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Abstract

Wind turbine blade failure can lead to unexpected power interruptions. Monitoring

wind turbine blades is important to ensure seamless electricity delivery from power

generation to consumers. Structural health monitoring (SHM) enables early recognition

of structural problems so that the safety and reliability of operation can be enhanced.

This dissertation focuses on the development of a wireless SHM system for wind turbine

blades.

Wireless SHM is uniquely appropriate for wind turbine blades. The sensor is com-

prised of a piezoelectric energy harvester (EH) and a telemetry unit. The sensor node

is mounted on the blade surface. As the blade rotates, the blade flexes, and the energy

harvester captures the strain energy on the blade surface. Once sufficient electricity is

captured, a pulse is sent from the sensing node to a gateway. Then, a central monitoring

algorithm processes a series of pulses received from all three blades. This wireless SHM,

which uses commercially available components, can be retrofitted to existing turbines.

The harvested energy for sensing can be estimated in terms of two factors: the avail-

able strain energy and conversion efficiency. The available strain energy was evaluated

using the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) simulator. Three

typical sizes of wind turbines with three levels of turbulence intensity were simulated.

Edgewise and flapwise strain over the blade span were calculated. For both cases, the

maximum strain occurs at approximately half of the first modal frequency of blades

(< 1Hz) and is located at a distance of ∼20-33% of the blade length from the hub.

The conversion efficiency was studied analytically and experimentally. An experimental

set-up was designed to mimic the expected strain frequency and amplitude for rotor

blades. From a series of experiments, the efficiency of a piezoelectric EH at a typical

rotor speed (0.2 Hz) was approximately 0.5%. Even with the expected low strain en-

ergy amplitude level (400µ-strain) and frequency (0.2Hz) and the limited EH efficiency

(0.5%), the power requirement for sending one measurement (280 µJ) can be achieved

in 10 minutes.

Designing a detection algorithm is challenging due to this low sampling rate. A new

sensing approach—the timing of pulses from the transmitter—was introduced. This
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pulse timing, which is tied to the charging time, is indicative of the structural health.

The SHM system exploits the inherent triple redundancy of the three blades. The

timing data of the three blades are compared to discern an outlier, corresponding to a

damaged blade. This algorithm is based on an assumption that only one blade fails at

the early stage of damage. Two types of post-processing of pulses were investigated:

(1) comparing the ratios of signal timings (i.e. transmission ratio); and (2) comparing

the difference between signal timings (i.e. residuals). For either method, damage is

indicated when the energy ratio or residual exceeds a threshold level. When residuals

are used to detect damage, performance measures such as the false alarm rate and

detection probability can also be imposed.

The SHM algorithms were evaluated using strain energy data from a 2.5 MW wind

turbine. For the transmission ratio algorithm a 10% threshold is required to detect

a 20% loss of local stiffness. For the residual stochastic method, a 20-40% loss in

stiffness can be detected with a 90% detection probability and 0.7% false alarming rate

in approximately 50-200 days, where noise is estimated from raw strain data.
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Chapter 1

Introduction

Global warming induced by greenhouse gas emissions will intensify the challenges of

global instability, poverty, and conflict [4]. Among the efforts to reduce greenhouse gas

emissions, generating electricity from wind power is a promising solution: wind power is

the least cost option among renewable energies when adding new generation capacity to

the grid [5]. The estimated levelized energy cost of wind in 2019 is as low as $80.3/MWh,

compared to solar PV ($130/MWh) and solar thermal ($243.1/MWh) [6]. The global

cumulative installed wind capacity in the end of 2013 is 318 GW, approximately 3% of

total energy consumption globally [7]. Global Wind Energy Outlook projects the total

wind power installation up to 2,000 GW by 2030 [5]. This is the capacity which produces

approximately 18% of total global electricity demand and assists to reduce over 3 billion

tons of CO2 emissions annually. As noted in the DOE-issued report, however, reduction

in operating and maintenance costs is a major problem [8]. While failure can occur in

any structural component, one of the most common and critical component failures is

a wind turbine blade [9–11]. Blade failure leads to the catastrophic failure of a wind

turbine.

Acquiring an early indication of structural or mechanical problems allows operators

to plan maintenance, control the machine based on the conditions, or shut down the

machine to avoid further damage in the case of an emergency [12]. Thus, a condition

based maintenance program that utilizes data obtained in real time from sensors located

on turbine components can improve the reliability and service-time of wind turbines in

the end. This sensor network system is referred to as a Structural Health Monitoring

1



2

(SHM) system. SHM is the process of implementing a damage detection strategy for en-

gineering structures [13]. SHM is crucial to avoid catastrophic failure of a wind turbine

and reduce wind turbine life-cycle costs. Sensor data is acquired and evaluated con-

tinuously, allowing for preventative maintenance and shortened down time. Rytter [14]

classified various methods based on four levels of damage identification: 1. Determina-

tion that damage is present in the structure, 2. Determination of the geometric location

of the damage, 3. Quantification of the severity of the damage, and 4. Prediction of the

remaining service life of the structure. The ultimate goal of any SHM system is the level

4; however, in this thesis, it will be focused to determine whether damage is present in

rotor blade structures of a wind turbine. The intent is that such a monitoring system

improves maintenance and indirectly affects the reliability of a wind turbine.

This chapter reviews why it is important to monitor wind turbine blades, and what

current SHM technologies are available for wind turbine blades or similar applications.

In the end of the chapter, the objective and the contributions of the thesis are given.

1.1 Why is a wind turbine blade important?

Monitoring wind turbine blades is very important but challenging. The impact of rotor

blade reliability is significant. Most wind turbine blades are made of composite mate-

rials. Currently, in general, commercial blade length is more than 40 to 50 meters—a

comparable size to a short bridge. Also, the blades are typically located in severe

weather conditions and remote sites to take advantage of strong winds. Additionally, it

is quite often that operational information such as wind speed and direction is limited

due to technical and financial restrictions.

1.1.1 Impact of Blade Reliability

Failure of wind turbine blades is considered as one of the most undesirable events for

wind turbines. The overall effect of blade failure to the reliability can be determined

by considering the repair cost, the downtime, and the failure rate. The repair cost of

blades is high, and a wind turbine has to be stopped for the repair service of blades

for a long period of time. Also, the blade failure is one of the most common type of

damage at a considerable failure rate. A study in Germany reported annual failure
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rates of wind turbine components from their experience over 15 years with 1,500 wind

turbines [11]. Based on Hahn et. al [11], the percentage of blade failure accounts for 7%

of total number of failures. The downtime is about 4 days (approximately 10% overall

downtime) among the failures of wind turbine components [11] (Table 1.1). As noted in

the report [15], market data on actual project-level operational and maintenance costs

are not readily available. But overall replacement costs can be inferred by components

installation costs. The cost of rotor blades can account for 15∼20% of the total cost and

is the most expensive type of damage to repair [16]. Based on unscheduled maintenance

costs of 1.5 MW wind turbine (70 m rotor and 84 m hub height) [17], rotor blades hold

approximately 20% of the total cost (Table 1.1). An overall effect in Table 1.1 can be

calculated by multiplying the three effects (failure rate, down time and cost) and scaling

across the components (see Table 1.1). Considering the combined effect, the potential

failure mode of rotor blade is most significant (27.56%) followed by supporting structure

(18.71%), gearbox (15.52%), electrical system (9.44%), etc. But, it gives much sense

that the blade and gearbox failures are more important than the tower which share is

only meaningful when total collapse of a tower. Thus, types of failures like rotor blades

or a gear box are greatly concerned for longer down time and high repair cost in the

contrast to frequently failed components like electrical systems but with less costs.

Moreover, a broken blade—due to structural failure—can cause a great deal of un-

balanced torque to the whole wind turbine system. This can result in the tower col-

lapse [18]. Additionally, a serious safety concern to living environment can be drawn

by a broken blade in that a modern rotor blade is designed to use a lift force. This

means a wind turbine blade can fly like an airplane wing. There was an incident in the

U.K. that a torn-off blade flew as far as 8 km and struck a residential house through

the window [10].

1.1.2 Design with Composite Materials

Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties (higher

strength /density ratio) and easier shaping than widely used metallic materials. Use

of FRP materials, which was limited to aerospace applications, has been expanded to

infrastructure and commercial sectors like sports gear. Wind turbine blades are not

an exception, because rotor blades require light weight and high strength. Most of the
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Table 1.1: Failure rates, down time, and maintenance cost of wind turbine main com-

ponents (%) [9, 11]. The combined effect is the scaled product of these three factors.

Components Failure Rates Down Time Cost Combined Effect

Rotor Blades (Pitch) 7.00% 10.10% 20.60% 27.56%

Supporting Structure 4.00% 7.80% 31.70% 18.71%

Gearbox 4.00% 15.30% 13.40% 15.52%

Electrical System 23.00% 3.50% 6.20% 9.44%

Electronic Control 18.00% 4.00% 6.90% 9.40%

Generator 4.00% 17.30% 6.70% 8.77%

Rotor Hub 5.00% 8.30% 7.20% 5.65%

Drive Train 2.00% 14.30% 4.00% 2.16%

Yaw System 8.00% 5.80% 1.80% 1.58%

Sensors (Control) 10.00% 4.00% 0.80% 0.61%

Mechanical Brake 6.00% 6.00% 0.60% 0.41%

Hydraulic System 9.00% 3.50% 0.30% 0.18%

Total 100% 100% 100% 100%

blades in utility-sized generators are made of fibre-reinforced composites such as glass

fibre/epoxy, glass fibre/polyester, wood/epoxy or carbon fibre/epoxy composites [19].

Light weight FRP blades provide high performance (low mass inertia) with low con-

servative margins of safety. By using FRP, a high strength blade can be fabricated

without a weight penalty. However, the sensitivity of composite materials to impact

loads, large deflections and susceptibility to moisture make the use of FRP challenging.

Analytic calculation of the service life or the failure of FRP composites is difficult. If

the structure is operating in remote sites under harsh conditions such as sudden wind

gusts and lightning strikes for a long period of time, it becomes more difficult to make

accurate fatigue life predictions of FRP materials, and so the maintenance of FRPs

becomes particularly challenging.
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Figure 1.1: Increasing size of wind turbines over the last three decades is compared to

a commercial jet airplane and an American football field at the same scale from [1].

1.1.3 Loading Conditions for Wind Turbine Blades

Wind turbine blades are under extreme loading conditions. High variability due to

the stochastic nature of wind and long fatigue loading make the working conditions

severe [20, 21]. Like bridges and airplane wings, rotor blades suffer from random exci-

tation. And blades are under repeated fatigue loads—up to 108 or 109—like helicopter

blades. As shown in Figure 1.1, the size of wind turbine blades have been increased

over the last three decades up to approximately 60 meters to design high-efficiency wind

turbines, maximizing power capture [1].

Wind turbine blades are subject to bending, twisting and axial loads. Twisting

loads are created by aerodynamic torque, blade pitching motion, and structural twist

of blades. Axial loads—longitudinal extension—are made by the blade weight and

are typically the minimal effect to blade health. Bending loads are in the edgewise

and flapwise directions. Edgewise bending is a result of the gravity loads (i.e. blade

weight) and is periodic, corresponding to the blade rotational speed. Flapwise bending

is in the direction of the blade faces, perpendicular on the rotor plane. The flapwise
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moments originate from the thrust force due to wind loads. Thus, edgewise strains are

more periodic than flapwise strains, which vary randomly in both fluctuation range and

mean [22].

1.1.4 Restrictions on Sensing Approaches

Wind turbine blades pose unique restrictions on sensing approaches. In an SHM system,

sensors are typically wired to the central processing hardware. Many resources including

transducers, D/A to A/D converters, multiplexers, signal conditioners, and processors

for a wired SHM system are commercially available [23] (and more). However, wire-

based SHM techniques are not easily applicable to rotor blades for various reasons.

First, blades are rotating posing difficulties in wiring. Second, wiring always demands

substantially added cost to the blade construction [24]. Since one line tends to be

connected with several important sensor nodes to reduce installation costs [23], more

failures at one location may disable the entire network. Even without these problems,

the reliability of wired SHM for 20 years under harsh conditions is a concern: expensive

maintenance for the wired sensor network must be regularly conducted.

Wireless sensing and processing systems have been introduced to overcome these

drawbacks. In a wireless monitoring system, a sensor, signal conditioner and telemetry

are necessary. Typically, these components are powered by a battery [25]. For example,

a wireless sensing unit developed for civil structure health monitoring by Lynch et.

al [26] consumes 250 mW to 900 mW, with the electric energy for each sensor / telemetry

supplied by a 9V alkaline battery. With discrete power sources, many sensors can be

employed and distributed over the entire structure. While current communication units

are designed to minimize power consumption, battery lifetime is still a concern. Battery

replacement is problematic, for wind turbine blades are installed on the top of a tall

tower and turbines may be located in a remote area. A rechargeable battery is not

only relatively heavy and fairly large compared to the dimension of a wireless node,

but also is limited by its own service life. While a capacitor (no service life) may be a

possible energy storage approach, it is generally much larger than a battery that stores

the equivalent charge and the discharging rate is exponential for a short period of a

service span by one time charge.
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1.2 Review of Current SHM Technologies

An SHM system to detect damage requires a monitoring methodology (i. e. an al-

gorithm), which is based on measurements and analysis of the dynamic response (of

sensors) to environments. In this section, current SHM methods and sensor network

systems for SHM are reviewed.

1.2.1 Existing SHM Methods

Because structural damage has an adverse effect on the functional safety, e.g. a safe

long highway-bridge for crossing cars, SHM schemes are important and have been ex-

tensively studied. Ciang et al. [27] reported a comprehensive review on SHM of a

wind turbine system, including a few SHM techniques which are currently available.

Some techniques in the paper [27] such as thermal imaging, ultrasonic, or X-radioscopy

method are not appropriate to an on-site autonomous monitoring system. Vibration-

based SHM methods such as a modal analysis, a frequency response function analysis,

and a strain energy method are more relevant for wind turbine blades. Carden and

Fanning [28] reviewed vibration-based SHM methods. Montalvao et al. [29] summa-

rized SHM methods especially emphasizing on composite materials. From these two

papers, vibration-based SHM can be largely categorized as the frequency/modal (vibra-

tion mode), time domain (vibration transition) and direct signal analysis. Some of the

important techniques employed in monitoring health of composite blades involve evalua-

tion of natural frequency, mode shape/curvature, Operational Deflection Shapes (ODS),

modal strain energy, impedance, Lamb wave, and statistical history (Auto-Regressive

family models) [28, 29].

Many SHM systems for wind turbine blades utilize vibration-based techniques and

showed the ability to detect damage in the structure. Vibration mode and transition

evaluation is found in Ghoshal et al. [30], White et al. [31] and Light-Marquez et al. [32].

Four SHM techniques—transmittance functions, ODS, resonant comparison and wave

propagation—were experimentally examined and compared by Ghoshal et al. [30]. They

used a scanning laser Doppler vibrometer to increase the measuring sensitivity conve-

niently without contacting the blade, and there was a range of detecting capabilities

among the four methods. White et al. [31] presented an SHM method for a lab-scale
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carbon composite wind turbine blade, TX-100. In this paper, several accelerometers

were deployed using transmissibility, virtual forces, and time-frequency analysis. Light-

Marquez et al. [32] investigated three types of SHM: frequency response function, Lamb

wave, time series (Auto-Regressive) analysis. Damage was emulated by a putty at-

tachment to the blade surface and all three methods could successfully detect damage.

Active impedance based SHM systems have also been developed for wind turbine blade

SHM: Zayas et al. [33], Deines et al. [34], and Pitchford et al. [35]. They used either

PZT (lead zirconate titanate) or MFC (Macro-Fiber Composite) piezoelectric materials

for the actuator and sensor. The detecting ability of SHM in the above depends on 1)

actuator power; 2) sensor location; and 3) sensor resolution. Direct measuring SHM is

also found in Schulz et al. [36] and Rumsey et al. [12]. Schulz et al. [36] developed a

structural neural system that is a 10×10 PZT sensor array over a 9-meter-long wind

turbine blade. The sensors of the array are connected to conventional Acoustic Emission

(AE) equipment. They could measure acoustic vibrations (strains), concluding detect-

ing damage using continuous PZT sensors was feasible. Rumsey et al. [12] also studied

a few direct measuring methods based on strain gages and AE sensors. They concluded

that unique sound events were captured (listened) when damage occurred. Also strain

energy reduction over fatigue cycles was observed as damage grows. As shown in the

papers [12, 30–32], vibration based techniques are often combined with other approaches

to improve detection capabilities. While researchers have demonstrated that vibration

based techniques can detect damage, their success depends on the proximity of sensors

to the damage site. To address this issue, one approach is to use many sensors such as

[12], since damage initiation site is often unpredictable. Note that all these methods

have been developed with a wired sensor network.

1.2.2 Wireless Sensor Network for SHM

The SHM methods reviewed in the previous section have been primarily developed as

wired systems using inertial sensors (accelerometers) [31, 37], strain gages [12], AE

sensors [12, 36, 38], and electric impedance-based sensors [33–35, 39]. But these sensors

can be considered for wireless SHM. Table 1.2 [23, 39] summarizes the sensors on a

basis of the measurements, sensing type, power consumption and installation cost. For

a wireless system, low power consumption along with low device cost is desirable, so a
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Table 1.2: Comparison of Sensors for Wireless SHM

Sensor Measurement Method Type Power Cost

Accelerometer Acceleration Global Passive Low Low

Strain gage Strain Global Passive Very low Low

Acoustic Emission Sound Local Passive 0-Very low Low

Fiber Bragg Grating Light (Strain) Global Active Laser required High

Piezo-electric patch Lamb wave Local Active Medium Low

Elec. impedance Local Active Medium Low

passive type is recommended. Among passive sensors, accelerometers and strain gages

measure structural dynamic behavior changes, and AE sensors detect damage events

such as the cracking sound.

There are several applications in which a wireless monitoring system was imple-

mented with accelerometers. For the Golden Gate Bridge in San Francisco [40], a

wireless monitoring system was developed to monitor the structural health. Two kinds

of accelerometers were employed at 64 sensing nodes with 1 kHz sampling rate. Four

lantern batteries (9 V) are used for each node to support power consumption of a few

Watts. In the paper, satisfactory monitoring results were achieved. It is noted that a low

implementation cost, $600 per node compared to thousands of dollars for a wired net-

work, has been achieved. Other examples of wireless SHM with accelerometers include

a ceiling structure [41], habitat monitoring [42], intelligent bridge and infrastructure

maintenance [43], and a stand-alone wireless sensing module for civil structures [44]. In

each of these examples, the sensors were powered by batteries. A wireless SHM system

with strain gages was reported for a helicopter rotor shaft by Arms et. al [45]. In

the paper, 0.98 mW of power was required and the device could sample and transmit

strain data. They concluded that the obtained online strain information could be used

for optimizing maintenance scheduling and preventing possible failures. For wireless

applications, the literature commonly indicates the importance of reliability of commu-

nication, overall size, low power consumption, and alternative power sources such as an

energy harvester (EH) rather than a typical battery.

In the helicopter rotor application [45], a commercially available wireless telemetry
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Figure 1.2: EH-Link layout from the Lord Microstrain, Inc. [2]

module was employed. Telemetry modules currently available have the capability of

harvesting energy from a wide variety of sources and powering a range of sensors. An

off-the-shelve sensor module such as the Micro Strain EH-Link [46] is available. It is

smaller, uses less power, and can adapt a battery, solar cell, thermoelectric or piezo-

electric material, compared to the sensor modules in [40, 41, 44]. It also combines

telemetry, signal conditioning, onboard sensors (a triaxial accelerometer, relative hu-

midity and temperature sensor), and signal conditioning for a Wheatstone bridge which

is compatible with strain gages. The overall size of the unit is 78 × 39 mm as shown in

Figure 1.2. Power consumption varies depending on hardware configurations as well as

the number of sensors used in one module. In a continuous running mode from the table

in [2], 18.53 mW power by 2.47 mA is required with 256 Hz sampling rate, 48 buffer

packet and all onboard sensors used at the same time (the maximum configuration).

The power consumption can be decreased down to 0.11 mW by 14 µA with 1 Hz, 5

buffer packet and one Wheatstone bridge. In designing the EH, the energy in Joules

generated per cycle of strain will be stored to achieve the telemetry module energy re-

quirements. From the specifications in [2], for instance, 12 µJ is required for start-up

of the device, 168 µJ is for a Wheatstone bridge measurement, and 92.4 µJ is for a

packet of data transmission. Total usage for one point measurement and transmission

is approximately 272.4 µJ/cycle. The capacitor size and charging time depends on the

telemetry/sensor node power requirement given the available energy and the type of

SHM methods.
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1.3 Thesis Objectives

The objective of the thesis is to develop a reliable wireless SHM system for wind turbine

blades. Several tasks are associated with achieving this goal: study on an energy har-

vester; calculate available strain power for a rotor blade; find a novel sensing approach;

and develop a decision algorithm.

A wireless sensor network system uses Piezoelectric EHs for the power requirements

of the sensor function, the data transfer, and the signal conditioning. Using an EH,

strain energy is converted into usable electric energy, and an EH can be modeled as

a electromechanical dynamic system, which output performance depends on input fre-

quencies. Thus, methods to calculate the energy conversion and to find this conversion

efficiency as a function of input frequencies should be studied.

Piezoelectric EH, the power source to a wireless sensor network, are to be installed

on rotor blades. To enable wireless data transfer, strain energy of blades should be

sufficient. Strain energy availability varies depending on at least two key factors: the

size of rotor blades and wind conditions. Thus, available strain energy is evaluated for

three typical wind turbines with three wind conditions.

Based on evaluated strain energy, a sampling frequency of sensor nodes can be cal-

culated. The converted strain energy is stored in a capacitor. This stored electric charge

powers an RF transmitter, and once the charged energy is sufficient, a measurement is

sampled. In rotor blades, low frequency vibrational strain energy, which subsequently

limits a sampling rate, is available. A low sampling rate gives a challenge to data analy-

sis, and a new sensing approach is required. A new sensing approach can take advantage

of the timing of data output from the RF transmitter, which is tied to the charging time,

and intrinsic three rotor blades.

A decision-making algorithm is needed to declare the damage. When three responses

of sensors located at the same position on the three blades are compared, an outlier

among three can be determined as a damaged blade. The challenge is the presence of

noise due to several factors including stochastic winds. Wind variation creates strain

energy differences between two healthy blades, and a false alarm can be alerted. Thus, a

key to success on a reliable damage decision is to apply probabilistic analysis to decrease

false alarm rate and increase detection probability.
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1.4 Thesis Contributions

The dissertation covers the development of a wireless structural health monitoring sys-

tem for wind turbine blades. This dissertation includes the following major contribu-

tions.

