9: Root locus due to aircraft model uncertainty.

The results in Fig. 6.9 illustrate the effects of uncertainty on the modes of the inner-

loop system. The nominal model’s poles are highlighted by the large symbols. Each λ

parameter is varied across the interval [0.25, 1.75] on a grid in steps of 0.05. Analysis

of pole movement suggests that the inner-loop dynamics are more sensitive to changes

in λα than in λq. Arrows in Fig. 6.9 indicate the general trend due to increasing λα.

Increasing λα decreases the damping ratio in the system. However, a decrease in the

same parameter moves one of the poles closer to the imaginary axis.

The frequency response in Fig. 6.8 and the root locus in Fig. 6.9 suggest that vari-

ations in the inner-loop due to 75% uncertainty are mild. In particular, the system

remains stable for all possible choices of uncertainty. The smallest perturbation caus-

ing instability in the inner-loop is λα = λq = −0.26. This case represents 126%

parametric uncertainty, which is well above the range considered in this analysis.

Time delay margins are calculated in the presence of 100% uncertainty in the aircraft

model to gain insight into the effects on robustness. The MRAC is designed with
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sigma modification and adaptation rates in the appropriate parameter ranges found

in the previous sections. An adaptation rate of 1 is selected for the adaptive law.

This value is in the range of desirable adaptive dynamics. A sigma modification

value of 1 is used, supplying maximum robustness without sacrificing performance in

adaptation. Upper and lower bounds on the time delay margin are calculated with

Monte Carlo simulations and SOS optimization, respectively. The upper and lower

bound results are summarized in Fig. 6.10.

Figure 6.10: Time delay margin bounds as functions of aircraft model uncertainty.

The upper bound is shown in Fig. 6.10 on the right. It confirms that the system

robustness is not equally sensitive to variations in the two uncertainty parameters.

The system is less sensitive to fluctuations in λq than in λα. Hence, for computing the

lower bound, a less refined grid is used in the λq direction in the interest of reducing

computation time. The grid on λq is coarse, and fine on λα.

The lower bound is shown on the left in Fig. 6.10. Time delay margin increases with

the uncertainty parameter λα. As predicted, the results are not sensitive to changes

in λq. The upper bound on the time delay margin is relatively constant at around

50 msec. The SOS optimization is less effective than in previous results at capturing

the trend in time delay margin. However, it is still able to guarantee a robustness

margin bounded away from zero. Improvement in the calculation of the lower bound
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is necessary.

Without the SOS optimization nonlinear analysis tool, the calculation of meaningful

lower bounds on time delay margin is not possible. Other tools for this type of

nonlinear analysis do not exist. Hence, the SOS results in the previous analyses

are significant. The lower bounds are conservative and improvements can be made.

The key point is, however, that robustness analysis is not possible without both an

upper bound and a lower bound. Hence, the SOS approach is a notable step towards

rigorous nonlinear analysis.

6.4 Limitations

The single greatest limitation of the SOS optimization approach for calculating time

delay margin is the shortage of memory and computation time. Roughly, the bisection

done for each data point takes 20 minutes on a quad-code Intel processor. Due to

the structure of the Lyuapunov function, the state order of the MRAC closed-loop

system is tripled. Two extra sets of state variables are required to handle time delay,

resulting in a total of 12 states. Thus, the Lyapunov function in the SOS optimization

is limited to being a second order polynomial. The computational load grows with the

state order of the model. As such, computers run out of memory when attempting to

solve time delay MRAC problems with cubic Lyapunov functions. Simpler examples

have shown less conservative results for higher order Lyapunov functions [19]. With

the current approach to SOS optimization, this is a fundamental limitation.

The assumptions made in the derivation of the SOS conditions are also limiting. Most

obviously, the dynamics must be polynomial. If the dynamics of a system are not

polynomial, they must be approximated as such. The model is also assumed to be

autonomous. The consideration of an input signal is not possible. Hence, stability

guarantees can only be made for the internal dynamics of a system.
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Chapter 7

Conclusion

Adaptive control algorithms have the potential to improve performance and robust-

ness in aerospace systems. However, there is a lack of tools available to rigorously

analyze the robustness of these systems. This thesis uses polynomial optimization

tools to show the suitability of such analysis in the verification of adaptive control

systems. The robustness of a model reference adaptive controller for a short period

aircraft model is examined.

The robustness metric calculated for the adaptive controller is the time delay margin.

Time delay margin guarantees the amount of time delay a system can tolerate before

losing stability. The analysis provides insight into the effects of varying adaptation

rate and sigma modification, both tuning parameters in the adaptive controller. The

effects of uncertainty are also explored. Future work includes refining the theoretical

approach with more complex algorithms known to provide even less conservative

results.

The key contribution of this thesis is the application of a nonlinear analysis tool

for evaluating the robustness of a short period aircraft model with model reference

adaptive control. This tool was previously applied to evaluate the robustness of

trivial polynomial systems. This thesis applies the nonlinear approach to a relevant

adaptive flight control problem. The goal of this research is not to make claims about

the validity of any particular adaptive control architecture. Rather, the focus is on

using analysis tools that can be applied generally to polynomial adaptive controllers.

Several key modeling simplifications are made which lead to biases in the results. In
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spite of these biases, the robustness analysis results in this thesis are significant in

light of the sparsely populated realm of nonlinear analysis tools.
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