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Abstract

Large-scale optimization is a central topic in big data science. First-order black-box

optimization methods have been widely applied in machine learning problems, since the

oracle complexity of these methods can be independent of the parameter dimension. In

this dissertation, we formulate linear matrix inequality (LMI) conditions to analyze the

convergence rates of various deterministic and stochastic optimization methods. We de-

rive these LMIs using integral quadratic constraints (IQCs) and dissipation inequalities.

The first part of this dissertation analyzes deterministic first-order methods (gradient

descent, Nesterov’s method, etc) as generalized eigenvalue problems (GEVPs). A stan-

dard dissipation inequality requires a non-negative definite storage function and “hard”

IQCs which must hold over all finite time horizons. We develop a modified dissipation

inequality that requires neither non-negative definite storage functions nor hard IQCs.

Then we show that linear rate analysis of a given deterministic first-order method is

equivalent to uniform stability analysis of a related scaled system. This enables deriva-

tion of linear rate analysis conditions using standard IQCs for a scaled operator. A soft

Zames-Falb IQC is derived and used in the modified dissipation inequality, leading to a

GEVP formulation for linear rate analysis of first-order optimization methods.

In the second part of this dissertation, we extend the IQC framework to analyze

stochastic optimization methods which have been widely applied in empirical risk min-

imization and machine learning problems. We first combine jump system theory with

IQCs to derive LMI conditions for rate analysis of the stochastic average gradient (SAG)

method and its variants (SAGA, etc). The resultant LMI conditions can be used to an-

alyze the convergence rates of SAG, SAGA, and other related variants with uniform

or non-uniform sampling strategies. Then we develop LMI conditions to analyze the

stochastic gradient (SG) method and its variants. The SG method with a constant

stepsize typically achieves a linear convergence rate only up to some fixed tolerance.

We develop stochastically averaged quadratic constraints with disturbance terms quan-

tifying the inaccuracy of the SG method. Several known results about the SG method

have been recovered using our proposed LMI conditions. We also obtain new results

regarding the convergence of the SG method under different conditions.
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Chapter 1

Introduction

Large-scale optimization has become an important topic for machine learning research

and big data science [1]. Many machine learning problems, e.g. ridge regression [2],

support vector machine [3], logistic regression [4], LASSO [5], matrix completion [6],

etc, can essentially be formulated as convex optimization problems. A detailed review

can be found in [7, Chapter 1.2]. In principle, convexity can be exploited to obtain

global optimum solutions for such problems [8]. The real difficulty is posed by the

scale of these optimization problems associated with the big data applications. The

so-called black-box methods have become popular in such large-scale optimization since

the oracle complexity of these methods can be free of the problem dimension [7, Section

1.4]. Various first-order black-box methods have been proposed and applied in practice.

In this dissertation, we focus on the performance of first-order black-box methods

when applied to optimization of strongly-convex functions. Several popular optimiza-

tion problems with strongly-convex objective functions include ridge regression [7], `2-

regularized logistic regression [9], and smooth support vector machine [10]. First-order

methods for such problems can be either deterministic or stochastic. Several commonly-

used deterministic first-order methods are the gradient descent method, Nesterov’s ac-

celerated method and the Heavy-ball method [11, 12]. Several examples for stochastic

first-order methods include the stochastic gradient (SG) method [13], the stochastic

average gradient (SAG) method [14, 15], and the SAGA method [16]. Although there

exist convergence rate analysis for all these methods, the standard proof techniques

are developed in a case-by-case manner. There lacks a unified framework which can
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2

automate the analysis for more complicated first-order methods, when subtle design

trade-offs between accuracy, speed, memory size, and robustness need to be carefully

addressed.

Recently, semidefinite programs have been used to certify the convergence rates of

deterministic first-order methods [12,17,18]. In [12], a general analysis for deterministic

first-order optimization methods (the gradient descent method, Nesterov’s accelerated

method, the Heavy-ball method, etc) is provided by adapting the integral quadratic

constraint (IQC) framework [19] from robust control theory. Linear matrix inequality

(LMI) conditions are formulated using the IQC framework, and numerically tested to

obtain the convergence rate bounds of various optimization methods. For the first-

order methods considered in [12], the convergence rates obtained by the IQC analysis

outperform or at least recover the existing rates in the literature.

The key insight in [12] is that many deterministic first-order methods can be viewed

as interconnections of a linear time-invariant dynamic system and a static nonlinearity.

This type of interconnection has been studied extensively in the control community [20].