1) Piezo-electric energy harvesters are used to enable sensor nodes wireless without

batteries. Energy harvesters convert a fraction of mechanical strain energy into

electrical energy. It is stored in a capacitor, and a pulse is generated once sufficient

energy is captured.

2) The strain energy availability in blades is reported for typical sizes of utility-scale

wind turbines using FAST simulation. This summary can help energy harvester

designers to identify a type and size of an EH for their needs.

3) Energy harvester efficiency for wind turbine applications is studied. An experimen-

tal setup is designed to measure the efficiency for excitation at low broadband

frequency.

4) A new monitoring scheme utilizing three blades to cross-compare blades in real-time

is introduced. Neither a physical model of a blade nor external loading information

is necessary.

5) A probabilistic algorithm has been developed for the monitoring system. The system

can provide statistical accuracy of false alarming and damage detection probabil-

ities. Also, the probabilistic approach provides a mathematical background and

systematic procedure for design of a structural health monitoring system.



Chapter 2

Wind Turbine Blades as a Strain

Energy Source for an EH

2.1 Summary

Structural health monitoring of wind turbine blade mechanical performance can inform

maintenance decisions, lead to reduced down time and improve the reliability of wind

turbines. Wireless, self-powered strain gages and accelerometers have been proposed

to transmit blade data to a monitoring system located in the nacelle. Each sensor

node is powered by a strain Energy Harvester (EH). The amplitude and frequency of

strain at the blade surface (where the EH is mounted) must be sufficient to enable data

transfer. In this study, the strain energy available for energy harvesting is evaluated for

three typical wind turbines with different wind conditions. A FAST simulation code,

available through the National Renewable Energy Lab (NREL), is used to determine

bending moments in the wind turbine blade. Given the moment data as a function of

position along the blade and time (i.e. blade rotational position), strain in the blade is

calculated. The data provide guidance for optimal design of the energy harvester.

2.2 Introduction

The DOE has set a goal of “20% wind energy by 2030” [47]. Reduction in operating

and maintenance costs for wind turbines has been identified as a major challenge to

13
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achieving this goal. Wind turbine maintenance is a particular challenge because wind

turbines are often located in remote regions (including offshore). Structural health

monitoring (SHM) is a promising approach that can enable preventative maintenance,

reduce down time and significantly reduce life-cycle costs [30]. While failure can occur

in any structural component, one of the most common and critical components to fail is

the wind turbine blade [9]. It is particularly challenging to continuously monitor blade

health: (1) the blades are quite long and an extensive network of sensors is required;

and (2) the blades are rotating, posing challenges to delivering power to and receiving

data from the sensor network. To address these issues, a novel sensing and SHM system

has been proposed (Figure 2.1). The system is comprised of a network of sensor nodes

(Figure 2.1(a)). Each node is powered by an energy harvester (EH) and includes a

sensor and telemetry unit (Figure 2.1(b)). The strain gauge and/or accelerometer data

will be wirelessly transmitted to a centralized monitoring system in the turbine nacelle

(Figure 2.1(c)). Recent technological developments in energy harvesting materials and

fabrication processes along with commercially available low power telemetry modules

make these technology advancements a possibility for the first time. In the present

study, the availability of strain energy for various commercially available wind turbines

will be evaluated.

2.3 Background

2.3.1 Sensors and Telemetry for SHM

Damage to the composite blade often begins as a matrix crack that can lead to debonding

and delamination as the blade undergoes cyclic loading. A variety of sensing approaches

have been considered for structural health monitoring of composite structures such as

helicopter or wind turbine blades including: acoustic sensors, accelerometers, strain

gauges, piezoceramic transducers and fiber optic sensors [12, 31, 33, 34, 38]. These

sensors typically provide strain, acceleration and acoustic/vibration data in real time.

Sensor data is processed using algorithms designed to predict the location and extent of

damage based on sensor data. Ciang et al. [27] completed an extensive review of sensors

for damage detection and their suitability as an SHM system for wind turbine blades.
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Figure 2.1: Schematic showing (a) sensor nodes mounted on blade, (b) node with energy

harvester and telemetry, and (c) data acquisition and health monitoring.

Sensors that provide acoustic emission, thermal imaging, and ultrasound data can pro-

vide overall health but are difficult to interpret because the blade geometry is complex.

These authors identified “hot spots” on the blade where failure is likely to occur. These

hot spots include the blade root, 30% span from the root, and 70% span from the root.

Even so, damage detection requires multiple sensors “in the vicinity” of the anticipated

damage location. Discrete sensors such as strain gauges and accelerometers are accept-

able as long as there are clusters of these sensors located near anticipated damage sites

to ensure proximity to (and detection of) damage. With many sensors, the challenge

becomes powering the sensors and relaying the data to a central data acquisition system

for further processing.

2.3.2 Feasibility of Energy Harvesting

In the present study, the feasibility of an EH for wind turbine blade SHM has been

investigated. One aspect of this study has been to verify that the strain energy available

during typical operating conditions can satisfy the power requirements for sensing and
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telemetry. A data acquisition and power management strategy is considered such that

“harvested” energy is stored in a capacitor until a threshold energy level is achieved.

Once the stored energy is sufficient for data acquisition and telemetry, strain data for

several complete revolutions of the wind turbine are wirelessly transferred to a data

acquisition substation as a burst. At which point, the energy harvester restores the

capacitor and the data cycle begins again. Feasibility, then, entails estimating the

power requirements and the power available to be harvested.

The strain energy harvested Wstrain will depend on the energy harvester configura-

tion, the frequency f and sinusoidal amplitude of the strain ǫ:

Wstrain = ηV E · ǫ2f ·∆t (2.1)

where V is the volume of an EH, E is the modulus of the EH, and η is the efficiency

of energy conversion. The charging time t is the time required to charge the capacitor

and will also define the time between bursts of data transmission/acquisition. The

magnitude of strain and frequency will depend on the wind turbine blade geometry and

operating conditions. For example, it has been reported that flapwise and edgewise

bending of the blade can provide strain ranging from 1200µǫ(1.65 MW turbine) to

3600µǫ at 0.25 Hz [17, 48, 49].

As noted, the energy available for harvesting depends on the strain and the frequency

of vibration; and harvesting capability depends on the type and the design of an EH

(Eq. 2.1). Thus is useful to define the power available Pavail and the EH design factor

KEH as

Pavail = E0ǫ
2f (2.2)

KEH = ηV
E

E0
(2.3)

where E0 is the nominal modulus of an EH material. By using this measure of power,

simulation strain data can be compared for various turbines and under various operating

conditions. For the purpose of comparison, a modulus of E0 = 1 GPa is taken in all

plots and data reported herein. Values can easily be scaled to evaluate other harvester

materials. So, the harvested energy can be decomposed into an internal factor (KEH)

and external source (Pavail and t). Now, one can determine the type and size of an EH
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from KEH with selected charging time. And the original Eq. (2.1) is simplified into

Wstrain = Pavail ·KEH ·∆t. (2.4)

While these studies provide a good starting point for estimating the strain energy

available, a map of strain over the blade surface will be required to accurately assess the

energy harvester design. The objective of this study is to characterize the strain energy

available for a range of wind turbines under steady state and turbulent conditions.

Three turbines have been selected that represent typical turbine power capacities and

geometries: a CART3 (600 kW), a WindPact (1.5 MW) and a 5MW offshore wind

turbine. Wind loading conditions are varied from 6 to 24 m/s at high and low turbulence.

2.4 Methods

There are a number of options available for creating a detailed finite element model

of wind turbine blades. For example, NuMAD [50] is a pre and post processor (for

use with ANSYS) with a graphical user interface that enables users to quickly create a

three dimensional model of a wind turbine blade. One drawback to these models is that

extensive knowledge of the blade geometry and composite material layup is required.

This detailed information is considered proprietary by commercial wind turbine man-

ufacturers. Instead, nonlinear simulations presented in this paper are performed using

the FAST (Fatigue, Aerodynamics, Structures, and Turbulence) aeroelastic design code

for horizontal axis wind turbines developed by the National Renewable Energy Labo-

ratory (NREL) [3]. In FAST, the wind turbine is modeled as an interconnected system

of rigid bodies (i.e., the nacelle and hub) and flexible bodies (i.e., the blades, tower and

drive shaft) subjected to dynamic wind loads. FAST uses the assumed modes method

for the flexible structural dynamics of the system and blade element momentum the-

ory is used to calculate the aerodynamic loads using AeroDYN [51]. FAST can model

wind turbines with a total of 22-24 degrees of freedom. This full order model includes

first and second tower fore-aft and side-to-side bending modes, first and second flapwise

bending modes of blades, first edgewise bending modes of blades, drive train torsion,

generator position and nacelle yaw angle. Input data to the FAST code includes the

turbine geometry and component material properties along with wind loading and aero-

dynamic data. Standard output data include blade displacement, such as flap-wise and
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Table 2.1: Three Typical Wind Turbines Properties

Index CART3 WindPACT NREL Offshore

Rated Power 600 kW 1.5 MW 5.0 MW

Rated Rotor Speed 37.1 rpm 20.5 rpm 12.1 rpm

Cutin/Rated/Cutout Speed 6/13.5/20 m/s 3/11.5/27.6 m/s 3/11.4/25 m/s

Hub Height 34.9 m 84 m 87.6 m

Blade Length (Radius) 20 m 35 m 63 m

Blade Weight 1,807 kg 3,913 kg 17,740 kg

Blade Airfoil Type s816, 817, 818 s818, 825, 826 DU21, 25, 30, 35, 40

References Ref. [52] Ref. [53] Ref. [54]

edge-wise displacement, forces and bending moments as a function of rotation.

A number of predefined, FAST turbine models have been constructed and are avail-

able through the NREL FAST website. These models can be used to characterize the

available strain energy for turbines of various sizes. Specifically, this paper will focus

on three different turbine models: a) 600 kW CART3, b) 1.5 MW WindPact, and c)

5 MW offshore wind turbine. The specifications of each turbine are shown in Table 1.

In each simulation, the standard built-in control law is used to generate the generator

torque and blade pitch commands.

Blade strain is not calculated as part of the standard outputs from FAST. However,

the FAST outputs include moments and deflections at various locations (nodes) along

the span of the blades. These can be used to calculate strains in several ways: 1) local

span (nodal) moments, 2) local span translational deflections, 3) blade tip deflection

with a mode-shape function, and 4) blade root moments with a mode-shape. Strains

calculated using mode-shapes are not accurate because the mode-shapes are only ap-

proximately correct and may not correspond to the actual blade mode in operation. On

the other hand, nodal moment outputs can be used to compute accurate local strains at

various nodal locations. Hooke’s law provides the following relationship between strain

and moment M :

ǫE(zb) =
σ

E
=
ME(zb)yb

EI
(2.5)
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Figure 2.2: Blade Coordinate System (left) [3] and Cross-sectional Shape of Blade

(right): Max. Strain Locations

ǫF (zb) =
σ

E
=
MF (zb)xb

EI
(2.6)

where ǫ denotes the strain, M is the bending moment, EI is stiffness, zb is the distance

from the blade support at the nacelle to the node, and xb/yb are the chord length and

thickness of the airfoil. Eqs. (2.5 and 2.6) assumes pure bending mode is the dominant

factor. The subscripts e and f denote the edge and flapwise directions on the blade.

Figure 2 (left) shows the coordinate system of blades. Each bending direction is depicted

in Figure 2.2 (right). Bending strain (or stress) is proportional to the distance from the

neutral axis crossing the mass center. Therefore, xb is the direction of the distance for

the edgewise strain and yb is for the flapwise strain.

These strains are greatest at the maximum distance as shown in Figure 2.2 (right).

For the maximum edgewise strain, the chord length yb =
c
2 of the airfoil is used and the

thickness xb = t
2 yields the maximum flapwise strain. The airfoil geometry of a wind

turbine blade is generally quite complicated and finding the neutral axis is nontrivial. A

reasonable approximation is to use half the local thickness and chords length to estimate

the maximum edge and flapwise strain. The FAST simulation allows up to nine nodal

moment outputs. These can be used to compute strain at the nine discrete locations

along the span of the blade. Specifically, at the ith local nodes, the edgewise and flapwise
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Figure 2.3: Strain vs. Time at 15.9 m from hub (Left) and Single sided amplitude

spectrum in frequency of each flexing mode (Right): Data shown for NREL offshore

turbine at 24 m/s wind speed and low turbulence.

strain can be expressed as in Eq. (2.7)

ǫE,i =
ME,ici

2(EI)E,i

, and ǫF,i =
MF,iti

2(EI)F,i
(2.7)

where ci and ti are the chord length and thickness of the airfoil at the ith node.

2.5 Results and Discussion

Simulations were performed for turbines of three sizes and at different wind speed and

turbulence conditions. Simulation results for the 5 MW NREL offshore wind turbine

operating under wind conditions of 24 m/s at low turbulence are shown in Figure 2.3

and Figure 2.4. Figure 2.3 shows strain data in both edgewise and flapwise bending at

an instant in time and Fast Fourier Transform analysis of each bending mode. Figure 2.4

shows the edgewise and flapwise strain power along the span of the blade during the

operation under the selected wind conditions. As shown in Figure 2.3, the amplitude

of the edgewise strain is ∼550 micro-strain and the amplitude of the flapwise strain is

∼390 micro-strain. The strain varies with time at a cyclic rate of ∼0.2 Hz, corresponding



21

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Span Location (m)

S
tr

a
in

 P
o
w

e
r 

(W
/m

3
)

OffShore 5MW model with 24mps LT wind condition

Edgewise

Flapwise
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maximum peak amplitude.

to the rotational frequency of the turbine at these wind conditions. For the flapwise

bending mode, large non-zero mean strain is observed. But this bias term is disregarded,

as the zero-frequency mode does not contribute to generate energy. In Figure 2.4, the

maximum edgewise strain power, ∼60 W/m3, occurs at a distance 15.9 m from the

blade support (at the nacelle). On the contrary, the maximum flapwise strain power,

∼31 W/m3, occurs at 40.5 m. A similar flapwise strain power of 30 W/m3 occurs at

15.9 m. Table 2.2 provides the summary of the simulation results for the 5 MW model.

Similar simulations were performed for the CART3 and WindPACT turbine models

to assess the available energy for harvesting. Tables 2.2, 2.3 and 2.4 summarize the

results of these simulations. The maximum strain, strain frequency and spanwise loca-

tion of the maximum strain are shown for both edgewise and flapwise bending. Several

trends are apparent in these results. First, the strain progressively increases with in-

creasing turbine size. This is expected as the 5MW turbine has larger, more flexible

blade leading to increasing strain. Second, the strain is greatest at the higher wind

speed/lower turbulence intensity conditions. Third, the frequency of maximum strain
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Table 2.2: Max. Strain of the NREL Offshore (5 MW) for the various wind conditions

(E0 = 1 GPa)

Wind Edge [µǫ] Flap [µǫ] Freq [Hz] Pavail [W/m3] zb,max [m, %]

6 m/s HT 312 - 0.13 12.65 15.9m (25%)

6 m/s LT 355 - 0.13 16.38 15.9m (25%)

13 m/s HT 432 - 0.2 37.32 15.9m (25%)

13 m/s LT 469 - 0.2 43.99 15.9m (25%)

24 m/s HT 515 - 0.2 53.05 15.9m (25%)

24 m/s LT 545 - 0.2 59.41 15.9m (25%)

6 m/s HT - 55 0.13 0.39 15.9m (25%)

6 m/s LT - 59 0.13 0.45 15.9m (25%)

13 m/s HT - 178 0.2 6.34 40.5m (64%)

13 m/s LT - 163 0.2 5.31 15.9m (25%)

24 m/s HT - 352 0.2 24.78 40.5m (64%)

24 m/s LT - 393 0.2 30.89 40.5m (64%)

tends to match with the rotor speed. While the edgewise strain is higher for all cases,

the difference between edge and flapwise strain decreases at higher wind speeds. This

trend can be a result of blade pitch control that is imposed at high wind speeds.

These results can be used to determine EH design requirements given the energy

available and power transmission requirements. In Figure 2.5, the energy harvester

design factor KEH is shown as a function of the charging time ∆t. Curves for three

power levels Pavail, 13, 22 and 50 W/m3, are shown in the figure. These power levels

are typical for the wind turbines investigated in the present work (see Table 2). In this

case, a data transmission energy requirement of 280 µJ was selected, corresponding to

the power required to transmit a single measurement via EH-link from Microstrain [46]

(a commercially available wireless transmission module). The curves are obtained by

setting the transmission energy equal to the strain energy harvested Wstrain (Eq. 2.4).

As an example, consider a ZnO nanowire EH [55] with an efficiency of 6.8%, volume

of 0.38 mm3, and a modulus of 30 GPa, such that the design factor is 0.78 mm3. The

corresponding charging time is approximately 2 hours for a harvester located on 5 MW
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Table 2.3: Max. Strain of the CART3 (600 kW) for the various wind conditions (E0 =

1 GPa)

Wind Edge [µǫ] Flap [µǫ] Freq [Hz] Pavail [W/m3] zb,max [m, %]

6 m/s HT 90 - 0.27 2.19 7.5m (38%)

6 m/s LT 109 - 0.29 3.45 7.5m (38%)

13 m/s HT 99 - 0.62 6.08 7.5m (38%)

13 m/s LT 85 - 0.62 4.48 7.5m (38%)

24 m/s HT 238 - 0.63 35.69 7.5m (38%)

24 m/s LT 249 - 0.62 38.44 7.5m (38%)

6 m/s HT - 14 0.27 0.05 7.5m (38%)

6 m/s LT - 17 0.29 0.08 7.5m (38%)

13 m/s HT - 38 0.62 0.90 7.5m (38%)

13 m/s LT - 32 0.62 0.63 7.5m (38%)

24 m/s HT - 218 0.63 29.94 7.5m (38%)

24 m/s LT - 220 0.62 30.01 7.5m (38%)

offshore wind turbine operating at 24 m/s (providing approximately 50 W/m3 power).

For wind turbine conditions or locations in which less power is available, the charging

time requirements are approximately 4.5 hours for Pavail = 22 W/m3 and 7.5 hours for

Pavail= 13 W/m3.

2.6 Conclusion

The present study provides an estimate of the strain energy that can be expected for

typical wind turbine geometries over a range of wind loading conditions. Based on the

FAST simulation results, the maximum strain occurs at a distance from the hub that

is approximately 20 to 33% of the blade length. For the three turbine models, the

maximum strain amplitude is 550 micro-strain at 0.2 Hz for the 5MW offshore turbine.

On going work as part of the EOLOS [56] facility at the University of Minnesota will

include strain data from a fully instrumented 2.5 MW wind turbine. The estimates of

strain energy from the current study along with the data from the full scale instrumented
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Table 2.4: Max. Strain of the WindPACT (1.5 MW) for the various wind conditions

(E0 = 1 GPa)

Wind Edge [µǫ] Flap [µǫ] Freq [Hz] Pavail [W/m3] zb,max [m, %]

6 m/s HT 105 - 0.19 2.09 7.3m (21%)

6 m/s LT 174 - 0.19 5.75 7.3m (21%)

13 m/s HT 181 - 0.34 11.14 7.3m (21%)

13 m/s LT 169 - 0.34 9.71 7.3m (21%)

24 m/s HT 295 - 0.34 29.59 7.3m (21%)

24 m/s LT 304 - 0.34 31.42 7.3m (21%)

6 m/s HT - 20 0.21 0.08 11.7m (33%)

6 m/s LT - 20 0.19 0.08 11.7m (33%)

13 m/s HT - 56 0.34 1.07 16.2m (46%)

13 m/s LT - 37 0.34 0.47 11.7m (33%)

24 m/s HT - 156 0.34 8.27 16.2m (46%)

24 m/s LT - 168 0.34 9.60 16.2m (46%)

wind turbine will inform energy harvester design and development of data transmission

algorithms.

Nomenclature

E Young’s Modulus of an EH, GPa (E0 = 1 GPa)

EIE(F ),i Stiffness in edge(flap)-wise bending at ith element [Nm2]

KEH Design factor [m3]

ME(F ),i Edge(Flap)-wise moment at ith node [Nm]

Pavail Strain power available [W/m3]

V Volume of an EH [m3]

Wstrain Harvested strain energy [µJ]

ci Chord length of ith airfoil [m]

f Strain frequency [Hz]

ti Thickness of ith airfoil [m]
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Figure 5. Energy Harvester Design Map for W  = 280 J
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Chapter 3

Efficiency of Energy Conversion

for Low Broadband Excitation

3.1 Introduction

Wireless sensing network systems are advantageous in many respects including easy

installation, flexible deployment, and reduced costs. In addition, transmitting the data

wirelessly avoids the vulnerability to unfavorable weather conditions such as lightning

which can strike conductive wires and structures. Structural Health Monitoring (SHM)

is one of the intelligent sensor-network systems which benefit from wireless technolo-

gies. Wireless monitoring systems were developed to monitor the health of structures

including bridges [40, 57–59], buildings [41, 42, 60], helicopter rotors [45, 61], and wind

turbines [23, 62–65]. Most of the applications are powered by batteries. However, the

batteries will require periodical replacement, which is tedious and even dangerous for

some applications like wind turbine blades. Modern full-sized wind turbines are typi-

cally taller than a 30-story building, and a blade length is about 50 meters long, which

is comparable to a short bridge. Thus, wireless SHM takes advantage of self-powered

autonomous sensors powered by energy harvesters (EHs).

An energy harvester converts unused ambient energy into usable electricity. Most

common harvesting sources are environmental vibrations, light, and temperature dif-

ference. For example, Carlson et al. [66] examined piezoelectric, thermoelectric and

photovoltaic energy harvesting techniques for onboard sensors on wind turbine blades.

26
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They argued that wireless sensing is appropriate for the SHM of wind turbine blades due

to the possibility of lighting strikes on wires. In the paper [66], authors concluded that

the photovoltaic system was most promising to scavenge the largest energy. However,

for structural monitoring, it is not always feasible to use solar powering [67]. Onboard

sensors could be installed (or embedded) inside of blade panels (i.e. in the void space).

Whereas, energy harvesting from the vibration source is most appropriate in structures

which are monitored only when monitoring is necessary (when they vibrate). Structural

failure is highly probable at moments of vibrations. In this regard, the piezoelectric

mechanism for SHM is studied in [23, 45, 66, 68–72].

A wind turbine blade—made of composite materials typically—deforms during its

operation. Wind turbine blades are under the wind force and/or gravity. An irregular

wind force vibrates blades. When blades are rotating during turbine operation for a

horizontal-axis wind turbine system, gravity exerts alternating bending moments. Both

gravity and wind force make a blade deformed periodically and induce structural strain.

This strain energy can be harvested by a piezoelectric phenomenon. Figure 3.1 illus-

trates a schematic drawing for the energy harvesting system. Thus, energy harvesting

which converts mechanical energy from blade strain energy to usable electrical energy

is promising for wireless SHM of wind turbine blades.

Harvested energy can be estimated by the conversion efficiency of an EH and avail-

able strain energy. EH conversion efficiency was studied in [73–77]. They found the

conversion efficiency depends on the input frequency, but mostly pure harmonic signals

at fairly high frequencies were considered. However, application specific conversion effi-

ciency is required to construct an SHM system where the input force to an EH is at a low

broadband frequency. When an EH is mounted on the surface of a wind turbine blade,

the excitation frequency (associated with blade rotation) is less than the blade natural

frequency (typically < 1 Hz). Thus, strain amplitude is relatively low. Moreover, the

input from blade loading is not purely harmonic due to several factors including the

wind variation. In this chapter, evaluation of an overall conversion efficiency—from me-

chanical to harvested electric energy—for low random frequency excitation is presented.
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Figure 3.1: A Piezoelectric energy harvester (EH) is installed on a blade as a d31

configuration.

3.2 Model for EH efficiency

The energy conversion efficiency ηme is commonly defined as the time-averaged energy

ratio between the input Win and output We by

ηme =
We

Win

, (3.1)

where

We =

∫

R · q̇ · q̇dt, (3.2)

and

Win =

∫

fex · ẋdt. (3.3)

R, q, x, and fex are a resistive load, the electric charge on the electrodes, displacement

of the generator, and an external harmonic function respectively. The generator where

an EH is mounted can be modeled as a lump-sum system as shown in Figure 3.2. The
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Figure 3.2: A piezoelectric generator is modeled as a lump-sum system. m, b, and k are

the mass, structural damping, and stiffness of a generator.

induced electric voltage v and the electric charge q depend on the generator and piezo-

material properties. The governing equations of the piezoelectric EH are described by

coupled mechanical electrical simultaneous equations [78]. The mechanical behavior of

the piezoelectric generator is expressed by

mẍ+ bẋ+ kx− θv = fex (3.4)

where m, b, k is mechanical mass, damping, and stiffness of a generator respectively. θ

is the electromechanical coupling coefficient of a piezoelectric material. Two unknown

variables x and v are solved by relating a circuit equation with zero initial conditions

with a known input force fex, as

θx−CpRq̇ = q (3.5)

where Cp is the piezoelectric material capacitance.

Given the constitutive equations of Eqs. (3.4 and 3.5), the transfer functions be-

tween the mechanical force input Fex(s), and outputs of the electric charge Q(s) and

mechanical deformation X(s), can be expressed as [79]:

H(s) =
Q(s)

Fex(s)
=

θ

(ms2 + bs+ k)(RCps+ 1) + θ2Rs
, (3.6)
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and

G(s) =
X(s)

Fex(s)
=

RCps+ 1

(ms2 + bs+ k)(RCps+ 1) + θ2Rs
. (3.7)

Assume this one degree of freedom generator is under a single modal vibration. From

Eqs. (3.1,3.6,3.7), the efficiency can be expressed as

ηme =
θ2Rω

|RCp · jω + 1| · |D(jω)| , (3.8)

where |D(jω)| is the magnitude of the denominator of G(s) at the frequency of ω as

D(jω) = |(−mω2 + jbω + k)(jRCpω + 1) + jθ2Rω|. (3.9)

As shown in Eq. 3.8, the efficiency depends on the input frequency ω. Figure 3.3 shows

an illustration of the trends of the conversion efficiency for various damping coeffi-

cients. Its maximum occurs at the damped natural frequency of a generator when other

variables are fixed. As damping increases, the frequency for the maximum efficiency

becomes low.

3.3 Estimating Input Energy

Harvested energy can be conveniently calculated by using the input energyWin once the

conversion efficiency is known. The output electric (harvested) energyWe is obtained as

Eq. 3.1 by Win multiplied by the efficiency. Thus, it is important to estimate available

strain energy accurately. This available strain energy is considered as the input to an

EH, and the input mechanical energy density w from the strain of the substrate is

estimated by

w =

∫ ǫ2

ǫ1

σdǫ =

∫ t2

t1

Eǫǫ̇dt (3.10)

where ǫ, σ, and E are strain, stress, and Young’s modulus of an EH respectively. This

relation provides the strain energy when an EH is stretched or compressed from ǫ1 to ǫ2

by external forces exerted on its body. At times when the input energy is considered,

an EH is forced in the opposite direction of EH passive deformation. When an EH

contracts from its expansion, there is no need for an input force for this motion, and

vice versa (or the mechanical energy released back from an EH to the environment is

not considered as the input energy.) Thus, the total input energy occurs only when the
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Figure 3.3: Illustration of trends of the conversion efficiency over a range of damping

coefficients; the efficiency depends on the input frequency and its maximum occurs at

the material damped natural frequency, which shifts lower as damping increases.

strain and strain rate are in the same sign. In this way, the conversion efficiency can be

derived from the input mechanical vibration exerted on. The total input energy Win to

an EH is given by

Win =

{

V
∫ ǫ2
ǫ1
Eǫǫ̇dt if ǫǫ̇ > 0

0 else
(3.11)

where V is the volume an EH.

3.3.1 Harmonic Excitation

Consider an EH that is under a single dominant harmonic excitation with a frequency

f and a mean-to-peak strain amplitude ǫa (unitless): ǫ(t) = ǫa sin(2πft). Input strain
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energy of one cycle W
(1)
in can be calculated based on Eq. 3.11.

W
(1)
in = V Eǫ2a2πf

(

∫ 1
4f

0
sin 2πft · cos 2πft dt+

∫ 3
4f

1
2f

sin 2πft · cos 2πft dt
)

= 2·1
2
V Eǫ2a.

(3.12)

Given the excitation frequency f and the total time of excitation δt, then the number

of excitation cycles n is

n = f · δt. (3.13)

Combining Eqs. (3.12 and 3.13), the strain energy input for n cycles W
(n)
in is

W
(n)
in = n · 2 · 1

2
V Eǫ2a = fδt · V Eǫ2a. (3.14)

And multiply the EH efficiency ηme to Eq. (3.14) to estimate the amount of harvested

energy WEH, then we get

WEH = ηme · V E · ǫ2a f · δ t . (3.15)

3.3.2 Random Excitation

When an input strain is arbitrary, no explicit form of a function for the strain is avail-

able. In this case, the input strain in Eq. (3.11) can be discretized in time. As in the

previous section, the effective strain energy is considered as the energy from the extra-

neous source, which makes the structure stretched or contracted. In other words, from

Eq. (3.11)

Win ≈
{

V EΣk2
k1
ǫk · ǫk−ǫk−1

∆t
∆t if ǫk · (ǫk − ǫk−1) > 0,

0 else .
(3.16)

See Appendix A for more examples to calculate input energy.

3.4 Experiments for the Conversion Efficiency

The conversion efficiency is a fundamental parameter to estimate harvested energy using

the input energy in Eq. 3.1. It is particularly advantageous to obtain this efficiency

experimentally when the EH physical properties such as the structural damping or

piezoelectric coupling coefficients (see Eqs. 3.4 and 3.5) are not certain. This section

overviews the experiment design and its setup.
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3.4.1 Experiment Design and Set-up

A commercial EH, MFC M2814P2 (31-mode) from Smart Material [80], is employed for

this study. The volume and its Young’s modulus of the EH are 117.60 mm3 and 30.34

GPa found in the data sheet. Figure 3.4 depicts a sketch of the experimental set-up of

a beam. The EH is attached to a host structure, a vertical cantilever beam made of

aluminium. To have a uniform strain area for the EH, a tapered beam was designed,

having wider width to the root. A few advantages of using a cantilever beam are

flexibility of setting-up (using only one side constraint) and low external forces required

to have equivalent strain level to the four-points bending (better controllability). And

so, for a cantilever set-up, a low-strength material can be used. The beam dimension

is 50 × 203 × 2 (mm). Decreasing width compensates decreasing moments of inertia,

thus a constant strain field in the triangle area can be secured. Details about the

strain calculation for the design and strain conversion to the tip displacement with its

validation can be found in the appendix A.

The beam is excited at the tip by a linear motor with a known input amplitude

and frequency. The beam is constrained at its root. An EH is connected to a variable-

resistor, and the EH performance is recorded in voltage and current over the circuit

connected to the EH. In this study, 200 kΩ load resistance was chosen for the best

performance of the selected EH (which matches the EH impedance). In order to track

beam deformations in real time, two strain gages are installed on the top and bottom

of the EH area installed on the beam. Figure 3.5 shows a picture of the beam. For a

comparison, a P1 type (33-mode) of the MFC is installed in the front and a P2 type (31-

mode) is in the back of the beam. Figure 3.6 shows the overall set-up of the experiment.

Voltage and current are measured in an electromagnetic shield cage.

Two types of loadings were imposed in this experimental study. First, the EH was

driven by various single harmonic wave inputs. The input amplitude was fixed to 10

mm tip displacements (∼400 µǫ mean-to-peak amplitude), but frequencies were varying

as 0.2 0.5, 1, 5, and 10 Hz. Second, an input strain profile expected for a full-size wind

turbine was considered. This strain input typically has a low frequency (less than 1 Hz)

and random fluctuations. For this objective, strain data of 5 MW offshore wind turbine

from the FAST [3] simulation were taken for an input. Figure 3.7 shows a time trace

plot for an strain input versus strain measurements of the beam. As shown in the figure,
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Figure 3.4: A Sketch of the Experimental Set-up Specifications: The beam is constrained

as a cantilever at its root, and the top is actuated by a linear motor.

Figure 3.5: Two types of MFCs (P1 and P2 types) are installed in the front and back

of the beam.

the beam is well tracking the command input of simulation results of blade strain.

The experiment process for the FAST test is shown in Figure 3.8. A user can spec-

ify the simulation environment including a wind turbine type, wind speed, turbulence

intensity. The information for strains of three blades for a number of discrete locations
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Figure 3.6: Overall Experimental Setup; a linear motor actuates the tip deflection of the

beam. The EH installed on the beam is wired to a resistor, where voltage and current

in the circuit are measured.

in the longitudinal direction is available. The FAST provides discrete bending moments

data in a time series in edge/flapwise directions. The moments are calculated to strains,

and strains are converted to tip displacements. The beam is excited by a linear actuator

dictated based on calculated displacements. For this experiment, a local strain profile of

a site in a distance of approximately 60% of the blade length from the hub was used. Its

dominant modal frequency and amplitude—calculated by Fast Fourier Transform—were

0.2 Hz and 195 µ-strain respectively (,which is corresponding to 5.35 mm tip displace-

ment). The result of this random excitation is compared to the efficiency from a 5 mm

pure harmonic input at 0.2 Hz.

3.5 Experimental Results

The mechanical-to-electrical conversion efficiency is studied experimentally. The har-

vested energy We is calculated by measured voltage v and current i in the circuit of the

load side as

We = Σnd

k=1v(k)i(k)
∆t

nd
(3.17)
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Figure 3.7: Strain command input for a 5 MW wind turbine from the FAST simulation

is shown in a blue solid curve. Strain measurements (dashed red line) of the beam follow

well the command input.

Figure 3.8: Experiment Process for Wind Turbine Blade Flexing

where ∆t and nd are the experiment total time and the total number of measurements

respectively.

3.5.1 Harmonic Excitation

The experimental conversion-efficiency is the ratio of the input mechanical energy and

the output electric energy as Eq. 3.1. The input energy for this harmonic case is cal-

culated from Eq. 3.14. Input and output powers are calculated from strain gage and

voltage/current measurements respectively. For a pure harmonic strain input, closed-

circuit voltage/current measurements are shown in Figure 3.9. As shown in the figure,

voltage and current are of pure harmonic cycles at the same frequency as the input.
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The procedure is repeated for a range of input frequencies, and Table 3.1 summarizes

the EH performance for given conditions. As expected from the analytic study of the

efficiency in section 3.2, the efficiency increases with frequency up to 2.5 % at 5 Hz,

and at 10 Hz, the highest frequency tested, the efficiency is 2.34%. For an aluminium

beam with natural frequency of approximate 20 Hz, the frequency for the maximum

conversion efficiency of the EH (see Eq. 3.8) is approximately estimated between 3 and

6 Hz (EH depending on the damping ratio). The manufacturer reports 2.5-4% total

(maximum) energy conversion efficiency, which is also consistent with the experimental

findings reported herein.

Figure 3.9: Voltage(dashed) and Current(solid) Outputs of the MFC EH for a Sine

Excitation of a 10 mm (∼400 µǫ) mean-to-peak amplitude at 1Hz

3.5.2 Random Excitation

The EH was also tested for a 5 MW wind turbine blade strain input (Figure 3.8). For

this random excitation, the efficiency was calculated from the input energy equation in

Eq. 3.16. Figure 3.10 shows the FAST command strain input (solid) oscillates with an

Table 3.1: Energy Harvester Efficiency for Various Input Frequencies

Freq [Hz] Win [mJ] We [µJ] Efficiency [%] Input Disp. [mm]

0.2 0.29 1.2 0.42 % 5

0.5 2.85 33.6 1.18 % 10

1 5.71 101.6 1.78 % 10

5 28.54 732.6 2.57 % 10

10 57.09 1338.2 2.34 % 10
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amplitude of approximately ∼200 µ-strain and the measured voltage output (dashed)

follows the strain input. The figure confirms that the strain profile makes a similar

pattern to the voltage output, with some irregular fluctuations occurring during the

cycles. In Figure 3.11, time traces of voltage and current outputs by the FAST input

are shown and a similar working practice of the EH is observed. For the FAST setup, the

efficiency was ∼0.96% which is more than double the efficiency of a pure 0.2 Hz sinusoid

input. This is partly due to other minor modal components (i.e. random fluctuations).

In general, a shaky environment generates more energy and greater electricity generation

can be expected.

Figure 3.10: Voltage Output(dashed) and Strain Input(solid) of the EH for a Blade

Strain Profile

Figure 3.11: Voltage(dashed) and Current(solid) Outputs of the EH for a Blade Strain

Profile
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3.6 Conclusions

In this study, a methodology to obtain an experimental conversion efficiency of a piezo-

electric energy harvester (EH) operating at low frequency broad band excitation and

experimental results were presented. A tapered cantilever beam with a triangular area

was designed to have a uniform strain field for testing an EH. The beam was excited

by a linear motor at various input frequencies of a single harmonic signal. The tip

displacement was prescribed to create a desired strain value at the EH located at the

root of the beam. From the experiments, the efficiency ranged from 0.4 to 2.6% for

frequencies of 0.2-10 Hz. A low frequency pure sine wave input (0.2 Hz) was compared

to a realistic rotor blade strain input obtained through FAST simulation for a 5 MW

wind turbine broad ban excitation at dominant frequency of 0.2 Hz. The conversion

efficiency (∼0.96%) with the FAST strain input was almost double that of the efficiency

(∼0.42%) at a 0.2 Hz pure sine input. For the EH selected in this study, a conservative

0.5% efficiency can be used for a full-size wind turbine such as a 5 MW offshore model.



Chapter 4

Wireless SHM of Blades Using an

EH as a Sensor

4.1 Summary

Structural Health Monitoring (SHM) of wind turbine blades is critical to improve the

reliability of wind turbines. A health monitoring algorithm was developed that utilizes

energy harvesters as sensors. An accumulated energy sensor is described in which an en-

ergy harvester mounted on the surface of the wind turbine blade converts low frequency

vibrational strain energy from the blade to electrical charge, that is subsequently stored

to power an RF transmitter. The premise of this sensing approach is that the timing of

data output from the RF transmitter, which is tied to the charging time, is indicative of

the structural health. The time between data transmission pulses will be reduced if the

blade stiffness decreases. The SHM algorithm compares data transmission time for the

three blades to identify the onset of blade damage. To demonstrate the effectiveness of

the algorithm, an expected energy harvester signal transmission rate is established from

blade strain data from a 2.5 MW wind turbine. The transmission rates for the three

blades are compared to establish a threshold for “healthy” blades. Simulated damage

corresponding to approximately 20% increase in harvested energy can be detected by

the SHM algorithm.

40



41

4.2 Introduction

The DOE has set a goal of “20% wind energy by 2030” [47]. Reduction in operating

and maintenance costs for wind turbines has been identified as a major challenge to

achieving this goal. Wind turbine maintenance is a particular challenge because wind

turbines are often located in remote regions (including offshore). Structural Health

Monitoring (SHM) is a promising approach that can enable preventative maintenance,

reduce down time and significantly reduce life-cycle costs [30]. While failure can occur

in any structural component, one of the most common and critical components to fail is

the wind turbine blade [9]. It is particularly challenging to continuously monitor blade

health: (1) the blades are quite long and an extensive network of sensors is required;

and (2) the blades are rotating, posing challenges to delivering power to and receiving

data from the sensor network.

A novel sensing and SHM system is proposed. The system is comprised of a network

of discrete sensor nodes. Each wireless node includes an energy harvester to convert vi-

brational strain energy from the blade to electrical charge and an RF transmitter circuit.

The electrical charge from the energy harvester is stored to power an RF transmitter.

The RF transmitter wirelessly communicates a single pulse to a centralized monitoring

system in the turbine nacelle when sufficient electrical charge has been stored. The

premise of this sensing approach is that the timing of data output from the RF trans-

mitter, which is tied to the charging time, is indicative of the structural health. In a

damaged blade, changes in the stiffness (associated with damage) will lead to a change

in blade strain4, resulting in a change in the timing of the RF pulses.

To demonstrate the effectiveness of the proposed sensor-algorithm, a study is pre-

sented that utilizes blade strain data from the Eolos 2.5 MW wind turbine installed at

the University of Minnesota. Fiber optic strain sensors were installed at several loca-

tions on each of the three blades of the Eolos turbine. At this stage of the research,

energy harvesters have not yet been installed on the turbine blades. Hence, the low

frequency strain data are converted to simulated energy harvester pulse transmission

data. These simulated energy harvester data are the basis for evaluation of the health

monitoring algorithm.
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4.3 Background

4.3.1 Health Monitoring of Wind Turbine Blades

Structural health monitoring5 is the process of implementing a damage detection strat-

egy for an engineering structure. SHM algorithms have been well-studied because struc-

tural damage can have significant safety impacts. The literature on SHM includes many

applications to wind turbine blades [12, 27–32, 34–36]. Methods include acoustic emis-

sion, thermal imaging, ultrasonic methods, modal approaches, fiber optic methods, laser

Doppler, electrical resistance, and X-rays [27]. Vibration-based SHM methods [28, 29]

seem most appropriate for the proposed architecture. Vibration-based SHM can be

largely categorized into frequency/modal domain and time domain analysis. Some of

the previous work in this area is briefly reviewed. Zayas et. al [33] developed an

impedance-based SHM system by PZT sensors and actuators. The SHM system can

detect damage inside a blade but a sensor must be placed close to the damage. Pitch-

ford et al. [35] also studied impedance-based SHM using MFC piezoelectric materials.

While modal testing, MFC patches are used for monitoring material behavior with an

active impedance method. Ghoshal et al. [30] presented four blade health monitoring

techniques: transmittance functions, ODS, resonant comparison, and wave propagation.

The feasibility to detect damage was indicated by using piezoceramic patches for ex-

citation and a scanning laser Doppler vibrometer or piezoceramic patches to measure

vibration. Schulz [36] suggested a smart sensor system to actively detect a fault in a

composite blade. White et al. [31] presented a SHM method for a lab-scale carbon com-

posite wind turbine blade, TX-100. In this paper, several accelerometers were deployed

and they used virtual forces, transmissibility, and time-frequency analysis. In Ref. [12],

their methods were shown as not effective on damage detection located farther than 2

meters from a sensor. Rumsey et al. [12] studied a few direct measuring methods based

on strain gages and acoustic emission sensors. They concluded unique sound events

were captured when damage occurred and strain energy reduction over fatigue cycles

was observed as damage increased.

In summary, there is a large body of work on SHM for wind turbine blades. Most

of these techniques employ a small number of sensors to detect structural damage. The

use of energy harvesting sensors with wireless communication eliminates the need for
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costly wiring which requires maintenance. As a result, it is feasible to implement an

array of many sensors on each of the three turbine blades.

4.3.2 Energy Harvester as a Sensor

It is important to estimate the strain energy available for powering SHM sensors. The

strain energy density wstrain (J/m3) at a given strain ǫ1 (unitless) is given by the fun-

damental equation:

wstrain =

∫ ǫ1

0
σ dǫ (4.1)

where σ is the stress (Pa). If the Young’s modulus E (GPa) is constant then the strain

energy density (J/m3) can be expressed entirely in terms of strain as

wstrain =

∫ ǫ1

0
Eǫ dǫ (4.2)

This relation provides the strain energy density at a given strain ǫ1. An EH, when

subjected to time-varying strains, converts a fraction of the mechanical strain energy

input into usable electrical energy. The EH efficiency η (unitless) is defined as the energy

conversion ratio from mechanical input to electrical energy output. This efficiency is

typically on the order of 10-2. Assuming η is known, the harvested energy is estimated

by the input energy multiplied by η. External forces are converted to electric energy

when the EH is stretched or compressed. The input energy is calculated from strain by

considering only conditions when the strain ǫ(t) and the strain rate ǫ̇(t) are the same

sign. Thus the total input energy density win to the harvester is given by

win =

∫ t1

0
winstant(ǫ(t), ǫ̇(t)) dǫ (4.3)

where the instantaneous energy density winstant is

winstant(ǫ, ǫ̇) =

{

Eǫǫ̇ if ǫǫ̇ > 0

0 else .
(4.4)

Explicit formulas for the harvested energy can be derived if the strain is sinusoidal with

frequency f (Hz) and peak amplitude (mean to peak) of the strain ǫa (unitless) (see

Appendix). For example, if ǫ(t)= ǫa sin(2πf t), then the harvested energy density is

wEH = η E · ǫ2a f · δ t . (4.5)
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The harvested energy density wEH can be converted to a total harvested energy WEH

(J) by multiplying by the volume V (m3) of the EH

WEH = η V E · ǫ2a f · δ t . (4.6)

The charging time δt (sec) is the time required to charge the capacitor (part of the RF

circuit) and will also define the time between bursts of data transmission/acquisition.

The magnitude of strain and frequency will depend on the wind turbine blade geometry

and operating conditions.