A large body of the controls literature even studies the more general interconnection

structure which consists of a linear system and a troublesome perturbation [21,22]. IQCs

provide a general framework for analysis of such interconnections [19]. The IQC frame-

work builds on a long history of classical multiplier results, e.g. the use of Zames-Falb

multipliers [20, 23]. The original IQC theory developed in [19] addresses input-output

stability based on homotopy arguments and frequency domain inequalities. The original

IQC theory can be used to prove linear convergence but does not provide an accurate es-

timate/bound for the convergence rate [24]. Similar results have been obtained in [25,26]

based on connections between IQCs and dissipativity theory [27,28]. Significant progress

has been made in [12,29] by developing new notions of IQCs which are specifically tai-

lored for linear rate analysis of optimization methods. The work in [12,29] is built upon

the classical results in [19,27,28,30].

The main advantage of the IQC framework in [12] is that the analysis can be auto-

mated for different deterministic first-order methods. More specifically, the LMI condi-

tions for different first-order methods are derived in the same way. Notice the “answer”

given by the IQC analysis is an LMI condition, whose feasible set is convex and can

be efficiently searched using standard solvers. Hence in general, the IQC approach is
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subject to numerical errors. However, due to the increasing power of modern comput-

ers, the LMI methods could potentially lead to numerical solutions for many problems

which cannot be handled by analytical derivations.

In this dissertation, we follow the direction in [12]. We develop LMI conditions for

linear rate analysis of various deterministic and stochastic first-order methods. All the

LMI conditions in this dissertation are derived using IQCs and dissipation inequalities.

Although the dissipation inequalities for deterministic first-order methods and stochas-

tic optimization algorithms are not completely the same, the underlying machinery is

always the Lyapunov theory. The derivations of the LMI conditions in this dissertation

adopt repeatable patterns. Consequently, our proposed IQC analysis can be automated

for more complicated first-order methods.

1.1 Outline and Contributions

Chapter 2 presents the notation and required background materials from both the opti-

mization and controls literature. Several commonly-used first-order methods are intro-

duced. The standard dissipativity-based IQC approach for uniform stability analysis is

summarized, and the ρ-hard IQC approach for linear rate analysis of deterministic first-

order methods is reviewed. Existing IQCs for various operators are briefly discussed.

Chapter 3 focuses on the IQC theory for uniform stability analysis of feedback

interconnections. The standard dissipation inequality approach for uniform stability

analysis requires a non-negative definite storage function and “hard” IQCs. The term

“hard” means that the IQCs must hold over all finite time horizons. Chapter 3 presents

a J-spectral factorization result for hard IQC constructions. Several lemmas regard-

ing discrete-time IQC factorizations and a related open-loop linear quadratic difference

game are obtained to support the proof of this main J-spectral factorization result.

Then, the J-spectral factorization is applied to prove a discrete-time modified dissi-

pation inequality result. The modified dissipation inequality removes the constraints

of non-negative storage functions and hard IQCs that appear in standard dissipation

inequalities. This allows more general IQC parameterizations [31, 32], leading to more

flexible LMI formulations for uniform stability analysis.

In Chapter 4, we first show that linear rate analysis of a deterministic first-order
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optimization method is equivalent to uniform stability analysis of a related scaled sys-

tem. This enables derivation of linear rate analysis conditions from uniform stability

tests using standard IQCs on a scaled operator. A list of IQCs is derived for various

scaled operators using the detailed information of the original operators. Connections

between the proposed approach and the existing ρ-hard IQC approach are discussed.

Then a new soft Zames-Falb IQC is derived and embedded into a modified dissipation

inequality, yielding a generalized eigenvalue problem (GEVP) formulation [33] for linear

rate analysis of deterministic first-order methods.

In Chapter 5, we extend the IQC framework to analyze the convergence rates of SAG

and its variants with arbitrary constant stepsizes and possibly non-uniform sampling

strategies. We combine jump system theory with IQCs to derive sufficient conditions,

which can be used to certify the convergence rates of SAG and its variants. The derived

conditions can be checked by numerically solving semidefinite programs. Based on these

conditions, we obtain new numerical upper bounds on the convergence rates of SAG and

SAGA.

Chapter 6 develops the concept of stochastically averaged quadratic constraints to

formulate LMI conditions for analysis of the SG method and its variants. The SG

method with a constant stepsize converges linearly only up to a tolerance. The stepsize

selection involves a trade-off between the convergence rate and the computation accu-

racy. To capture this trade-off, we develop stochastically averaged quadratic constraints

with disturbance terms for the stochastic gradient operator. The disturbance terms in

the resultant constraints are included as hidden energy in the dissipation inequality to

quantify the inaccuracy of the SG method. Several known and new results about the

SG method have been derived using the proposed LMI conditions.

The contributions of this dissertation are summarized as follows.

• A J-spectral factorization result is proved to construct hard, discrete-time IQCs.