As noted, the energy available for harvesting depends on the strain and the frequency

of vibration; and harvesting capability depends on the type and the design of an EH

(Eq. 4.6). Thus it is useful to define the power available Pavail (W/m3) and the EH

design factor KEH (m3) as

Pavail = E0 ǫ
2
a f, (4.7)

KEH = ηV
E

E0
(4.8)

where E0 is the nominal modulus of an EH material (GPa). These definitions separate

the design properties of a given EH (given in volumetric units) from the conditions in

which the EH operates as specified by the power density Pavail. By using this measure of

available power, simulation strain data can be compared for various turbines and under

various operating conditions. For the purpose of comparison, a modulus of E0 = 1 GPa

is taken in all plots and data reported herein. Values can easily be scaled to evaluate

other harvester materials. In summary, the harvested energy can be decomposed into

an internal factor (KEH) and external source (Pavail) and charging time δt. Eq. (4.6)

is simplified as

WEH = KEH · Pavail · δt (4.9)

When using the energy harvester as a sensor, the energy available from harvested

WEH must be sufficient to charge the capacitor in the RF circuit WRF . The energy

required to send a single tone burstWRF is set by the RF circuit/capacitor configuration,

and is a fixed amount on the order of micro Joules. In this configuration, the charging

time δt is also the time between transmission pulses. Thus, because the energy required

to send a single pulse is fixed, the charging time (and time between pulses) δt is reduced

when the power available Pavail increases.
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under various operating conditions. For the purpose of comparison, a modulus of E0= 1 GPa is taken in all plots and 
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Figure 4.1: Strain vs. Time at 15.9 m from hub (L) and Single sided amplitude spectrum

in frequency of each flexing mode (R): Data shown for NREL offshore turbine at 24 m/s

wind speed and low turbulence.

4.3.3 Available Strain Energy

0 10 20 30 40 50 60
0

5

10

15

20

25

30

Span Location (m)

S
tr

a
in

 P
o
w

e
r 

(W
/m

3
)

OffShore 5MW model with 24mps LT wind condition

Edgewise

Flapwise

Figure 4.2: Edge/Flapwise strain power available in an offshore blade as a function

of blade location. Data are obtained during operational cycles corresponding to the

maximum peak amplitude. (E0 = 1 GPa)

In our earlier work [81], the strain energy available was estimated for three wind

turbines (a CART3 600 kW, a WindPact 1.5 MW and a 5MW offshore wind turbine)

and various wind conditions (6 to 24 m/s at high and low turbulence). For the range of

wind turbine sizes and wind conditions considered, the Pavail ranges from 1 to 30 W/m3.

FAST [3] simulation results for the 5MW NREL offshore wind turbine operating under

wind conditions of 24 m/s at low turbulence are shown in Figure 4.1. Figure 4.1 shows
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strain data in both edgewise and flapwise bending over a 30sec time window at a location

15.9m from the rotor hub (left). Fast Fourier Transforms computed for each bending

mode over a longer time window are also shown (right). As shown in Figure 4.1, the

peak amplitude of the edgewise strain is ∼550 micro-strain and the amplitude of the

flapwise strain is ∼390 micro-strain. These edgewise and flapwise strains are used as

RMS amplitudes of ∼390 and ∼280 micro-strain respectively in determining the power

available for the energy harvester. The strain varies with time at a periodic rate of ∼0.2

Hz, corresponding to the rotational frequency of the turbine at these wind conditions.

Figure 4.2 shows the corresponding maximum edgewise and flapwise Pavail (calculated

from Eq. (4.7)) along the span of the blade. The maximum edgewise Pavail, ∼30 W/m3,

occurs at a distance 15.9 m from the blade support (at the nacelle). The flapwise Pavail

has two peaks, 15 W/m3 at 15.9 m. and 16 W/m3 at 40.5 m. This profile of Pavail along

the blade length is typical for the wind turbine sizes and wind conditions considered.
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Figure 4.3: Experimental result of EH conversion efficiency over input frequency (200

kΩ load resistance and 200 µǫ input peak amplitude)

In this study, a data transmission energy requirement WRF of 92.4 J was selected,

corresponding to the power requirement to transmit a signal to a data acquisition board

(DAQ) in the nacelle via a commercially available wireless transmission module (EH-

link from Microstrain17). The EH design factor KEH is experimentally evaluated for

an off the shelf energy harvester, the Smart Material [80] M2814P2 type MFC with a

surface area of 28 mm × 14 mm by 0.3 mm thick. The material modulus E is 30.34
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GPa. It is well known that the piezoelectric EH performance depends on the load

resistance, input amplitude and frequency. Thus, the energy harvester efficiency was

determined under conditions that are expected for wind turbine applications. Figure 4.3

shows energy harvester efficiency for tests performed at 200 µǫ of input peak amplitude

over frequencies ranging from 0.2 to 10 Hz. At 0.2 Hz, the energy harvester efficiency

is approximately 0.4%. Under these conditions, KEH is 14.27 mm3. Given the power

requirement for a single pulse (WRF =WEH = 92.4 µJ), the charging time when Pavail

= 30 W/m3 is 3.6 minutes.

4.4 Approach

In this section, a health monitoring algorithm for detecting blade damage is described.

An overview of the approach is illustrated in Figure 4.4. EHs are installed at the

same locations on the three blades. From blade vibrations (first row in Figure 4.4),

EHs accumulate strain energy (second row). When the accumulated strain energy is

sufficient for transmitting a single data pulse, the transmitted signal is received by

the DAQ system and the time is recorded (third row). The time intervals for each

of the three EH pulse transmissions are compared to each other. The SHM algorithm

determines whether a wind turbine blade is damaged based on the difference in the pulse

timing interval among the three EHs. EHs can be installed at many locations on each

blade and this monitoring algorithm can be repeated for each set of three measurements

obtained from the same blade location. This enables detection of the damage location.

4.4.1 Damage Model

Matrix cracking is common in composite materials and initiated by multiple factors

including fatigue loading. As shown in Figure 4.4.1 (left), the stiffness decreases as the

crack density increases. Thus, matrix cracking is modeled as a loss in stiffness.[82] A

local loss in stiffness will increase the strain (and subsequently Pavail) at that location.

As the blade is cyclically loaded, damage will accumulate. A simple damage model of

matrix cracking is shown in Figure 4.4.1 (right) as a function of the number of loading

cycles. This model introduces the concept of a damage factor gD that tracks the stages

of matrix crack growth as the part is cyclically loaded. The damage factor is initially
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gD=1, corresponding to no damage, and increases to gD=1.2 corresponding to a 20%

increase in strain (or 20% loss in stiffness). Because the strain energy harvested will

increase with damage, Eq. (4.3) is modified to account for the damage that accumulates

with each cyclic load.

win =

∫ t1

0
gD(t) · winstant(ǫ(t), ǫ̇(t)) dt (4.10)

This integral relation is more general than Eq. (4.6) in that it includes the factor gD

(unitless) to model damage. Eq. (4.10) can be discretized with a step size of ∆t (sec)

to accommodate an arbitrary strain profile:

win ≈
n
∑

k=1

gD,k · winstant,k ·∆t (4.11)

where

winstant,k =

{

Eǫ(tk) · ǫ(tk)−ǫ(tk−1)
∆t

if ǫ(tk) · (ǫ(tk)− ǫ(tk−1)) > 0

0 else .
(4.12)

The total harvested strain energy given the volume of the EH V and the efficiency η is

WEH ≈ ηV

n
∑

k=1

gD,k · winstant,k ·∆t (4.13)

Eq. (4.13) applies for more general strain conditions and not simply for single harmonic

vibrations as considered in Eq. (4.6). The discrete-summation is used to approximate

the continuous integral in the simulations and this allows for the damage factor to

change with each cycle.

4.4.2 Triple Redundancy Fault Detection

As described in the background section, there is limited vibrational power that can be

harvested. In particular, for the range of wind conditions and turbine sizes studied

by Lim et. al [81], the maximum available power Pavail is no more than 30 W/m3

even under the most favorable operating conditions. Given current energy harvester

efficiencies, it would take approximately 4 minutes to store sufficient energy to simply

wirelessly transmit a single pulse. Additional energy would be required to take a strain
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or accelerometer measurement. As a consequence, it is not possible to use high sample

rate SHM algorithms with sensors powered by a vibrational energy harvester.

The essential idea of the proposed health monitoring algorithm is to compare iden-

tical measurements from the three individual blades. Specifically, the transmission time

intervals from the sensing nodes at identical locations on the three turbine blades is

compared. This transmission time interval between pulses is a direct measurement of

the rate of harvested power. An individual timing measurement is then deemed “un-

healthy” if it differs from the remaining blades by more than a specified threshold. The

hypothesis is that a damaged blade will yield a sufficiently different measurement than

a healthy blade. This triple redundant design is model-free and is commonly used in the

aerospace industry [83–85] to achieve high levels of reliability. The triple redundancy

enables detection of a single blade failure because the failed blade yields outlier mea-

surements in comparison to the two healthy blades. This approach relies on three key

assumptions. First, it is assumed that the three blades are initially healthy. Second, it

is assumed that two or more blades do not fail in the same way at the same location.

Third, the three blades are assumed to have similar wind loading conditions when av-

eraged over time. In the case of matrix cracking, higher available power Pavail leads to

a shorter transmission time interval. In this way, the damage can be detected with low

sampling frequency because the speed of damage progression is much slower than the

sampling period.
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Eq. (4.11) is the general relation that can be used to model the time between pulse

transmissions for any strain history and damage profile. The important point is that the

time to charge the harvester for a pulse transmission depends on several factors including

the harvester properties, installation configuration and loading conditions. For example,

variations in the wind speed will change the vibrational energy Pavail and hence the

timing of the pulses from energy harvesting sensors. However, it is assumed that all

three blades operate in the same wind conditions. Hence, changes in wind conditions

should lead to similar changes in the pulse time of the energy harvesting sensors located

on all blades. Thus is useful to define a non-dimensional ratio to compare the pulse

timings from each energy harvester. Let ∆ti(t) denote the time difference between two

most recent pulses received at time t from blade i. The time differences computed from

harvesters on blades 1, 2, and 3 can be compared at time t using the following three

ratios:

R1−2(t) =
∆t1(t)

∆t2(t)
, R1−3(t) =

∆t1(t)

∆t3(t)
, R2−3(t) =

∆t2(t)

∆t3(t)
. (4.14)

The use the of non-dimensional ratios minimizes the effect of exogenous influences, e.g.

wind conditions, thus enabling blade damage to be more easily detected in the processed

data. The pulse ratios may not be unity even if all blades are healthy, i.e. blade timings

can be different due to differences in sensor installation, individual harvester efficiency,

etc. However, matrix cracking on a single blade will lead to higher available power Pavail

and hence a shorter transmission time interval. Damage can be detected over time by

noting that the transmission time ratios for a single blade will diverge from the initial

values. For example, damage in blade 3 will cause more frequent transmissions and thus

shorter transmission time intervals. As a result the ratios computed using blade 3, i.e.

R2−3 and R3−1, will diverge from their initial values. Deviations sufficient to indicate

blade damage can be detected by a simple threshold. The precise implementation is as

follows. First, an initial dataset is recorded under the assumption that each blade is

healthy. The transmission time ratios Ri−j(t) (i=1,2,3 and j 6= i) obtained from this

initial dataset are averaged in time to obtain the constant ratio R̄i−j that corresponds

to healthy operation. Damage is detected on blade i (=1,2,3) if |Ri−j(t)−R̄i−j| > T for

i 6= j where T is the detection threshold. This proposed detection method is evaluated

in the next section using experimental strain data from a utility-scale turbine combined
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with the model to simulate the harvester in both healthy and unhealthy conditions.

4.5 Results and Discussion

IV. Results and Discussion 

Figure 6 Wind Data (L), Edgewise Strain Data from Leading Edge of Three Blades at the Root (R) 
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Figure 4.6: Wind Data (L), Edgewise Strain Data from Leading Edge of Three Blades

at the Root (R)

4.5.1 Eolos Wind Turbine

The Eolos [56] Wind Energy Research consortium was established in 2010 by the Uni-

versity of Minnesota and includes the Wind Research Field Station located at the Uni-

versity of Minnesota’s UMore Park facility. In the summer of 2011, a state-of-the-art

2.5MW C96 Clipper Liberty Wind Turbine [86] was installed at UMore Park. The

turbine has a rotor diameter of 96 meters and tower hub height of 80 meters. The

turbine includes fiber optic strain gages and accelerometers installed at various points

on the three blades and tower base for research purposes. In addition, a 130 m tall

meteorological tower, located upwind of the turbine, is instrumented with an array of

advanced wind measurement technologies including sonic anemometers, temperatures

sensors and cameras. All data collected at the site, including the turbine, blade, founda-

tion, and met tower are transmitted back to the university campus through high-speed

internet for real-time viewing and sharing. Blade strain and wind data (obtained from
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an upstream met tower) from the Eolos turbine are used in this paper to evaluate the

proposed health monitoring algorithm. For each blade, strain at up to 10 locations is

continuously recorded at a frequency of 20 Hz. Wind data and turbine operating con-

ditions, sampled at 1 Hz, are recorded and time stamped to correspond to the strain

data. An example of data obtained from the Liberty turbine at the Eolos Field Station

is shown in Figure 4.5. It shows data recorded for three hours on September 10th, 2012

(left) and magnified strain data for 30 seconds of the same day (right). Strain data are

from three strain gages at the same locations (root leading edge) of three blades. As

shown, strain values of each measurement are asynchronously periodic and they have

dissimilar non-zero means.
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Figure 4.7: Pulse Timing of EHs (L), Ratio Factors of EHs (R)

4.5.2 Data Process using a Ratio Factor (Healthy Blades)

We expect the Eolos turbine blades to be “healthy” since the turbine has only recently

been installed. Hence the data in Figure 4.5 represent healthy blades. The EH is

modeled after the properties of the M2814P2 MFC which has a design factor of KEH is

14.27 mm3. The signal pulse timing, shown in Figure 4.5.1 (left), was generated using

the logged data shown in Figure 4.5 and a model of this EH. It is noted that the pulse

timing interval increases after t ≈ 2 hour due to the decrease in wind speed after t ≈ 1

hour. The trends of three EHs pulse timings are similar despite this variation in the
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working condition. Figure 4.5.1 (right) shows the three ratios defined in Eq. (4.14). This

figure shows that the ratios remain relatively constant in spite of the variations and DC

offsets in the strain measurements. In effect the long charging time ( 600 seconds here)

averages out the short term variations and the signal DC offsets do not cause variations

in the time interval ratios. As discussed above, the pulse timings may not be equal for

each EH and hence the timing ratios are not equal to unity. The transmission time

ratios shown in the right subplot of Figure 4.5.1 were averaged to obtain the nominal

ratios R̄i−j that corresponds to healthy operation.

4.5.3 SHM Simulation for a Unhealthy Blade

After certain cycles of fatigue loading, cracks are saturated and gD becomes some higher

number than 1.0. This subsection considers the damage model in Figure 4.4.1 (right).

A stage 3 cracking (saturation) damage is simulated in blade 3. This is simulated by

changing the blade 3 damage factor in Eq. (4.11) from its nominal value (gD =1.0) to

a value corresponding to a 20% increase in harvested energy (gD =1.2). The damage

would typically occur over a long time scale and hence the damage factor is assumed

to be constant on the time-scale of the simulation results shown here. The strain data

shown in Figure 4.5 is again used to simulate the harvester pulse timings for the healthy
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blades (i = 1, 2) and unhealthy blade (i = 3). The left subplot of Figure 4.5.1 shows the

simulated pulse timings. The pulse timings for blade 3 have deviated from the healthy

values shown in Figure 4.5.1. However, the damage signal is not easily discernable due

to the variations in pulse intervals. The three ratio factors Ri−j are computed and

then subtracted from the averaged initial values to obtain the deviations from healthy

signals: ψi−j(t) := Ri−j(t) − R̄i−j. These deviations are shown in the right subplot of

Figure 4.5.1. It is clear from this figure that the ratios computed with blade 3 deviate

significantly and consistently from the healthy values. A threshold, chosen as T = 1.1,

can be used to distinguish between small (healthy) values and larger (unhealthy) values.

Further investigation is needed to understand the appropriate threshold level to balance

the detection and false alarm rate of the proposed algorithm.

4.6 Conclusion

This paper described a structural health monitoring (SHM) algorithm to detect dam-

age in wind turbine blades. The system relies on an accumulated energy sensor that

harvests low frequency vibrational energy from the blade and wirelessly transmits a

pulse once sufficient energy has been stored. The premise of this sensing approach is

that the timing of signal transmissions is indicative of the structural health. The SHM

algorithm identifies damage by comparing the transmission timing of sensors installed

at the same location on the three blades. The effectiveness of the SHM algorithm was

evaluated using experimental strain data from a 2.5MW turbine combined with a model

of the energy harvester. These results indicate that simulated damage corresponding

to approximately 20% increase in harvested energy can be detected by the proposed

SHM algorithm. Future work will investigate the details of the algorithm including the

threshold selection. In addition, more accurate damage models will be used to under-

stand how the distance between the damage and sensor locations impacts the detection

performance.

Nomenclature

E Young’s Modulus of an EH, GPa (E0 = 1 GPa)
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KEH EH design factor, m3

Pavail Available strain power density, W/m3

Ri−j Pulse timing ratio between blades i and j

T Damage detection threshold

V Volume of an EH, m3

WEH Harvested strain energy, J

f Strain frequency, Hz

gD Damage factor

n cycles of excitations

∆t Discretization step time, sec

δt Charging time, sec

win Input strain energy density, J/m3

ǫ Mechanical strain, µ− ǫ

ǫa Mechanical strain amplitude (mean-peak), µ− ǫ

η Energy conversion efficiency

ψi−j Pulse timing ration deviation by damage of Ri−j



Chapter 5

Algorithm for the Wireless SHM

of Blades Using EHs

5.1 Summary

Wind turbine blade failure can be catastrophic and lead to unexpected power inter-

ruptions. In this paper, a Structural Health Monitoring (SHM) algorithm is presented

for wireless monitoring of wind turbine blades. The SHM algorithm utilizes strain en-

ergy data that are acquired by piezo-electric energy-harvesters. The SHM algorithm

compares the accumulated strain energy of sensors located at the same position on the

three blades. This exploits the inherent triple redundancy of the blades and avoids the

need for a structural model of the blade. The performance of the algorithm is evalu-

ated using probabilistic metrics such as detection probability (True Positive) and false

alarm rate (False Positive). The decision time is chosen to be sufficiently long that a

particular damage level can be detected even in the presence of system sensor noise

and wind variations. Finally, the proposed algorithm is evaluated with a case study of

a utility-scale turbine. The noise level is based on measurements acquired from strain

sensors mounted on the blades of a Clipper Liberty C96 turbine. Strain energy changes

associated with damage from matrix cracking and delamination are estimated by a finite

element model. The case study demonstrates that the proposed algorithm can detect

damage with a high probability based on an inspection time period of approximately

50-200 days.

57
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5.2 Introduction

The DOE has set a goal to achieve 20% of wind energy by 2030 [47]. To meet this goal,

wind turbines must be extremely efficient and reliable. However, a wind turbine can fail

by any structural component, and one of the most common and critical components to

fail is the wind turbine blade. [9] Structural Health Monitoring (SHM) [28] is a promising

method that can enable preventative maintenance, lower down time and significantly

reduce life-cycle costs. [30] In SHM, sensor data are interpreted by an algorithm to

detect the onset of damage in the structure. An effective SHM system can provide a

warning sign to prevent a catastrophic failure, allowing the operator time to perform

appropriate maintenance in advance.

Typical SHM sensing approaches include acoustic emission, thermal imaging, ultra-

sound, modal analysis, fiber optics, laser Doppler, electrical resistance, and X-rays. [27]

The associated algorithms typically require comparison between healthy and damaged

conditions, where the healthy states are a priori established for a particular component.

For wind turbine applications, SHM approaches are often grouped as either global meth-

ods that consider the effect of local damage on overall behavior of the blade or local

methods that capture local variations in blade structural properties. Global approaches

often incorporate accelerometer data to identify mode shapes and/or deflection, and the

system excitation is passive (i.e. derived from operational loads). For example, Adams

et al. [87] used accelerometer data to characterize the mode shape of a healthy Hori-

zontal Axis Wind Turbine (HAWT) blade in situ. Changes in the mode shape that are

associated with reduced stiffness at the blade root, as simulated by a numerical model,

were detected using a statistical approach that accounted for system noise. In a study

by White et al. [31], accelerometers and force sensors were mounted side by side with

the intent to estimate both the displacement and force data throughout the composite

rotor blade. Modal data were extracted and the method was effective in detecting crack

growth during dynamic loading. Schulz et al. [36] developed a smart blade concept in

which a network of series connected PZT nodes acquired acoustic emissions data during

crack growth. This passive system detected damage prior to any indication from surface

mounted strain gages but system validation focused on small scale composite beam and

plate samples. Earlier work from Schulz and coworkers (Goshal et al. [30]) considered
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extracting blade mode shapes using Laser Doppler Vibrometer data, however this ap-

proach can not be readily implemented in the field. Rather than depend on a passive

SHM approach, others have considered local SHM approaches that incorporate active

damage detection: a system of piezo actuators and sensors are combined to evaluate

changes in local material properties. One approach is to associate mechanical impedance

of the structure with the electrical impedance response of a piezoelectric material. For

example, Pitchford et al. [35] developed a self-sensing actuator: a single MFC patch

serves as both actuator and sensor. The root mean square impendence response over

a range of frequencies was correlated to changes in the local stiffness of the structure.

Others (Zayas et al. [33], Light-Marquez et al. [88], Deines et al. [34]) have developed

systems comprised of groups of PZT patches: a single patch is an actuator and multiple,

nearby patches are sensors. Damage is detected by one of several signal processing ap-

proaches, such as time series analysis and frequency transfer functions, that consider the

sensor responses given the input excitation. While there has been success in detecting

damage using either global or local SHM approaches (Rumsey and Paquette [12]) there

are some common challenges including: (1) establishing a baseline healthy state, either

from a model or from the newly manufactured wing; (2) establishing a threshold that

can account for system noise from temperature, wind variations, composite build data;

(3) locating the sensors on the blade to ensure a high probability of detecting damage;

and (4) achieving success requires high sampling rates with a number of sensors.

It is particularly challenging to use wired SHM for wind turbine blades: (1) the

blades are quite long and an extensive network of sensors is required; and (2) the

blades are rotating, posing challenges to delivering power to and receiving data from

the sensor network. There are several examples of wireless SHM in civil infrastructure

applications, [41–44] but these systems rely on batteries to power the sensors and signal

transmission components. The primary drawback to using self powered energy sources

is the combined power required for the sensors and the wireless transmitter/signal con-

ditioning components. Lim et al. [89] proposed a novel, wireless SHM system for wind

turbine blades that uses an energy harvester as both a sensor and power source. Low

frequency strain energy, associated with gravity and wind loading, is captured by an

energy harvester mounted on the blade surface and stored in a capacitor. A pulse is

transmitted to a central receiver once the energy stored in the capacitor is sufficient to
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power a wireless transmitter circuit. The timing of the pulses indicates the strain energy

at the blade surface. The transmission time is compared for energy harvesters located

on the three blades. Damage is identified by a model free SHM algorithm that utilizes

the triple redundancy of the three blades. In the paper [89], the damage threshold was

set as a 10% above the baseline “healthy” state transmission ratio data. While the

approach is promising, performance metrics such as the probability of a false alarm or

detection were not addressed.

In the present paper, a method to determine a threshold level that meets particular

performance metrics for false alarm rates and detection probability is presented. The

SHM sensors consist of the wireless energy harvester proposed in Lim et al. [89], but

instead of a ratio of transmission times, the accumulated strain energy difference data

(residuals) are used. This approach allows for the development of a stochastic model

for structural health that can accommodate the inherent noise in sensor data. The

fault detection scheme is comprised of two parts: a filter that generates scalar residuals

carrying the information of the occurrence signal indicating the status of the monitored

system and a decision logic to determine whether there is a damaged blade or not. The

remainder of the paper is organized as follows. Section 2 reviews the hardware construc-

tion of the proposed SHM system and its working mechanism with an explanation for

the EH. Section 3 presents a method designing an SHM system to satisfy probabilistic

performance indices. To demonstrate its usefulness, section 4 gives a case study to apply

the method developed in section 3 to full scale wind turbine blades. Finally, concluding

remarks are provided in section 5.

5.3 Overview of Wireless SHM System

The SHM system consists of discrete sensor nodes installed at various points along the

span of each blade (Figure 5.1). The sensing nodes consist of an EH, RF transmitter,

and capacitor for energy storage. These nodes are installed at identical locations on

each blade to enable cross-comparison of the measurements. Figure 5.2 shows the basic

signal flow in the proposed SHM system. Each blade vibrates with a dominant harmonic

related to the rotational frequency of the turbine rotor. This vibrational blade strain

energy (top panel in Figure 5.2) is accumulated as a stored electrical charge (second
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Figure 5.1: Schematic drawing of a vibration-based SHM system: (a) three identical

sensor nodes mounted on blades, (b) node with energy harvester and telemetry, and (c)

remote-sited data acquisition and health monitoring.

panel in Figure 5.2) by means of an EH. Once sufficient charge has been stored, the

RF transmitter sends a binary signal pulse to a centralized monitoring system located

in the turbine nacelle (third panel in Figure 5.2). The centralized monitoring system

processes the binary pulses from all three blades to determine if a blade has been dam-

aged (bottom of Figure 5.2). The premise of this sensing approach is that the timing

of binary pulses from the RF transmitters, which are tied to the EH charging time, is

indicative of the local blade structural health. Changes in local stiffness, associated with

blade damage, lead to a change in local blade strain [90] and, consequently, a change

in the timing of the RF pulses. These pulses are processed to estimate strain energy

accumulated at the location of each EH. The health of the blade is determined based

on the estimated strain energy. It is important to note that the blade damage will only

cause a small change in the strain and hence the signal to noise ratio is small. The

proposed methodology is predicated on accumulating energy over long time periods in

order to detect the damage (small signal) in the presence of noise (sensor noise and wind

variations).
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Figure 5.2: Construction of Model-free SHM for Wind Turbine Blades
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An EH, when subjected to time-varying strains, converts a fraction of the mechanical

strain energy input into usable electrical energy. This paper uses discrete-time steps,

∆t, to model the EH behavior. The harvested energy in a single time step Bk is given

by

Bk =

{

ηV EEHǫk(ǫk − ǫk−1) if ǫk(ǫk − ǫk−1) > 0

0 otherwise
, k = 1, 2, 3, · · · (5.1)

where V and EEH are the volume (m3) and Young’s Modulus (GPa) of the EH, respec-

tively. [89] The strain of the EH at time step k is ǫk. We assume the bond between

the EH and the blade is sufficiently strong to treat the EH strain as equal to the blade

strain. The EH efficiency η (unitless) is defined as the fraction of mechanical input

energy converted into output electrical energy. This efficiency is typically on the order

of 10−2. The total harvested energy at time k, Wk, can be expressed in terms of the

incremental harvested energy Bk. This relation is given by:

Wk+1 =Wk + (1 + gD) ·Bk. (5.2)

Equation (5.2) models the accumulated energy Wk+1 at time step k + 1 as the sum of

the energy from the previous step Wk plus the energy harvested between time steps k

and k + 1. In addition, Eq. (5.2) incorporates a parameter gD as a simple multiplica-

tive damage model. For example, matrix cracking or delamination/debonding lead to

stiffness loss in the material and can be modeled with a multiplying parameter to the

stiffness. [82] Hence, increased strain energy due to damage is expected and the degra-

dation parameter gD ≥ 0 accounts for this increase in harvested energy. The estimated

value gD for a particular laminate failure model is provided in a later section.

An overview diagram of the proposed SHM system is provided in Figure 5.3. The

hardware setup described previously consists of the EH and RF transmitter. This

block, labeled ”EH”, transmits binary pulses once sufficient blade strain energy has been

harvested. The remaining blocks constitute the health monitoring algorithm which is

performed by a centralized computer in the turbine nacelle. First, a data acquisition

system records the pulses with a logged time of receipt. The harvested strain energy at

each blade location is estimated based on these pulses using a least squares estimation.
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A key difficulty is that the three blades are subjected to unknown inputs such as the wind

forces, gravity, tower shadow effects, etc. As a result, the strain energy accumulated

at each blade is difficult to model a priori. However, the inherent triple redundancy of

the blades can be used to detect damage with a model-free algorithm. Specifically, the

strain data obtained from the same locations on each blade can be cross-compared to

generate residual signals. A residual at time k, rk, is defined as the difference between

the strain energy accumulated on two of the three blades. Three possible residuals can

be generated for each span-wise location by comparing all combinations of strain energy

estimates from blades 1, 2, and 3. The residuals have the property that they should be

small when neither blade is damaged and large when at least one blade is damaged. A

simple threshold logic can be used to determine if one or more residuals is sufficiently

large to indicate the presence of damage. Details on this algorithm are provided in

the next section. The algorithm includes several parameters: probabilistic performance

metrics including false-alarm and missed detection rates are used in the next section to

specify these algorithm parameters.

Energy

Harvester
Estimation

Math

Operation

Decision

Logic

(Strain Energy) (Residuals)(Pulses)

Blade Strain Damage?

Figure 5.3: An overview of the proposed SHM system: The hardware consists of the

EH block (Section 2) and the algorithm consists of the remaining blocks (Section 3).

5.4 SHM Design for Probabilistic Performance

5.4.1 Energy Harvester as a Sensor—Problem Set-up

The energy harvested by each sensor node is a stochastic process and this section de-

scribes a simple model that is used in the subsequent sections for probabilistic analysis.

Assume the three turbine blades have identical EHs installed at the same spanwise lo-

cation. Let W
(i)
k denote the energy harvested up to time k by a particular sensing node

at the same spanwise location on blade i (i = 1, 2, 3). Three residuals can be defined by
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cross-comparing all possible combinations of the harvested energies:

r
(12)
k =W

(1)
k −W

(2)
k , r

(23)
k =W

(2)
k −W

(3)
k , r

(31)
k =W

(3)
k −W

(1)
k . (5.3)

As noted above, the basic premise of the SHM algorithm is that a residual with large

magnitude is indicative of a damaged blade. One issue is that the centralized SHM

algorithm must estimate the harvested energyW
(i)
k from the pulses transmitted by each

node. The harvested energy at the time of pulse arrival is exactly known because a pulse

is transmitted when an EH reaches the (known) signal-transmission energy amount. The

transmission times for the three EHs are not synchronous as they accumulate energy at

slightly different rates (Figure 5.3). Thus cross-comparison of harvested energy (as in

Eq. 5.3) requires estimating the strain energy by linearly interpolating two consecutive

pulses. Specifically, assume pulses are received from an EH on blade i at time 0 and

N . The harvested energies at times 0 and N are thus known. Moreover, the estimated

energy at any time k ≤ N is given by Ŵ
(i)
k = k

N

(

W
(i)
N −W

(i)
0

)

. It is assumed that

the error introduced by this linear estimate is negligible. Thus in the remainder of the

paper, the hat is dropped and the notation W
(i)
k is used for the estimated energy for a

blade i.

Eq. (5.2) provided a simple relation for the accumulated energy W
(i)
k in terms of the

energy harvested at each time step B
(i)
k . In addition, Eq. (5.1) provided a fundamental

relation to describe the per time step harvested energy. The statistical model used in

this section takes a less fundamental, data-driven approach to modeling the harvested

energy. Specifically, the per time step harvested energy is modeled as (i = 1, 2, 3)

B
(i)
k = B̄(i) + v

(i)
k (5.4)

where B̄(i) is the mean component averaged over a statistical evaluation time τs and

v
(i)
k is the deviation. The statistical time period τs (=ks ·∆t) corresponds to an initial

operating period that is used to establish the statistical mean and variance of residuals

from healthy wind turbine blades. In other words, B̄(i) is given by

B̄(i) =
Number of Pulses× Energy/Pulse

Statistical Evaluation Time ks
for i = 1, 2, 3. (5.5)

The mean component can be different on each blade due to slight differences in the

EHs and their installation/orientation. However, the differences in the mean compo-

nent can be removed by calibration during the initial turbine life, e.g. during the
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first month. Thus we assume that the mean values are the same in all three blades,

i.e. B̄(1) = B̄(2) = B̄(3). For simplicity the superscript is dropped and B̄ denotes

this common mean component of the harvested energy. The variational component

v
(i)
k contains harmonic components due to the rotational frequencies of the blades, e.g.

harmonic strain components induced by the gravity on the rotating blades. The vari-

ational component also contains a random component due to fluctuations in the wind.

The accumulated energy in Eq. (5.2) can be rewritten as

W
(i)
k+1 =W

(i)
k +

(

1 + g
(i)
D

)(

B̄ + v
(i)
k

)

for i = 1, 2, 3 (5.6)

This relation can be substituted into Eq. (5.3) to obtain a stochastic model for the

residuals. For example, consider the comparison between blades 1 and 2:

r
(12)
k+1 = r

(12)
k + δ

(12)
k +

(

g
(1)
D − g

(2)
D

)

B̄ +
(

g
(1)
D v

(1)
k − g

(2)
D v

(2)
k

)

(5.7)

where δ
(12)
k := v

(1)
k − v

(2)
k denotes the difference between the two variational terms. The

degradation parameters and variational terms are typically small and hence the last

term can be neglected. Thus, the residual (approximately) accumulates according to

the following relation

r
(12)
k+1 = r

(12)
k + δ

(12)
k +

(

g
(1)
D − g

(2)
D

)

B̄. (5.8)

The term δ
(12)
k contains harmonic and stochastic components. The relation in Eq. (5.8)

effectively integrates (sums) δ
(12)
k over time. The sum of the harmonic components re-

mains bounded in time but the stochastic component has a standard deviation that

grows proportionally to the square root of time. Thus, over long time intervals, the

stochastic component dominates the harmonic component, and the variational compo-

nent can be modeled as a white, Gaussian process: δ
(12)
k ∼ N(0, σ2) for all k. The use

of a Gaussian process can be justified by the central limit theorem. [91] The use of zero

mean is justified since B̄ contains the mean component of Bk. Note that the variance

is denoted with no superscript, i.e. it is assumed that the three residuals have identical

variance. In fact, the variance of each residual will be different since, as noted above,

the energy harvested by each sensor will be slightly different. However, calibration in

the initial life of the turbine can again be used to normalize the statistical properties to
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justify this assumption. The residuals (23) and (31) take a similar form as that given

in Eq. (5.8).

Figure 5.4 shows a sample case of the three energy residuals. In the figure, the

residuals are shown as if blade 3 is damaged and blades 1 and 2 are healthy. As a result,

the two residuals r(23) and r(31) tend to drift from their nominal zero mean value. This

occurs because g
(3)
D is assumed to be larger than g

(1)
D and g

(2)
D . A bias is introduced to

the residual process described by Eq. (5.8) that causes these residuals to drift. On the

other hand, the remaining residual r(12) remains close to zero mean indicating a healthy

status for blades 1 and 2. The basic premise of the SHM algorithm is that residuals

exceeding a specified threshold T , e.g. |r(23)k | > T and |r(31)k | > T , are indicative of

a damaged blade. The precise logic is described below. The main design task is to

properly select this threshold T based on a fundamental design trade-off between false

alarms and missed detections. In addition, the cross-comparison is only performed at

specified times separated by kd time samples. This decision time τd(= kd · ∆t) must

also be selected to ensure a high probability of damage detection and a low probability

of declaring a false alarm.

5.4.2 Threshold Design

The energy accumulated by each of the three blades will be similar but not precisely

equal due to environmental and installation variations. As a result the three residuals

will not be identically zero in the absence of damage. For example, the model for the

residual between blades 1 and 2 (Eq. 5.8) reduces to the following if there is no damage

on either blade

r
(12)
k+1 = r

(12)
k + δ

(12)
k (5.9)

where δ
(12)
k ∼ N(0, σ2). The monitoring system must be designed to be robust to such

variations and not have excessive false alarms.

On the other hand, if there is significant damage in a single blade then the residuals

associated with that blade will drift away from zero. For example, if there is damage

only in blade 1 (g
(1)
D > 0 but g

(2)
D = g

(3)
D = 0), then the simple model in Eq. (5.8)

indicates that the residual r
(12)
k will have a bias that accumulates over time. Similarly

the damage in blade 1 will also cause r
(31)
k to drift from zero. In this example, the
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Figure 5.4: A sample case of harvested strain energy residuals is depicted. For each

decision time interval, the three residuals are initialized to zero. The residuals r(13)

and r(23) exceed the threshold at the decision time kd, indicating that blade three is

damaged.

residual r
(23)
k cross-compares the two healthy blades and this residual will remain small.

In general, damage in any single blade will cause the two residuals associated with that

single blade to drift.

The monitoring system is designed to check the residuals every τd seconds. At this

decision time (every kd steps) the magnitude of the residuals is compared against a

threshold T using the following logic based on the discussions above:

d :=



































0, if |r(12)kd
| < T, |r(23)kd

| < T, |r(31)kd
| < T

1, if |r(12)kd
| ≥ T, |r(23)kd

| < T, |r(31)kd
| ≥ T

2, if |r(12)kd
| ≥ T, |r(23)kd

| ≥ T, |r(31)kd
| < T

3, if |r(12)kd
| < T, |r(23)kd

| ≥ T, |r(31)kd
| ≥ T

4, otherwise.

(5.10)

The signal d indicates the status of the blades at the decision time. The decision value

d = 0 indicates all three blades are healthy and d = j (j = 1, 2, 3) indicates damage

in blade j. Finally, d = 4 indicates the blade health could not be determined from the
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residuals. This case could be caused by noisy/corrupted data, possible packet losses,

and/or significant damage to more than one blade. Our focus is the incipient damage

due to fatigue loading. For this type of damage, the most probable scenario is that

only one blade is in failure while the other two blades remain healthy. Thus, it is

assumed that the occurrence of d = 4 is negligible although further investigation would

be required in this case.

The threshold T is designed to ensure a low probability of false alarms. A False

Positive (FP) occurs when the SHM algorithm declares a fault (d = 1, 2, or 3) but none

of the blades is damaged (g
(i)
D = 0 for i = 1, 2, 3). The probability of false positive pFP

is thus defined as:

pFP = P
(

d = 1 or d = 2 or d = 3 | g(i)D = 0 for i = 1, 2, 3
)

. (5.11)

A simplified form for pFP is derived for use in the threshold selection. First, note that

the damage indicators d = i for i = 1, 2, 3 are mutually exclusive, i.e. at most one of

these cases can occur at the decision time. Thus, the false-alarm probability can be

expressed as:

pFP = P
(

d = 1 | g(1)D = 0
)

+ P
(

d = 2 | g(2)D = 0
)

+ P
(

d = 3 | g(3)D = 0
)

(5.12)

Next, we note that the three residuals are independent and identically distributed (i.i.d.)

in the absence of damage (g
(i)
D = 0 for i = 1, 2, 3). Thus, the three terms in Eq. (5.12)

are equal and hence we obtain pFP = 3P(d = 1 | g(i)D = 0 for i = 1, 2, 3). Based on the

decision logic defined in Eq. (5.10), this can be explicitly written as:

pFP = 3P
(

|r(12)kd
| ≥ T | g(1)D = 0

)

·P
(

|r(31)kd
| ≥ T | g(1)D = 0

)

·P
(

|r(23)kd
| < T | g(1)D = 0

)

(5.13)

As noted above, the residual should be small when there is no damage. Thus, a well-

chosen threshold will satisfy

P
(

|rkd | ≥ T | gD = 0
)

≪ 1,

P
(

|rkd | < T | gD = 0
)

≈ 1. (5.14)

The superscript is dropped in Eq. (5.14) because the relations should hold for any of

the three residuals in the condition of no damage in all three blades. Based on this
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approximation, the false-alarm probability can finally be expressed as

pFP ≈ 3P
(

|rkd | ≥ T | gD = 0
)2
. (5.15)

The approximate relation in Eq. (5.15) is used to appropriately select the decision

logic threshold. Let pFP,max denote the maximum allowable probability of false positive

probability. The threshold is selected to ensure pFP ≤ pFP,max. Based on Eq. (5.15),

the threshold must be chosen to satisfy

P ( |rkd | ≥ T | gD = 0 ) ≤
√

1

3
pFP,max. (5.16)

Next note that in the absence of a fault the residuals are governed by a stochastic

process as given in Eq. (5.9) where δ
(12)
k is an i.i.d. Gaussian process with δ

(12)
k ∼

N(0, σ2) at each k. In the absence of damage the residual at the decision time satisfies

rkd =
∑kd

k=1 δk. Thus, the residual is zero mean and satisfies rkd ∼ N(0, kdσ
2) at the

decision time. Eq. (5.16) can be expressed as with an explicit integral based on the fact

that rτ is a Gaussian random variable:

1−
∫ T

−T

1√
kdσ

√
2π

exp
−

x2

2kdσ
2 dx ≤

√

1

3
pFP,max. (5.17)

The smallest threshold satisfying this constraint is chosen such that Eq. (5.17) holds

with equality. With a chosen pFP,max, T is solved for in Eq. (5.17). The decision time

kd—to be determined simultaneously along with this step—is the only free variable in

the equation, and so a series of T is obtained corresponding to a range of kd. A lower

pFP,max or larger σ requires higher T . Larger values of the threshold consequently make

it more difficult to detect damage. Thus the selection of the threshold T involves a basic

design trade-off between false positives and damage detection.

5.4.3 Probabilistic Analysis at the Decision Time, τd

The blade residuals are checked periodically every kd time steps (τd seconds). This

section describes the method used to choose this decision time τd. Larger values of τd

increase the probability of detection. Specifically, the blade structural damage does not

improve over time or most likely degrades further. We assume the decision time period

is short relative to the damage progression time. This assumption, valid in the initial
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phase of damage when it is small in size and growing slowly, implies that the degradation

parameter gD in Eq. (5.8) can be treated as a constant bias. As a consequence, a longer

decision time τd gives more time for this bias to cause the residuals to drift away from

zero hence increasing the likelihood of detection. A True Positive (TP) occurs when

the SHM declares a fault (e.g. d = 1,2 or 3) and the corresponding blade is damaged

(e.g. g
(1)
D = gD and g

(2,3)
D ≈ 0 for d = 1). The drawback of a large value of τd is that

it delays the detection of damage in the blade. The objective of the design is to choose

the smallest possible value of τd (to ensure fast detection) while still ensuring that τd is

large enough to yield a high probability of true positive.

For concreteness, consider the case where blade 1 is damaged while blades 2 and 3

are healthy. The cases where only blades 2 or 3 are damaged can be treated similarly to

the analysis that follows. Assume the degradation parameter on blade 1 is a constant

gD. The Damage Model section will discuss how the smallest detectable damage gD

should be chosen to prevent more severe blade damage. With g
(1)
D = gD and g

(2,3)
D = 0,

Eq. (5.8) becomes

r
(12)
k+1 = r

(12)
k + gD · B̄ + δk

r
(23)
k+1 = r

(23)
k + δk

r
(31)
k+1 = r

(31)
k − gD · B̄ + δk

δk ∼ N(0, σ2). (5.18)

The probability of true positive pTP for (d = 1) is defined as:

pTP (d = 1) = P
(

d = 1 | g(1)D = gD, g
(2,3)
D = 0

)

. (5.19)

The true positive probability can be rewritten in terms of the residuals. To shorten the

notation, let g
(1,2,3)
D = (gD, 0, 0) denote the blade damage state. Then the true positive

probability is expressed as:

pTP (d = 1) = P
(

{|r(12)kd
| ≥ T, |r(23)kd

| < T, |r(31)kd
| ≥ T} | g(1,2,3)D = (gD, 0, 0)

)

. (5.20)

As in the Threshold Design section, a simplified form for pTP is derived for the decision

time selection. First, note that r(23) in Eq. (5.18) is independent of r(12) and r(31).

Thus, based on the decision logic defined in Eq. (5.10), the detection probability can be
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expressed as:

pTP (d = 1) =P
(

{|r(12)kd
| ≥ T, |r(31)kd

| ≥ T} | g(1,2,3)D = (gD, 0, 0)
)

· P
(

|r(23)kd
| < T | g(1,2,3)D = (gD, 0, 0)

)

. (5.21)

To further simplify this relation, the conditional probability formula is applied for two

correlated events A and B occurring together and conditioned on event C: P(A,B |
C) = P(A | B,C)P(B | C). Applying this fact to Eq. (5.21) yields:

P
(

{|r(12)kd
| ≥ T, |r(31)kd

| ≥ T} | g(1,2,3)D = (gD, 0, 0)
)

= P
(

{|r(12)kd
| ≥ T} | {|r(31)kd

| ≥ T, g
(1,2,3)
D = (gD, 0, 0)}

)

· P
(

|r(31)kd
| ≥ T | g(1,2,3)D = (gD, 0, 0)

)

.

(5.22)

From the discussion in the Threshold Design section, a well-chosen threshold should

cause a small residual for no damage but a large one for damage. Thus,

P
(

{|r(12)kd
| ≥ T} | {|r(31)kd

| ≥ T, g
(1,2,3)
D = (gD, 0, 0)}

)

≈ P
(

{|r(31)kd
| ≥ T} | {|r(12)kd

| ≥ T, g
(1,2,3)
D = (gD, 0, 0)}

)

≈ 1 (5.23)

From Eqs. (5.14) and (5.18), r
(23)
k should be small by considering the independence of

gD. Hence,

P
(

|r(23)kd
| < T | g(1,2,3)D = (gD, 0, 0)

)

= P
(

|r(23)kd
| < T | g(1,2,3)D = (0, 0, 0)

)

≈ 1

(5.24)

Finally, substitute the results of Eqs.(5.22 and 5.24) into Eq. (5.21) to yield the following

approximation for the probability of TP:

pTP (d = 1) ≈ P
(

|r(31)kd
| ≥ T | g(1,2,3)D = (gD, 0, 0)

)

or ≈ P
(

|r(12)kd
| ≥ T | g(1,2,3)D = (gD, 0, 0)

)

(5.25)

Eq. (5.25) is used to appropriately select the decision time. Let pTP,min denote the

minimum allowable probability of true positive probability. The decision time is selected

to ensure pTP ≥ pTP,min:

P
(

|r(ij)kd
| ≥ T | |g(i)D − g

(j)
D | = gD

)

≥ pTP,min, for i, j = 1, 2, 3 and i 6= j. (5.26)
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In this damage case, Eq. (5.26), the residuals are also governed by a stochastic process

with a mean component due to gD, i.e, Gaussian process with N(gD · B̄, σ2) at each

k time step. Thus, the residual satisfies rkd ∼ N(kd · gD · B̄, kd · σ2) at kd time step.

Eq. (5.26) can be expressed as an explicit integral because rkd is a Gaussian random

variable:

1−
∫ T

−T

1√
kdσ

√
2π

exp
−

(x−gD ·kd·B̄)2

2kdσ
2 dx ≥ pTP,min. (5.27)

A similar form of Eq. (5.27) is derived for pTP (d = 2 or 3) given the assumption that

damage to more than one blade occurs rarely often. As noted earlier, the bias term

gD · B̄ appears in (5.8) due to the damage. Larger values of gD make the residual rk

drift faster from zero and hence a damage decision can be made more quickly with the

same level of pTP,min.

5.5 Case Study: Application of SHM

In this section the applicability of the proposed SHM algorithm is explored for full scale

wind turbines. We establish harvested strain energy, residuals and statistical character-

istics for a single sensor location on all three blades that is not at the damage site. The

sensor configuration is selected such that the (harvester) step time ∆t and transmitter

pulse interval are much smaller than the statistical evaluation time τs and the decision

time τd. Given these conditions, Eqs. (5.17 and 5.27) are utilized to determine a thresh-

old and a decision time that are adequate to identify blade damage within user specified

probabilities (pFP,max and pTP,min). Estimates of the blade degradation parameter gD

and strain energy characteristics B̄ and σ are developed in the following sections. Re-

sults are presented for a range of model parameters including the probability of false

positive pFP , the probability of true positive pTP , and the decision time τd.

5.5.1 Damage Model: Estimate Degradation Parameter gD

To estimate the degradation parameter gD, we consider damage associated with matrix

cracking at a discrete location in the blade. As the blade undergoes cyclic loading, the

crack density increases and the stiffness of the damaged region (referred to as the local

stiffness) E′ decreases relative to the original stiffness E. [90] A dynamic finite element
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analysis is performed to compare the effect of the local reduction in stiffness E′

E
on

the surface strain (and hence strain energy) along the length of a wind turbine blade.

Similarly, ǫ′ is defined as the damaged beam strain while ǫ is the intact beam strain.

Because the EH and wireless transmitter assembly may not be located exactly at the

damage location, the estimate of gD is based on strain energy far from the damage site.

One challenge in creating the finite element model is that the exact geometry and

layup of full scale wind turbine blades are proprietary data. There are, however, open

access input data files for several FAST wind turbine models. [3] While these data files

do not include layup or material properties, overall geometry and cross sectional stiffness

along the length of the blade are provided. In the present study, the blade geometry

and cross sectional properties were selected to be comparable with FAST model input

for a 5MW wind turbine. [92] The blade is modeled as a 61.5 m long (x axis) thin walled

tapered beam with an elliptical cross section fabricated from glass epoxy composite. The

elliptical cross section dimensions and layup were selected such that the stiffness about

the major axis (y) of the hollow elliptical beam at the root and tip is approximately

the same as the flapwise stiffness at the root and tip of the 5 MW wind turbine blades.

At the root of the beam the cross section has a major axis length of 3 m and minor

axis length of 2.25 m. At the tip the major axis is 0.62 m and the minor axis is 0.46

m. The thin-walled outer skin is 20 mm with a quasi-isotropic layup such that, for a

shell element with local in plane axes 1 and 2, E1 = E2 = 20.45 GPa. Given the beam

geometry and material properties, the cross section bending stiffness about the major

axis (EIyy) is 229e7 Nm2 at the root and 2e7 Nm2 at the tip. The finite element model

of the beam consists of composite elements, with 24 elements around the circumference

of the beam and 246 elements along the length of the beam. The beam element includes

in plane and out of plane displacements, rotation and warping. Orthotropic material

properties may be specified.

The damaged blade was modeled by reducing the stiffness of several shell elements

located at 20.5 m from the root on the top surface (Figure 5.5). To quantify the stiffness

loss that can occur as a result of matrix cracking, test data for wind turbine blades [90]

and models of thin walled helicopter rotor blades [93] were considered. These studies

indicate that the local reduction in stiffness associated with matrix cracking ranges

from 13 to 40%. In estimating gD, the size of the damaged region is varied as well as
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Figure 5.5: Strain Amplitude of an Intact Thin-Walled Finite Element Beam and Degra-

dation Area: The beam is 61.5 m long and three sizes of degradation are considered at

20.5 m location as shown in the insets.

the extent of damage. For the most severe case of damage imposed in the beam finite

element model, the damaged area is approximately 1 m wide by 1.1 m long and with

E′ = 0.6E. For the least damaged case, the damaged area is 0.25 m wide and 1.1 m long

with E′ = 0.8E. Both laminate directions 1 and 2 are degraded because the laminate

is quasi-isotropic. In all, six combinations of size and extent of damage were evaluated.

The hollow beam was subjected to a 0.2 Hz uniformly distributed sinusoidal load

in the xz plane. The load frequency corresponds to the FAST 5 MW wind turbine

rotational speed in region 3. The load magnitude is such that strain amplitude ǫzz

at the root of the beam is approximately 400 µ-strain—a strain level comparable to

strain that occurs for full scale wind turbines under operational conditions. [81] The

model output includes stresses, strains, rotation and displacement at all element nodes.

Figure 5.5 shows the strain amplitude of a damaged beam along the length of the beam

for the case where the damage area is 1 m × 1.1 m and the extent of damage ratio E′

E

is 0.6. For this case the surface strain ratio ǫ′

ǫ
along the top surface reaches a value

of 1.15 at the damage location and approaches 1.0018 away from the damage location.

This asymptotic strain level is referred to as the far field strain. The gD is obtained by

comparing ǫ′ to ǫ:

gD =

(

ǫ′

ǫ

)2

− 1. (5.28)

The degradation parameters for the far-field strain change between intact beams and
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Table 5.1: Degradation Parameter gD

E′ = 0.8E E′ = 0.6E

Small Size (0.25 m × 1 m) 0.0005 0.0011

Medium Size (0.5 m × 1 m) 0.0008 0.0018

Large Size (1 m × 1 m) 0.0017 0.0035

damaged beams are reported in Table 5.1. The parameter ranges from 0.0005 to 0.0035

for the cases considered.

5.5.2 Characterization of the strain data: B̄ and σ

The algorithm requires strain energy characteristics for a healthy blade: the average

of harvested energy per time step B̄ (Eq. 5.5) and the noise in the strain pulse data σ

(Eq. 5.9). To quantify these characteristics for a full scale wind turbine, we evaluated

strain data from a 2.5 MW C96 Clipper Liberty Wind Turbine [86] that is operated

by the Eolos Wind Research Consortium [56] at the University of Minnesota. The 2.5

MW clipper wind turbine is relatively new and the assumption is that the strain data

are representative of healthy turbine blades. The turbine has a rotor diameter of 96 m

and tower hub height of 80 m. The three blades are instrumented with ten fiber optic

strain gages installed at various points of each blade for research purposes. They are

located at the leading edge, trailing edge, high, and low pressure sides of the blade root;

and high and low pressure sides of 25%, 37.5%, and 45% blade span length. For each

sensor, strain is continuously recorded at a frequency of 20 Hz. The strain data include

several sensing errors such as bias, bias drift, scale error, high frequency chatter and

signal drop-outs. Therefore, a data cleansing step is required to remove these errors.

Once the strain data are conditioned, then the accumulated energy W
(i)
k and incre-

mental change in energy B
(i)
k are evaluated for a common sensor location across the

three blades. The harvested energy (and hence W
(i)
k and B

(i)
k ) depends on the EH char-

acteristics (Eq. 5.1). In the case study, we consider an MFC EH with efficiency η =

0.4%, [89] surface area 28 mm by 15 mm by 0.3 mm thick, and stiffness E = 30 GPa.

The statistical characteristics of the harvested energy B̄ and σ are obtained over the

evaluation time τs, such that τs is of the same order of magnitude as the decision time
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and much greater than the pulse interval. In the present study, τs= 1 month and the

values of B̄ and σ are calculated for each month of Eolos wind turbine data from May

through November 2013. The accumulated energy for each bladeW
(i)
k is scaled such that

the three energy increment averages are approximately equal, i.e. B̄(1) ≈ B̄(2) ≈ B̄(3).

This step compensates for the slight differences in the harvested strain energy between

the three blades. For the Eolos wind turbine, B̄ ranges from 0.008 µJ/step in June to

0.0121 µJ/step in September 2013.

The noise depends on the variability in the residual at each time step rk based on

the variance in the data over the statistical evaluation time τs. The τs is divided into

m time windows. The residual for the ith window rk,i (where i = 1, 2, 3, · · · ,m ) is a

discrete data set. Each data set is shifted by a constant such that the initial residual

value is 0. The variance across all of the residual data sets at the kth time step is

ρ2k =

∑m
i=1 r

2
k,i

m
, k = 1, 2, 3, · · · , kf . (5.29)

Because rk is assumed to be a random variable, rkf ∼ N(0, ρkf ), σ satisfies the relation,

σ2 =
ρ2kf

kf
. (5.30)

The validity of this approach is demonstrated in Figure 5.6. EOLOS strain data

for the month of August 2013 are divided into 10 windows (m = 10) with the initial

strain energy for each window set to zero (Figure 5.6 a). The individual variances for

each time step k (i.e. ρk, Eq. 5.29) are calculated and compared to the stochastic model

(Eq. 5.9). In Figure 5.6 (b), the solid smooth curve is drawn from the standard deviation

of rk,
√
kσ, where σ is calculated from Eq. (5.30). There is a good agreement between

the stochastic model and the data (Figure 5.6 b). Following this approach, the noise

in the Eolos strain data σ ranges from 0.102 µJ in August to 0.392 µJ in November

2013 (see appendix C). The monthly σ data are compared to the real power output and

wind speed at the same month in Figure 5.7. As shown, the trend of σ is reflected by

the wind turbine operation and wind speed. This observation confirms the legitimacy

of the earlier assumption—the energy difference between blades is mainly due to the

stochastic nature of the wind.



78

5 10 15 20 25 30 35
−300

−200

−100

0

100

200

300

400

Time [hr]

R
es

id
ua

l [
µJ

]

(a) Divided Residuals for Aug. 2013

0.5 1 1.5 2 2.5

x 10
6

0

20

40

60

80

100

120

140

160

k (steps)
S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 r k a
nd

 ρ
k

(b) Propagation of STD in Aug. 2013

Stochastic Model
√k σ

Eolos Data
ρ

k

35 hour

Figure 5.6: (a) Division of residuals in August 2013 for three blades into ten windows

superimposed, (b) Propagation of the standard deviation of the residuals for August

2013

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

May June July Aug. Sep. Oct. Nov.
Month

N
or

m
al

iz
ed

 σ
 (

r)
 / 

W
in

d 
S

pe
ed

 (
g)

 / 
R

ea
l P

ow
er

 (
b)

 

 

σ

Wind Speed

Real Power
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ized σ: The residual variance follows the trend of the turbine power output.

5.5.3 Results

The SHM algorithm provides a statistical approach to detect damage based on the

variation in the energy harvested over the decision time. In earlier sections, numerical

values for gD (0.0005 ∼ 0.0035), B̄ (0.0104 µJ/step) and σ (0.102 µJ) were obtained
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for full scale wind turbine blades operated in August 2013. Given these system charac-

teristics, the monitoring performance (pTP and pFP ) as a function of decision time was

determined by simultaneous solution of Eqs. (5.17 and 5.27). The trade-off relationship

between damage level and decision time is investigated.

In evaluating the performance, target limits for pFP,max and pTP,min are established

as follows. To limit pFP,max to one false positive over the turbine service life τL for a

decision time (in units of seconds) τd, then

pFP,max =
τd

τL
. (5.31)

In the study, decision times ranging from 13 to 50 days are considered and the turbine

service life is 20 years. Thus, pFP,max ranges from 0.18% to 0.68%. The pTP,min is set

to 90%. This limit results in a nearly 100% detection rate, the total probability of a

true positive pTP,total, after several consecutive inspections. The total probability after

n consecutive decision cycles is the sum of a geometric series with a common ratio of

1− pTP,min:

pTP,total = pTP,min · 1− (1− pTP,min)
n

pTP,min

. (5.32)

For example, if n = 8, the pTP,total is approximately 1. For comparison, consider that

commercial flight control electronics are required to have no more than 10−9 catastrophic

failures per flight hour. [85, 94].

One approach to evaluate the sensitivity of the SHM algorithm is to plot the Receiver

Operating Characteristic (ROC) curves, pTP as a function of pFP , for constant decision

times. These ROC curves at each decision time are constructed by varying the threshold

T from 0 to ∞ (see Eqs. 5.17 and 5.27). Figures 5.8 and 5.9 show ROC curves for two

cases of blade damage, gD = 0.0008 and gD = 0.0035, for decision times ranging from 13

to 200 days. The ideal position in the ROC space is in the upper left corner of the plot,

when pTP is the highest and pFP is the least. This optimal configuration is approached

as the decision time increases. For gD=0.0008, a decision time much greater than 200

days is required to achieve a 90% pTP with pFP less than 1%. For a higher level of

damage, such as gD=0.0035, the target performance of 90% pTP with pFP < 1% is

achieved with a decision time of 50 days. The effect of threshold level is also apparent.

While it is feasible to achieve a high pTP as T approaches 0 (along an ROC curve), pFP

also increases: both pTP and pFP are likely when the T is small. The combination of
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Figure 5.8: Receiver Operating Characteristic Curves for damage gD = 0.0005. To

meet the performance targets of 90% pTP with pFP < 1%, the decision time increases

significantly when the degradation parameter is small.
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Figure 5.9: Receiver Operating Characteristic Curves for damage gD = 0.0035.

both a high threshold and long decision time leads to an optimal combination of pTP

and pFP .

The challenge in detecting damage when τd is short is illustrated in Figures 5.10 and

5.11. Both figures show the decision time as a function of the degradation parameter

for pTP,min ≥ 50% when pFP,max = 0.7%. Figure 5.10 is for the baseline case where
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B̄ = 0.0104, and Figure 5.11 is for the case where B̄ = 0.0416 (a factor of 4 increase).

For either scenario, the decision time increases significantly when either the target pTP

increases or the degradation parameter decreases. Consider the lower energy case Fig-

ure 5.10. When gD = 0.0035, the decision time to achieve 90% pTP is 50 days. If a

higher pTP is desired, the decision times to achieve 99% and 99.9% pTP are 90 and 180

days respectively. Decreases in the level of damage have a similar effect. If the damage

decreases by a factor of 2, such that gD = 0.0017, then the decision time required to

achieve a 90% pTP is 200 days. For a utility-scale wind turbine, a time period of 200

days is approximately 3 % of the 20-year life. This ratio can be compared to the fatigue

testing result of 9 meter carbon fiber blades by Paquette et. al [90]. They simulated the

20-year turbine life in a 2 × 106 cycle test. The number of cycles from crack initiation

to noticeable surface cracks was 0.25×106, which is approximately 12.5% of the 20-year

lifetime. If the SHM must detect damage on the order of 0.0017 within 25 days, then

pTP is less than 50%, a performance level that may be unacceptable. In sum, a high

detection probability or a small level of damage requires more time for the damage bias

to accumulate and cause a detectable drift in the residual.

A proportional reduction in decision time can be achieved by increasing the quan-

tity of energy harvested B̄. For example, the potential effect of increasing the energy

harvested by a factor of 4 with B̄ = 0.04 (while σ is increased to 0.204) can reduce the

decision time. In this case, noise which comes from the EH could become less effective

relatively due to increased harvested energy. As expected, the decision time to detect

damage with gd = 0.0017 with a pTP of 90% is reduced from 200 days to 50 days. Higher

levels of harvested energy can be achieved by increasing the energy harvester surface

area and/or improving the energy harvester efficiency.

5.6 Summary and Conclusions

This paper investigated an SHM algorithm to detect damage in wind turbine blades.

The algorithm utilizes model-free monitoring, which does not require information about

blade geometry, blade material type or accurate external force. The system relies on the

accumulated strain-energy difference between EH sensors installed on the same locations

of three blades. The sensors harvest low frequency (< 0.2 Hz) vibrational energy from
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enhanced EH by increasing surface area, B̄ = 0.0416 µJ/step and σ = 0.204 µJ

the blades and wirelessly transmit a pulse once sufficient energy has been stored. The

premise of this sensing approach is that the timing of signal transmissions is indicative

of the structural health of the blade. Signal transmission timings of a damaged blade

differ from the timings of undamaged blades so that damage can be detected.

The SHM was developed specifically for a self-powered wireless system. The sensors

consist of a Piezo-electric EH, and RF transmitter. Because blade damage causes local

stiffness loss that leads to a change in blade strain, strain-energy quantities are compared

between blades based on received pulses. To compare strain energies, a residual was

defined as the difference between two blades. A residual remains small (but not zero

due to noise σ) when neither blade is damaged but becomes large when one blade is
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damaged.

The key feature of the algorithm is to discern damage from noise. Noise creates false

alarms even when there is no damaged blade. A stochastic model for the residual incor-

porated the noise—using an i.i.d. Gaussian random variable—and enabled a theoretical

SHM design methodology. A satisfactory SHM design was obtained for good detection

performance: a low false alarm rate (Probability of the False Positive pFP ) and high

detection rate (Probability of the True Positive pTP ). Damage detection depends on

the strain energy available B̄ and the level of degradation gD. If either B̄ or gD (or

both) is large, the damage can be more quickly detected.

To design an SHM system, estimation of gD for targeted damage types and statistics

(B̄ and σ) were obtained. Appropriate damage scenarios—0.25, 0.5 and 1 m × 1.1 m

damage size with 20% and 40% degradation—were applied to a thin-walled tapered

hollow beam. Global degradation was found from 0.0005 to 0.0035. And B̄ and σ

were obtained from a full scale wind turbine, called Eolos, during the period from

May to November 2013. The calculated σ followed well the trend of wind speed and

turbine power output. And propagation of standard deviation from Eolos data was well

matched with the proposed stochastic model. Using August 2013 data, large damage

of gD = 0.0035 could be detected after 50 days with pFP = 0.7% and pTP = 90%

by a stamp-sized EH. As noted, the decision time can be reduced with the increased

harvested energy. When the size of the EH was scaled up by four times, then the decision

time could be decreased to 13 days for the same size of damage with the same level of

probabilities. Half the size of the damage, gD = 0.0017, could be detected after 50 days

by the scaled-up EH. Thorough research regarding the EH design and EH’s effects on

the statistics of a residual is left for future work.

Nomenclature

B̄ = Average of strain energy one-step increment, [µJ/step]

Bk = Strain energy one-step increment, [µJ/step]

E = Young’s Modulus of a composite blade, [GPa]

E′ = Degraded Young’s Modulus, [GPa]

EEH = Young’s Modulus of an EH, [GPa]
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gD = Degradation parameter, [-]

kd = Decision Time, [step]

kf = Last time step of the given time frame, [step]

ks = Statistical Evaluation Time, [step]

m = Number of divided windows from the evaluation time, [-]

pFP = Possibility of False Positive, [%]

pTP = Possibility of True Positive, [%]

r
(ij)
k = Residual of i, j blades at time k, [µJ]

T = Threshold, [µJ]

V = Volume of an EH, [m3]

vk = Variational term in Bk, [µJ]

W
(i)
k = Strain energy of the EH in the blade i, [-]

n = Integer, [-]

∆t = Step time, [sec/step]

δk = Random Variable in the residual, [µJ]

ǫ = Strain of a composite blade, [µ-strain]

ǫ′ = Strain of a damaged composite blade, [µ-strain]

σ2 = Variance of δk, [µJ
2]

ρ2k = Variance of rk, [µJ
2]

η = EH Efficiency, [-]

τd = Decision time, [sec]

τL = Wind turbine’s life time, [sec]

τs = Statistical evaluation time, [sec]



Chapter 6

Conclusions & Future Work

This dissertation presents a novel wireless structural health monitoring (SHM) method-

ology for wind turbine blades. A wireless sensor node, comprised of an energy harvester

(EH) and telemetry module, can be attached to the surface of the blades. The proposed

system employs an off-the-shelve EH, telemetry, and signal conditioning unit. Once an

EH captures sufficient electricity, the transmitter generates a pulse. The SHM algorithm

was specifically designed to utilize the pulse intervals and to compare a set of intervals

from three blades. The focus of this thesis was to demonstrate the feasibility of this

SHM approach. In particular, feasibility requires: 1) an estimation of the strain energy

available from a healthy rotor blade; 2) evaluation of EH efficiency to convert strain

energy at low frequency of blade loading; 3) design of the detection algorithm; and 4)

demonstration of the capability of the algorithm.

It is important to evaluate strain energy, because blade damage is associated with

stiffness loss, which changes the strain energy. The strain energy was quantified for typ-

ical sizes of full-scale wind turbines over three levels of turbulence intensity. The FAST

(Fatigue, Aerodynamics, Structures, and Turbulence) simulator was used to determine

blade bending moments by which strains were calculated. Based on the simulation,

the maximum strain occurs at about half the first modal frequency of the blades in a

distance of approximately one third of the blade length from the hub. For the three

turbine models, the maximum strain amplitude is ∼550 µ-strain at 0.2 Hz for the 5

MW offshore turbine. For the 5 MW model at the rated wind speed (11.4 m/s), ∼400

µ-strain can be expected.

85
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An EH converts the strain energy into usable electricity. The converted electric

energy could be estimated by available strain energy multiplied by a conversion effi-

ciency, which depends on an input frequency. This efficiency was studied analytically

and experimentally. In the experiments, a 20 cm long aluminium beam with a triangle

area from the middle to the root was designed so that a uniform strain field could be

secured. For a commercial EH (MFC M2814 P2 type from Smart Material), approxi-

mately a 0.48% efficiency was obtained at the typical wind turbine’s rotational speed

of 0.2 Hz. The study provided a methodology to calculate the charging time for any

type of piezoelectric EHs working for wind turbine blades. For example, the working

condition of ∼400 µ-strain at 0.2 Hz with the 0.48% efficiency requires ∼8 minutes for

a transmitter to send one strain measurement (which requires ∼280 µJ).

Intermittent sampling of measurements—due to low power availability—is challeng-

ing for signal analysis. To overcome this challenge, the SHM algorithm was based on

the performance evaluation of pulse timings of the three EHs—installed at the same

locations on the three blades (i.e. the hardware redundancy). When three EHs are

compared, a strain measurement is not necessary. As a result, the energy requirement

could be reduced from ∼280 to ∼100 µJ for one signal transmission. Thus, the timing

of signal transmissions was used as an indicator of the structural health.

To process pulse data, two metrics were suggested: the ratios of signal timings (i.e.

transmission ratio) and the difference between signal timings (i.e. residuals). For either

method, damage is indicated when the energy ratio or residual exceeds a threshold level

for 2 out of the 3 blade comparisons. The algorithm that is based on transmission

ratios requires minimal data processing but is not robust, because system noise cannot

be incorporated. Noise is unavoidable, and is the term which creates false alarms even

when there is no blade damage. The residual algorithm utilizes a stochastic model

that incorporates noise (using an i.i.d. Gaussian random variable), and reduces false

alarming.

The effectiveness of the proposed SHM algorithms was evaluated using strain data

from the 2.5 MW Eolos wind turbine. Using the transmission ratio approach, simu-

lated damage of 20% increase in harvested energy (due to local stiffness loss) could be

detected by a heuristically chosen 10% threshold. For the residual stochastic approach,

statistics data during the period from May to November 2013 of the 2.5 MW turbine
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were used to characterize the system noise. The propagation of standard deviation

from the Eolos data was well matched with the proposed Gaussian model of noise. The

standard deviation of the residual followed the trend of wind speed and turbine power

output. Damage detection also depends on the available strain energy B̄ and the level

of degradation gD. If either B̄ or gD (or both) is large, the damage can be more quickly

detected. To quantify gD, a finite element model of a thin-walled tapered hollow beam

was simulated for appropriate damage scenarios of 0.25-1.1 m2 damage size with 20%

and 40% loss in stiffness. The calculated damage factor ranged from 0.0005 to 0.0035.

For a damage factor of 0.0017, blade damage could be detected after 200 days with

pFP = 0.7% and pTP = 90% by a stamp-sized EH. An enhanced energy harvester by

either increasing the EH surface area or efficiency can reduce the decision time.

The proposed SHM system can provide early warning of the onset of damage even

with this basic algorithm. Using a redundant approach, the algorithm does not require

detailed design or operating conditions such as loading, the blade geometry, compos-

ite material properties, and boundary conditions. The SHM algorithm that is based

on residuals allows for a user to define the detection accuracy, and a high detection

probability can be expected with limited information.

This dissertation provided fundamentals to design an SHM system. Based on this

study, further investigations on harvested strain energy and noise can improve the SHM

system. The decision time can be reduced by increasing harvested energy and decreasing

noise. Harvested energy depends on the capability of the EH, and lower noise can

be expected by an enhanced EH. The source of noise needs to be studied thoroughly.

Dynamic correlation of noise to environmental factors including an EH and wind loading

can provide a key to reduce noise. The study of applying a non-stationary random

variable with various distribution functions is left for future work.

The system can be also improved by a multiple-sensor network. Because the pro-

posed system is wireless, the sensing nodes can be installed on a currently operational

turbine (retrofit). Unlike other wire-based methods, wireless SHM offers installation

flexibility at low cost, and the sensor-network can be easily expanded. With multiple

sensors on a blade along the longitudinal direction, the algorithm can potentially locate

damage and quantify the severity of damage (prognosis), comparing neighboring EHs.
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Due to its low cost and easy installation, the sensor-network can be expanded to an en-

tire wind farm. Expanding the sensor network to include SCADA (supervisory control

and data acquisition) data or multiple turbine EH/sensor data could lead to improved

statistical performance (pFP and pTP ).
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Appendix A

Examples and Validation for

Energy Harvesting

A.1 Examples of Input Energy Calculation

Figure A.1: Two Excitations of Strain Input to EHs

Example 1. Consider two harmonic excitation modes as shown in Figure A.1. For the

case (a), an EH is under a fully reversed excitation. The available strain energy Win,a

for one cycle as in the figure can be obtained by

W
(1)
in,a = 2 · 1

2
V E

ǫ2a
τ
τ = 1 · V Eǫ2a. (A.1)

Eq. A.1 can be generalized for n cycles as

W
(n)
in,a = n · V Eǫ2a. (A.2)
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For the case (b), an EH is stretched only in one direction by ǫb for two cycles. In this

case, ǫb is a peak-to-peak value, and a root-mean-square (RMS) amplitude is used in

the form of Eq. A.2 in the same way. Win,b can be calculated as

W
(2)
in,b = 2 · 1

2
V E

ǫ2b
τ
τ = 2 ·

(

ǫb√
2

)2

V E. (A.3)

A general equation for a peak-to-peak amplitude ǫb with n cycles can be expressed as

W
(n)
in,b = n · V E

(

ǫb√
2

)2

. (A.4)

In Figure A.2, available strain energy is depicted for each case. The figure confirms

Figure A.2: Two Excitations of Strain Input to EHs

that two cases for a mean-to-peak and peak-to-peak amplitude have identical amount

of input energy in the same expression as Eqs. (A.2 and A.4).

Example 2. Consider a singular harmonic strain function ǫ(t) for thirty cycles (60 secs).

ǫ(t) = 2 sin 2π
1

2
t. (A.5)

The strain energy can be calculated by the discretized method in Eq. 3.16, and the

result is compared to an analytic value in Eq. 3.14 as follows.

Solution From Eq. (3.14),

Wexact = 60× 2
1

2
× 1

2
V E × 22 = 120V E (A.6)



102

Using Eq. (3.16) and 103 discrete steps, then

∆t =
6

10000
= 0.006 (A.7)

ǫk = 2 sin(0.006πk), (k = 0, 1, · · · , 10000), (A.8)

and

Wnum = V EΣ10000
1 ǫk · (ǫk − ǫk−1) , if ǫk · (ǫk − ǫk−1) > 0 (A.9)

Wnum = 0 , else . (A.10)

Numeric simulation gives Wnum of 121.78V E. The simulation result will become close

to the exact solution Wexact of 120V E with increased step number.

A.2 Validation of the Experiment Set-up

This section presents the strain calculation for the design and strain validation. First,

the way to obtain a uniform strain field is explained. While the bending moment M(x)

increases to the root, the width b(x) also increases as shown in the diagrams. The

longitudinal position variable x in b(x) cancels the x in M(x)(= Fx) of the strain

equation. The strain in the span of L
2 ≤ x ≤ L is found by

ǫ(x) =
My

EI
=

Fxh
2

E b0xh3

12L

=
6FL

Eb0h2
(= ǫL) (

L

2
≤ x ≤ L). (A.11)

As in Eq. A.11, the strain ǫ(x) is independent of x, and this implies that the strain is

constant.

Second, the set-up is validated by discrete strain values calculated both analytically

(Figure A.3) and numerically (Figure A.4) using commercial software. Calculated values

were matched to strain gage measurements as well. A desired strain value in the triangle

area is set by a tip displacement (which is measured and controlled easily rather than

using tip forces). Then, strain needs to be expressed in terms of a tip displacement δ(0)

that can be specified by the exciter. δ(0) can be obtained from displacements δ(x) over

the length of the beam as

δ(x) =
1

EI

∫ ∫

M(x)dx2 =
F

E b0xh3

12L

(

1

6
x3 − 1

2
L2x+

1

3
L3

)

. (A.12)
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Figure A.3: Strain and Moment Distribution Charts for an Experimental Beam

The tip displacement is at x = 0 as

δ(0) =
8FL3

Eb0h3
(A.13)

which equates the tip force F as

F =
Eb0h

3

8L3
δ(0). (A.14)

Substitute F into the strain Eq. A.11 and we get the strain in terms of the tip displace-

ment δ(0) is the formula from the strain to the displacement.

ǫ(L) =
6L

Eb0h2
· Eb0h

3

8L3
δ(0) =

3h

4L2
δ(0). (A.15)

The command input δ(0) of the tip actuation can be dictated by a desired ǫ(L) as

δ(0) =
4L2

3h
ǫ(L). (A.16)

From Eq. A.15, the analytic strain value is 370 µ-strain in the triangular area when

δ(0) = 10mm. Numerical analysis gave strain values from 510 to 552 µ-strain (42 µ-

strain (8%) difference) in the area. Measured values are 311 (bottom) and 349 (top)
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Figure A.4: ANSYS simulation validates beam design to have uniform strain field. A

straight beam (a) has greater strain gradient from its root to the tip than a tapered

beam (b), which has smaller variation in the one-third area.

µ-strain with 38 µ-strain difference (12%). Both the simulation and experiment showed

top and bottom values in a good agreement with small difference (∼ 10%). Particularly,

the simulation results have higher values than the analytic or experimental values. The

thickness of the beam is only 2 mm and thin, and the width decreases to the tip.

While the analytic solution is derived from a beam theory, the design beam had been

actually behaving like a plate, and the radius of curvature approaching to the notches

inevitably increased while bending. On the contrary, a linear beam has a uniform radius

of curvature in any longitudinal location. But measurements were smaller than numeric

simulation results (or were close to the analytic solution), because the root constraint

does not perfectly hold the beam, and material properties may not be exact to numbers

simulated.

Figure A.4 (a) shows also the strain gradient of a straight beam which is bent by

the same amount of the tip displacement to the designed beam in (b). For this straight
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beam, a top gage and a bottom gage—of the same locations of the triangular beam (b)—

gives 495 µ-strain and 697 µ-strain respectively (difference of ∼200 µ-strain, 40%). This

result confirms the validity of the new design proposed in Figure 3.4.



Appendix B

Strain Energy Estimation

Wireless sensor nodes generate pulses when electricity converted from strain energy by

an EH is sufficient. Three sensor nodes installed in each blade are cross-compared,

yielding a strain-energy residual. In general, pulses generated by three nodes are not

only asynchronous but also infrequent as shown in Figure B.1. Thus, strain energy is

estimated from pulses, and this section explains the procedure of the estimation and

the size of the estimation error.

B.1 Least Square Estimation

Let W ◦ be the amount of energy use for one time transmission, n the number of pulses

received during the inspection window and θ the total interval (steps) between the

inspection times. Then, B̄ is a mean of strain increments from the previous inspection

time to the current time.

B̄ =
Number of Pulses× Energy/Pulse

Statistical Evaluation Time
=
n ·W ◦

n · θ =
W ◦

θ
. (B.1)

And the per time step harvested energy Bk can be rewritten having B̄ and a time

variational term vk such as

Bk = B̄ + vk. (B.2)

When vk is Gaussian and IID, the best estimate of strain energy at step k is

Ŵk =
(1

θ
k + n− 1

)

·W ◦. (B.3)
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Figure B.1: Discrete Pulses over Time: Asynchronous pulses of three EHs are shown,

and accumulated strain energy can be estimated by interpolation between two neigh-

boring pulses.

Proof. Let B ∈ ℜθ×1, W̄ = W ◦1θ×1, x ∈ ℜ, v ∈ ℜθ×1, k ∈ [1, 2, · · · , θ], and strain

energy time increment equation is

B = W̄ · x+ v. (B.4)

If we get the best estimate of the strain increment, then we can get the best estimate

of the strain energy. So, let’s find the best estimate of energy increment instead of W̄ .

B̂ = W̄ · x̂ (B.5)

where

x ∈ {1
1
,
1

2
, ·, 1
θ
}. (B.6)

Let a cost function J be

J = (B− B̂)T · (B− B̂) = (B− Ŵ · x̂)T · (B− W̄ · x̂) (B.7)

= BTB− x̂TW̄
T
B−BTW̄x̂+ x̂TW̄

T
W̄x̂. (B.8)
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And minimize the cost function J over a free variable x̂ as

∂J

∂x̂
= −BTW̄−BTW̄+ 2x̂TW̄

T
W̄ = 0. (B.9)

W̄
T
W̄x̂ = W̄

T
B. (B.10)

Thus, the best estimate x̂ can be obtained as

x̂ =
(

W̄
T
W̄
)

−1
W̄

T
B (B.11)

=















W ◦2
[

1 1 · · · 1
]
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1 1 · · · 1
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B1
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Bθ















(B.12)

=
W ◦

W ◦2(1 + 1 + · · ·+ 1)
· Σθ

1Bi (B.13)

=
1

θW ◦
·W ◦ =

1

θ
. (B.14)

Thus,

B̂ = W̄ · 1
θ
= B̄ · 1θ×1 (B.15)

, and total energy is aggregated from the initial pulse for n pulses as

Ŵk = (k ·+(n− 1)θ) B̄ =
(k

θ
+ n− 1

)

·W ◦. (B.16)

�

Figure B.2 is provided to illustrate how estimated quantities are compared to true

values by using the least square estimation in the above method.
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Figure B.2: Concept of Estimated Strain Energy Over Discrete Time, k

B.2 Propagation Error of Estimation

The size of estimation error can be obtained by calculating the covariance Pk of the

error.

Pk = E[(Wk − Ŵk) · (Wk − Ŵk)
T ] (B.17)

= E[(

k
∑

i=1

Bi − kB̄) · (
k
∑

i=1

Bi − kB̄)T ] (B.18)

= E[
k
∑

i=1

vi ·
k
∑

i=1

vTi ] (B.19)

For a scalar system, having the property of the variance vi as

E[vi] = 0, and E[v2i ] = σ2, (B.20)

(B.17) becomes

Pk = kσ2 + 2{E[v1v2] + E[v1v3] + · · · + E[vk−1vk]}. (B.21)

Note the fact that the sum of variations vs in one interval becomes zero:

θ
∑

i=1

vi = 0 (B.22)

From (B.22),
θ
∑

i,j=1

E[vivj] = −θσ
2

2
, for i 6= j. (B.23)
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If any two noise terms are equally correlated, and then from (B.23)

E[vivj] = − σ2

θ − 1
, (i 6= j). (B.24)

Therefore, Pk becomes

Pk = kσ2 − 2
k(k − 1)

2

σ2

θ − 1
=
k(θ − k)

θ − 1
σ2 (B.25)

The maximum error occurs at k = θ
2 as

max[Pk] =
θ2

4(θ − 1)
σ2 (B.26)

Thus, the error is maximum in the half of a pulse interval, and there is no error at the

moments of pulse receival.



Appendix C

Monthly statistics for residuals

To design an SHM system (a threshold T and decision time τ), a random walk model

with a Gaussian random variable was used for a residual. The variance σ2 and mean

strain energy increment B̄ in this model are needed. From the Eolos 2013 strain

database, strain energy residuals are calculated. Based on the processed data, σ2 and

B̄ were obtained in Table xx for a long-term time scale of a month. Standard devia-

tion propagation of a residual for each month from May to November 2013 is shown in

Figures C.1 to C.6

C.1 Statistics Results
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Table C.1: Monthly σ and B̄ for the SHM system design

Month B̄ [µJ/step] σ [µJ]

May 0 0082 0.1314

June 0.008 0.1321

July N/A N/A

August 0.0104 0.1020

September 0.0121 0.1050

October 0.0063 0.1319

November 0.0117 0.3916

December 0.0099 0.5096
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Figure C.1: Standard deviation propagation of a residual over 36 hours in May 2013 for

Eolos Turbine Blades.
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Figure C.2: Standard deviation propagation of a residual over 36 hours in June 2013

for Eolos Turbine Blades.



114

5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

Time [hr]

S
T
D

 o
f 

W

Aug. 2013 (Calibrated)

Figure C.3: Standard deviation propagation of a residual over 36 hours in August 2013

for Eolos Turbine Blades.
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Figure C.4: Standard deviation propagation of a residual over 36 hours in September

2013 for Eolos Turbine Blades.
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Figure C.5: Standard deviation propagation of a residual over 36 hours in October 2013

for Eolos Turbine Blades.
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Figure C.6: Standard deviation propagation of a residual over 36 hours in November

2013 for Eolos Turbine Blades.



Appendix D

Matlab Codes

D.1 Pulse Calculation (EH an Telemetry)

function return dT = PulseCal(BldST,Keh,W)

% Pulse Calculation by EH and Energy Demand W

%

% EW = PulseCal(BldST,Keh,W,dix) simulates wireless trans mission

% with an energy demand W powered by an EH with Keh.

% This returns pulse timing.

% 2013-11-13

% Modified 2014/06/15

% Dongwon Lim

k = 0:length(BldST)-1;

% Parameter setting

dBldST = [zeros(3,1) BldST(:,2:end) - BldST(:,1:end-1)];

%% Initialization

jx = [1 1 1];

[bldn,tend] = size(BldST);

EW = zeros(bldn,tend);

h = zeros(bldn,tend);

% Ix = h;

118



119

% dT = h;

%%

for j=2 : tend

for i=1:bldn % Blade #

if BldST(i,j) * dBldST(i,j) > 0

EW(i,j) = EW(i,j-1) + Keh * BldST(i,j) * dBldST(i,j) * 1e6; % [uJ]

else

EW(i,j) = EW(i,j-1);

end

end

h(:,j) = EW(:,j)/W;

for i=1:bldn

if floor(h(i,j)) - floor(h(i,j-1)) == 1

Ix(i,jx(i)) = j;

dT(i,jx(i)) = k(j);

jx(i) = jx(i) + 1;

EW(i,j) = 0;

end

end

end

%% Time diff.

% DdT = [dT(:,1) diff(dT,1,2)];

% M1 = interp1(dT,DdT,k);

% derv = diff(DdT)./diff(dT);

%% Checking

% figure; hold on;

% stem(dT(1,1:end-2),DdT(1,1:end-2),'b');

% stem(dT(2,1:end-2),DdT(2,1:end-2),'g');

% stem(dT(3,1:end-2),DdT(3,1:end-2),'r');

return dT = dT;

end
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D.2 Strain Energy Estimation

function EWtilde = EHest(dT,W,k)

% Energy Estimation Estimation of strain Energy

% EWtilde = EHest(dT,W), EWtilde contains three blades' est imated

% strain energy as a vector row, [Ewtilde1; Ewtilde2; Ewtild e3].

% dT is a matrix consisting of three timing vectors of blades.

% W is required energy.

%

% Dongwon Lim 2014/02/04

nPul = length(dT);

EnW1 = 0;EnW2 = 0;EnW3 = 0;

nan1 = 0;nan2 = 0;nan3 = 0;

for i=1:nPul

if dT(1,i) ~= 0

EnW1 = [EnW1 i* W];

else

nan1 = nan1 + 1;

end

if dT(2,i) ~= 0

EnW2 = [EnW2 i* W];

else

nan2 = nan2 + 1;

end

if dT(3,i) ~= 0

EnW3 = [EnW3 i* W];

else

nan3 = nan3 + 1;

end

end

EWtilde1 = interp1([0 dT(1,1:end-nan1)],EnW1,k);

EWtilde2 = interp1([0 dT(2,1:end-nan2)],EnW2,k);

EWtilde3 = interp1([0 dT(3,1:end-nan3)],EnW3,k);

EWtilde = [EWtilde1; EWtilde2; EWtilde3];
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D.3 Harvested EH Strain Energy Simulation

function EW = EHCal(BldST,Keh)

% Harvested EH Strain Energy Simulation Caculation

%

% EW = EHCal(BldST,Keh,dix) calculates harvested energy by an EH

% with Keh efficiency and dix damage factor in Blade 3.

% BldST is blade strain from raw data.

% 2013-11-13

% Dongwon Lim

% Parameter setting

dBldST = [zeros(3,1) BldST(:,2:end) - BldST(:,1:end-1)];

% Energy accumulation Test

[bldn,tend] = size(BldST);

EW = zeros(bldn,tend);

for j=2 : tend

for i=1:bldn % Blade #

if BldST(i,j) * dBldST(i,j) > 0

EW(i,j) = EW(i,j-1) + Keh * BldST(i,j) * dBldST(i,j) * 1e6; % [uJ]

else

EW(i,j) = EW(i,j-1);

end

end

end
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D.4 Eolos Strain Calibration

% Calibration by Automation

% find c1 and c2 for minimum Bbar differences

% Dongwon Lim

% 2014/06/27

disp( '--- Calibration is initiated ---' );

c1 = 1; c3 = 1;

i = 1;

Bout12 = 1; Bout31 = 1;

T = 1e-5;

while abs(Bout12) > T | | abs(Bout31) > T

TotSTc(1,:) = c1 * TotST(1,:);

TotSTc(2,:) = TotST(2,:);

TotSTc(3,:) = c3 * TotST(3,:);

EW = EHCal(TotSTc,Keh); % [uJ]

dW1 = diff(EW(1,:)); dW2 = diff(EW(2,:)); dW3 = diff(EW(3,: ));

Bbar1 = mean(dW1); Bbar2 = mean(dW2); Bbar3 = mean(dW3);

Bout12 = Bbar1-Bbar2;

Bout23 = Bbar2-Bbar3;

Bout31 = Bbar3-Bbar1;

disp([ 'Round ' num2str(i) ' | Bbar = ' num2str(Bout12) ' : ' ...

num2str(Bout23) ' : ' num2str(Bout31)]);

c1 = c1 * (1-Bout12 * 20);

c3 = c3 * (1-Bout31 * 20);

i = i + 1;

end

disp([ 'Correction c1 & c3 : ' num2str(c1) ', ' num2str(c3)]);
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D.5 Eolos Strain Data Import

function [EdgST t] = EolosDataImporting(filename,delim,ix,hr)

% EolosDataImporting imports data from Eolos Wind Turbine.

%

% EolosDataImporting(filename,delim,ix) imports file wi th filename as csv

% or txt(tab) file with the delimiter delim (either ',' or ' \t').

% ix is used for the size of data (0: Small 1: Large data)

% hr is testing hours for Large data. hr = 0 is used for ix = 0;

% [EdgST t] = EolosDataImporting(filename,delim,ix)

% returns the edgewise strains of three blades at the same loc ation.

% EdgST is [EdgST1 EdgST2 EdgST3] (Watch out the dimension)

%

% Dongwon Lim

% Created: 11/14/2013

% Modified: 05/23/2014

if ix % 0: Small 1: Large data

block size = 6 * 20* 60* 60; % 6 hours => 4 segs for 24 hours

format = '%s %d %d %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 ...

%f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f3 2 ...

%f32 %f32 %f32 %f32 %f32 %f32 %f32' ;

file id = fopen(filename);

id=1;

C header = textscan(file id, '%s' , 33, 'delimiter' ,delim); %% 33 ...

columns

% hr = 8* 24;

nwindow = hr * (20 * 60* 60)/block size;

t = 0.05:0.05:hr * 60* 60-0.05;

% sD = 1.0120; % Damage factor to the strain, gD = 2 * sD

sD = 1;

EdgST1 = zeros(1,hr * 60* 60* 20);

EdgST2 = zeros(1,hr * 60* 60* 20);

EdgST3 = zeros(1,hr * 60* 60* 20);

for i = 1:nwindow

segarray = textscan(file id, format, block size, 'delimiter' ,delim);

Data = [segarray {9} segarray {19} segarray {29}];
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BldST = EolosDatafilter(Data,20);

% Without filtering

% BldST = [Data1(3001:end)'; Data2(3001:end)'; Data3(300 1:end)'];

BldST(3,:) = sD * BldST(3,:);

EdgST1(1,1+(block size-3000) * (id-1):(block size-3000) * id) = ...

BldST(1,:);

EdgST2(1,1+(block size-3000) * (id-1):(block size-3000) * id) = ...

BldST(2,:);

EdgST3(1,1+(block size-3000) * (id-1):(block size-3000) * id) = ...

BldST(3,:);

% Time(1,1+block size * (id-1):10+block size * (id-1)) = segarray {8};

id = id + 1;

if rem(id * block size,20 * 60* 60) == 0

disp(id * block size/(20 * 60* 60));

end

end

fclose(file id);

else

A = importdata(filename,delim,1);

EdgST1 = A.data(:,8)';

EdgST2 = A.data(:,18)';

EdgST3 = A.data(:,28)';

t = 0:0.05:0.05 * length(A.data)-0.05;

end

%% Return

EdgST = [EdgST1; EdgST2; EdgST3];
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D.6 Strain Data Error Correction

function BldST = EolosDatafilter(Data,samplef)

% EolosDatafilter(Data1,Data2,Data3) corrects Eolos Str ain Data

% errors: bias, scaling, chattering noise, drifting, salt a nd pepper noise

% Errors are corrected by demeaning for the bias error; desca ling;

% applying low pass filter for chattering and high pass filte r for

% drifting; and interpolation for salt/pepper noise.

%

% Dongwon Lim

% Modified 02/22/2014

% For bandpass filter design from 0.01 to 10Hz

% B = [0 0.3934 -0.3934];

% A = [1 -1.6062 0.6062];

EdgST1t = Data(:,1); EdgST2t = Data(:,2); EdgST3t = Data(:, 3);

% Correcting Sensor Errors

% Remove drop-outs and interpolate for three strains

NANIx1 = find(abs(EdgST1t) > 5000);

NANIx2 = find(abs(EdgST2t) > 5000);

NANIx3 = find(abs(EdgST3t) > 5000);

ko = (0:length(Data)-1)'; kn1 = ko; kn2 = ko; kn3 = ko;

EdgST1t(NANIx1) = []; kn1(NANIx1) = [];

EdgST2t(NANIx2) = []; kn2(NANIx2) = [];

EdgST3t(NANIx3) = []; kn3(NANIx3) = [];

EdgST1 = interp1(kn1,EdgST1t,ko);

EdgST2 = interp1(kn2,EdgST2t,ko);

EdgST3 = interp1(kn3,EdgST3t,ko);

% Find nan entries

K1 = any(isnan(EdgST1),2);

K2 = any(isnan(EdgST2),2);

K3 = any(isnan(EdgST3),2);

K = or(K1,K2);

K = or(K,K3);

% Remove common nan entries

EdgST1(K) = [];

EdgST2(K) = [];
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EdgST3(K) = [];

if samplef == 20

% Apply Low-pass filter

EdgST1 = filter(0.05/0.1, [1 0.05/0.1-1], EdgST1);

EdgST2 = filter(0.05/0.1, [1 0.05/0.1-1], EdgST2);

EdgST3 = filter(0.05/0.1, [1 0.05/0.1-1], EdgST3);

% Apply High-pass filter

EdgST1 = filter([1 -1], [1 0.05/100-1], EdgST1); % 20Hz Sampling

EdgST2 = filter([1 -1], [1 0.05/100-1], EdgST2);

EdgST3 = filter([1 -1], [1 0.05/100-1], EdgST3);

% Cutting out first 3000 time steps

EdgST1 = EdgST1(3001:end);

EdgST2 = EdgST2(3001:end);

EdgST3 = EdgST3(3001:end);

else

EdgST1 = filter([1 -1], [1 1/100-1], EdgST1); % 1Hz Sampling Freq.

EdgST2 = filter([1 -1], [1 1/100-1], EdgST2);

EdgST3 = filter([1 -1], [1 1/100-1], EdgST3);

% Cutting out first 3000/20 =150 time steps

EdgST1 = EdgST1(151:end);

EdgST2 = EdgST2(151:end);

EdgST3 = EdgST3(151:end);

end

% % Apply Band-pass filter from 0.01Hz to 10Hz

% EdgST1 = filter(B, A, EdgST1);

% EdgST2 = filter(B, A, EdgST2);

% EdgST3 = filter(B, A, EdgST3);

% Find strain rate for each blade

dB1 = diff(EdgST1);

dB2 = diff(EdgST2);

dB3 = diff(EdgST3);

dE1 = norm(dB1);dE2 = norm(dB2);dE3 = norm(dB3);

% Find where there is oscillation

ix1 = find(abs(dB1) >1);ix2 = find(abs(dB2) >1);ix3 = find(abs(dB3) >1);

% Demean to fix bias error
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mEdgST1 = mean(EdgST1(ix1));

mEdgST2 = mean(EdgST2(ix2));

mEdgST3 = mean(EdgST3(ix3));

% BldST = BldST - mean(BldST(:,ix),2) * ones(1,length(BldST)); ...

% demean (Bias)

% Desacle to fix scale error

% if i == 1

E1 = norm(EdgST1(ix1)-mEdgST1); E2 = norm(EdgST2(ix2)-mE dgST2); ...

E3 = norm(EdgST3(ix3)-mEdgST3);

% end

EdgST1=EdgST1-mEdgST1;EdgST2=EdgST2-mEdgST2;EdgST3= EdgST3-mEdgST3;

% Final signal for blade strains

% BldST = [EdgST1'; EdgST2'; EdgST3'] * 10ˆ-6;

% BldST = [EdgST1' * E1/E1; EdgST2' * E1/E2; EdgST3' * E1/E3 * 0.989] * 10ˆ-6;

BldST = [EdgST1' * E1/E1; EdgST2' * E1/E2; EdgST3' * E1/E3] * 10ˆ-6;

end
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D.7 Find Strain Residual Variance

% Find Pk for Eolos Data

% Main objective of this script is to find the variance of the s train

% Energy Residue of two blades i and j.

% Input: Eolos large strain data is divided into small segmen ts and

% process one segment by one at each time.

% Output: Estimated strain energy residue for small inspect ion time

% window. The collected (processed data) will be collected

% and processed for calculating the variance.

%

% Dongwon Lim 2014/02/04

clear all; close all;

%% Import data for the size of a given segment

filename = 'D: \Eolos2013 \Strain0501 0510.csv' ;

delim = ',' ;

% block size = 3 * 20* 60* 60; % 3 hours = > 8 segs for 24 hours

block size = 6 * 20* 60* 60; % 6 hours => 4 segs for 24 hours

format = '%s %d %d %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 ...

%f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f3 2 %f32 ...

%f32 %f32 %f32 %f32 %f32 %f32' ;

file id = fopen(filename);

id=1;

C header = textscan(file id, '%s' , 33, 'delimiter' ,delim); %% 33 columns

hr = 10 * 24;

nwindow = hr * (20 * 60* 60)/block size;

t = 0.05:0.05:hr * 60* 60-0.05;

k = 3001:block size;

SE1 = zeros(1,block size-3000);

SE2 = zeros(1,block size-3000);

SE3 = zeros(1,block size-3000);

Keh = 0.004 * 117.60 * 30.34; % [mm3] eta = 7% EH size = 0.38 mm3 E=30GPa

% sD = 1.0120; % Damage factor to the strain, gD = 2 * sD

sD = 1;

W = 100;

% Threshold
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PFP = 1/(20 * 365* 24/6);

T1 = abs(norminv(sqrt(PFP/3)/2,0,sqrt(k) * 0.0444318));

%%

disp( 'The strength ratio between blade strains 1,3' );

for i = 1:nwindow

segarray = textscan(file id, format, block size, 'delimiter' ,delim);

Data = [segarray {9} segarray {19} segarray {29}];

BldST = EolosDatafilter(Data,20);

BldST(3,:) = sD * BldST(3,:);

% Energy Calculation Pulse generation

EW = SdataImport(BldST);

% Three cases

r1 = EW(1,:) - EW(2,:); r2 = EW(3,:) - EW(2,:); r3 = EW(3,:) - EW (1,:);

k1 = 1:length(r1); k2 = 1:length(r2); k3 = 1:length(r3);

dT = PulseCal(BldST,Keh,W);

EWtilde = EHest(dT,W,k);

nx1 = EWtilde(1,:) - EWtilde(2,:);

Plotting for checking

if i == 10 | | i == 11

figure(1); ...

plot(k/20,Data1(3001:end),k/20,Data2(3001:end),k/20 ,Data3(3001:end));

figure(2); plot(k/20,EdgST1,k/20,EdgST2,k/20,EdgST3) ;

figure(3); ...

plot(k/72e3,BldST(1,:) * 1e6,k/72e3,BldST(2,:) * 1e6,k/72e3,BldST(3,:) * 1e6);

xlabel( 'Time (hr)' ); ylabel( 'Strain ( \mu-\epsilon)' );

figure(4); plot(k(2:end)/20,dB1,k(2:end)/20,dB2,k(2: end)/20,dB3);

figure(5); plot(k/20,EW(1,:),k/20,EW(3,:));

xlabel( 'Time (sec)' );ylabel( 'Strain ( \mu-\epsilon)' );

title( 'Strain ( \mu-\epsilon)' );

figure(1);subplot(211); plot(k/20,Data3(3001:end)-mE dgST3);

ylabel( 'Before low-pass filter' );

figure(1);subplot(212); plot(k/20,EdgST3);

ylabel( 'After low-pass filter' );

xlabel( 'Time (sec)' );

end

figure(7);
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plot(k1/72e3,r1,k2/72e3,r2,k3/72e3,r3),grid;

axis([k(1)/72e3 k(end)/72e3 -150 150]); hold on;

plot(k/72e3,T1, 'r--' ,k/72e3,-T1, 'r--' , 'LineWidth' ,2);

hold off;

title([ 'Energy Diff at ' num2str(i) 'th time window' ]);

text(k(end)/72e3,T1(end), 'Avg' );

xlabel( 'Time (hr)' ); ylabel( ' \deltaW(k) [ \muJ]' );

% legend('W 1-W 2','W 3-W 2','W 3-W 1');

B1 = diff(EW(1,:));

B2 = diff(EW(2,:));

B3 = diff(EW(3,:));

mBk1 = mean(B1); mBk2 = mean(B2); mBk3 = mean(B3);

disp([ 'dE Avg at Blade1,2,3 of ' num2str(i) 'th time, ' ...

num2str(mBk1) ', ' num2str(mBk2) ', ' num2str(mBk3)]);

SE1(i,1:length(r1)) = r1; % Accumulating estimated Strain ...

Energy(SE) into SE Matrix

SE2(i,1:length(r2)) = r2; % Accumulating estimated Strain ...

Energy(SE) into SE Matrix

SE3(i,1:length(r3)) = r3; % Accumulating estimated Strain ...

Energy(SE) into SE Matrix

pause(0.2);

end

[nr,nc] = size(SE1);

fclose(file id);

%% Statistics

% Find the variance

for i=1:block size-3000

sigN(i) = nanstd(SE1(:,i));

end

% Find the mean

muN = nanmean(SE1(:,end));

muavg = muN/block size;

figure(26); plot(sigN);

Nsigmax = max(sigN);



131

sig = Nsigmax/sqrt(block size);

xlabel( 'Time step [-]' );ylabel( 'STD of \deltaW' );

hold on;

plot(k,sqrt(k) * sig, 'r--' );

hold off;

disp([ 'The variance for Harvested Energy Residue time increment: ' ...

num2str(sig)]);

% disp('Theoretical ');

% disp(sqrt(N) * sig0);

disp([ 'The mean for Harvested Energy Residue time increment: ' ...

num2str(muavg)]);

%% Post-processing

figure(35);

% sig = 0.05;

% PFP = 1.929e-8; %[1.929e-8 1.586e-9 5.285e-10]; % 1/30day s ...

1/1year 1/3years

% T = abs(norminv(PFP/2,0,sqrt(k) * sig));

for i = 1:length(x)

hold on;

title([ 'Energy Diff upto ' num2str(i) 'th time window' ]);

plot(k/72e3,SE1(x(i),:));

text(k(end)/72e3,SE1(x(i),end),num2str(i));

hold off;

axis([k(1)/72e3 k(end)/72e3 -1.47 * sig * sqrt(k(end)) ...

1.47 * sig * sqrt(k(end))]);

pause(0.1);

end

grid on;

hold on; ...

plot(k/72e3,sig * sqrt(k), 'r--' ,k/72e3,-sig * sqrt(k), 'r--' , 'Linewidth' ,2.5);

hold off;

xlabel( 'Time (hr)' );ylabel( ' \deltaW c(k)=W 3-W 1 ( \muJ)' );
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D.8 Synthetic Damage Simulation for Eolos Data

% Eolos Data Simulation with a synthetic damage, gD

% Main objective of this script is to find detection time for

% specific damage size gD

% Input: Eolos large strain data is divided into small segmen ts and

% process one segment by one at each time.

% Output: Estimated strain energy residual for small inspec tion time

% window. The collected (processed data) will be collected

% and processed for calculating the variance.

%

% Dongwon Lim 2014/03/13

clear all; close all;

%% Import data for the size of a given segment

filename = 'd: \2013 \BladeStrain20130501 20130510.csv' ;

delim = ',' ;

% block size = 3 * 20* 60* 60; % 3 hours

block size = 9 * 20* 60* 60;

format = '%s %d %d %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 ...

%f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f32 %f3 2 %f32 ...

%f32 %f32 %f32 %f32 %f32 %f32' ;

file id = fopen(filename);

id=1;

C header = textscan(file id, '%s' , 33, 'delimiter' ,delim); %% 33 columns

hr = 8 * 24;

nwindow = hr * (20 * 60* 60)/block size;

t = 0.05:0.05:hr * 60* 60-0.05;

k = 3001:block size;

SE = zeros(1,block size-3000);

Keh = 0.004 * 117.60 * 30.34; % [mm3] eta = 7% EH size = 0.38 mm3 E=30GPa

gD = [1.50 1.75 2.00 2.25 2.50] * 0.01;

W = 100;

% Threshold

PFP = 1.929e-8; %[1.929e-8 1.586e-9 5.285e-10]; % 1/30days ...

1/1year 1/3years

% T1 = abs(norminv(PFP/2,0,sqrt(k) * 0.041304));
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T2 = abs(norminv(PFP/2,0,sqrt(k) * 0.05355)); % May

% T3 = abs(norminv(PFP/2,0,sqrt(k) * 0.02958));

% Detectible Damage Size

mBk = 0.01;

PTP = 0.9;

X2 = norminv(1-PTP(1),0,sqrt(k) * 0.05355);

fdam2 = (T2 + 0 - X2)./k/mBk;

% BldST = zeros(3,(block size-3000) * nwindow);

%% Data Loading

tic

% figure(7); grid on; hold on;

for i = 1: nwindow

segarray = textscan(file id, format, block size, 'delimiter' ,delim);

Data1 = segarray {9};

Data2 = segarray {19};

Data3 = segarray {29};

BldST = EolosDatafilter(i,Data1,Data2,Data3,block size);

BldST(3,:) = (1+gD(3)) * BldST(3,:);

EW = EHCal(BldST,Keh,1); % [uJ]

nx1 = EW(1,:) - EW(2,:); nx2 = EW(3,:) - EW(2,:); nx3 = EW(3,:) - ...

EW(1,:);

k dtc1 = min(find(nx1 >T2));

k dtc2 = min(find(nx2 >T2));

k dtc3 = min(find(nx3 >T2));

% plot(k/72e3,nx1,k/72e3,nx2,k/72e3,nx3);

% axis([k(1)/72e3 k(end)/72e3 -350 350]);

% plot(k/72e3,T2,'r--',k/72e3,-T2,'r--','LineWidth', 2);

disp([num2str(i) 'th window: ' num2str(k dtc1/72e3) ', ' ...

num2str(k dtc2/72e3) ', ' num2str(k dtc3/72e3)])

end

toc

fclose(file id);

% Three cases

figure(7); hold on;

plot(k/72e3,nx1,k/72e3,nx2,k/72e3,nx3),grid;

axis([k(1)/72e3 k(end)/72e3 -350 350]);
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plot(k/72e3,T1, 'r--' ,k/72e3,-T1, 'r--' , 'LineWidth' ,2);

plot(k/72e3,T2, 'r--' ,k/72e3,-T2, 'r--' , 'LineWidth' ,2);

plot(k/72e3,T3, 'r--' ,k/72e3,-T3, 'r--' , 'LineWidth' ,2);

hold off;

title([ 'Energy Diff at ' num2str(i) 'th time window' ]);

text(k(end)/72e3,T1(end), 'Avg' );

text(k(end)/72e3,T2(end), 'May' );

text(k(end)/72e3,T3(end), 'Sep' );

xlabel( 'Time (hr)' ); ylabel( ' \deltaW(k) [ \muJ]' );

% legend('W 1-W 2','W 3-W 2','W 3-W 1');

B3 = diff(EW(3,:));

mBk3 = mean(B3);

disp([ 'dE Avg at Blade3 of ' num2str(i) 'th time, ' num2str(mBk3)]);

SE(i,:) = nx3; % Accumulating estimated Strain Energy(SE) into SE ...

Matrix

% pause(0.2);

end

[nr,nc] = size(SE);

fclose(file id);

%% Statistics

% Find the variance

for i=1:block size-3000

sigN(i) = nanstd(SE(:,i));

end

% Find the mean

muN = nanmean(SE(:,end));

muavg = muN/block size;

figure(26); plot(sigN);

Nsigmax = max(sigN);

sig = Nsigmax/sqrt(block size);

xlabel( 'Time step [-]' );ylabel( 'STD of \deltaW' );

hold on;

plot(k,sqrt(k) * sig, 'r--' );

hold off;
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disp([ 'The variance for Harvested Energy Residue time increment: ' ...

num2str(sig)]);

% disp('Theoretical ');

% disp(sqrt(N) * sig0);

disp([ 'The mean for Harvested Energy Residue time increment: ' ...

num2str(muavg)]);

%% Post-processing

figure(35);

% sig = 0.05;

% PFP = 1.929e-8; %[1.929e-8 1.586e-9 5.285e-10]; % 1/30day s ...

1/1year 1/3years

% T = abs(norminv(PFP/2,0,sqrt(k) * sig));

for i = 1:length(x)

hold on;

title([ 'Energy Diff upto ' num2str(i) 'th time window' ]);

plot(k/72e3,SE(x(i),:));

text(k(end)/72e3,SE(x(i),end),num2str(i));

hold off;

axis([k(1)/72e3 k(end)/72e3 -1.47 * sig * sqrt(k(end)) ...

1.47 * sig * sqrt(k(end))]);

pause(0.1);

end

grid on;

hold on; ...

plot(k/72e3,sig * sqrt(k), 'r--' ,k/72e3,-sig * sqrt(k), 'r--' , 'Linewidth' ,2.5);

hold off;

xlabel( 'Time (hr)' );ylabel( ' \deltaW c(k)=W 3-W 1 ( \muJ)' );
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D.9 SHM Design by Threshold and Decision Time

% Monitoring System Design by Threshold and Time wait

% Dongwon Lim

% 2013/09/25

% Modified: 2014/08/10

clear all; % close all;

sizeF = 1;

sig = sqrt(sizeF) * [0.102/2 0.102 0.102 * 2];

B = sizeF * 0.0104;

PFP = 50/(20 * 365);

k = linspace(12,240) * 24* 60* 60* 20;

T = zeros(length(sig),length(k));

for i = 1 :length(sig)

T(i,:) = abs(norminv(sqrt(PFP/3)/2,0,sqrt(k) * sig(i)));

end

figure(1);

semilogx(k,T(1,:), '-' ,k,T(2,:), '--' ,k,T(3,:), '-.' , 'LineWidth' ,2.5),grid

xlabel( 'Time (step)' ); ylabel( 'Threshold [ \muJ]' );

legend( '1 \sigma' , '2 \sigma' , '3 \sigma' );

axis([k(1) k(end) 0 max(max(T))]);

PTP = [0.9 0.99 0.9999]; % 80% 99% 99.99%

fdam = zeros(length(PTP),length(k));

T = abs(norminv(sqrt(PFP/3)/2,0,sqrt(k) * sig(2)));

for j = 1 : length(PTP)

X = norminv(1-PTP(j),0,sqrt(k) * sig(2));

% Misc = normcdf(X-2 * T,0,sqrt(k) * sig);

% fdam(3 * (i-1)+j,:) = (T(i,:) - X)./k/(B); % For strain ...

energy factor

fdam(j,:) = (T - X)./k/B; % For damage factor

end

figure(22);

plot(fdam(1,:),k/72e3/24,fdam(2,:),k/72e3/24,fdam(3 ,:),k/72e3/24);

xlabel( 'Degradation Parameter, g D [-]' ); ylabel( 'Decision Time [day]' );



137

legend([num2str(PTP(1) * 100) '% P {TP}' ],[num2str(PTP(2) * 100) '% ...

P {TP}' ],[num2str(PTP(3) * 100) '% P {TP}' ]);

h=gca;

set(h, 'XTick' ,[0.0008 0.0017 0.0026 0.0035])

axis([min(fdam(1,:)) max(fdam(1,:)) 0 k(end)/72e3/24]) ;

figure(22); hold on;

plot([0.0017 0.0035],[51 13], 'ko' ); hold off;

annotation( 'textarrow' ,[1.5 1.7]/3.5,[120 170]/600, 'string' , 'g D = ...

0.0017 \\ \tau = 180 days' , 'LineWidth' ,2)
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