The J-spectral factorization result is also applied to prove a discrete-time modified

dissipation inequality that requires neither non-negative storage function nor hard

IQCs.

• Linear rate analysis of a deterministic first-order method is shown to be equivalent

to uniform stability analysis of a related scaled system. Consequently, a GEVP
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formulation for linear rate analysis of deterministic optimization methods has been

obtained using the modified dissipation inequality and a new soft Zames-Falb IQC

for a scaled nonlinear operator.

• LMI conditions for linear rate analysis of SAG and related variants with uniform or

non-uniform sampling strategies have been formulated by combining jump system

theory and IQCs. The derived conditions are numerically solved via semidefinite

programing, and new numerical rate bounds for SAG and SAGA are obtained.

• LMI conditions for analysis of the SG method and its variants have been proposed

using the concept of averaged quadratic constraints. Several known and new re-

sults about the SG method have been derived using the proposed LMI conditions.



Chapter 2

Background

We summarize the required background in this section.

2.1 Notation

The set of non-negative integers is denoted as Z+. The set of p-dimensional real vectors

is denoted as Rp. The set of complex numbers is denoted as C.

The p × p identity matrix and the p × p zero matrix are denoted as Ip and 0p,

respectively. The n×n identity matrix is denoted as In. Let ei denote the n-dimensional

vector whose entries are all 0 except the i-th entry which is 1. Let e denote the n-

dimensional vector whose entries are all 1. Let 0̃ denote the n-dimensional vector whose

entries are all 0. For simplicity, 0 is occasionally used to denote a zero vector or a

zero matrix when there is no confusion on the dimension. The Kronecker product of

two matrices A ∈ Rm×n and B ∈ Rp×q is denoted by A ⊗ B ∈ R(mp)×(nq). Notice

(A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = (AC)⊗ (BD) when the matrices have the

compatible dimensions. A square matrix is said to be Schur stable if all of its eigenvalues

are strictly inside the unit circle. When a matrix P is negative semidefinite (definite),

we will use the notation P ≤ (<)0. Similarly, when P is positive definite, we will use

the notation P > 0.

Consider a (real) sequence u := (u0, u1, . . .). This sequence is said to be in `p2e if

uk ∈ Rp for all k. In addition, this sequence is said to be in `p2 if
∑∞

k=0 ‖uk‖2 < ∞
where ‖uk‖ := (uk)Tuk denotes the standard (vector) 2-norm of uk. For simplicity, the

6
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superscripts of `p2e and `p2 may be omitted when there is no confusion. The `2-norm

for u ∈ `p2 is defined as ‖u‖2 :=
∑∞

k=0 ‖uk‖2. An inner product on `p2 is defined as

〈u, v〉 =
∑∞

k=0(uk)T vk for any u, v ∈ `p2.

A continuously differentiable function g : Rp → R has Lipschitz-continuous gradients

with parameter L if the following inequality holds for all x, y ∈ Rp

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖. (2.1)

The continuously differentiable function g is said to be strongly-convex with parameter

m > 0 if the following inequality holds for all x, y ∈ Rp

g(x) ≥ g(y) +∇g(y)T (x− y) +
m

2
‖x− y‖2. (2.2)

Notice g is said to be convex if (2.2) holds with m = 0. We define F(m,L) to be the

set of continuously differentiable functions g : Rp → R that are strongly convex with

parameter m and have Lipschitz gradients with parameter L. We will use F(0, L) to

denote the set of continuously differentiable functions that are convex and have Lipschitz

gradients with parameter L.

Let RL∞ denote the set of rational functions with real coefficients that have no

poles on the unit circle. RH∞ is the subset of functions in RL∞ that are proper and

analytic outside the unit disk of the complex plane. The para-Hermitian conjugate of

Π ∈ RLm×n∞ , denoted as Π∼, is defined by Π∼(z) := ΠT (z−1). Hence Π∼(ejω) = Π∗(ejω)

holds on the unit circle. Notice RL∞ contains improper functions, e.g. polynomials in

z, while RH∞ contains only proper functions. Thus functions in RH∞ have standard,

discrete-time state space representations but descriptor systems are required, in general,

to represent functions in RL∞ [34]. The use of descriptor systems is limited to one

technical result (Lemma 26 in the appendix).

Finally, DARE(A,B,Q,R, S) denotes the following discrete-time Algebraic Riccati

Equation (DARE)

ATXA−X − (ATXB + S)(R+BTXB)−1(ATXB + S)T +Q = 0 (2.3)

The stabilizing solution X = XT , if it exists, is such that (R + BTXB) is nonsingular

and (A − BK) is a Schur stable matrix where K := (R + BTXB)−1(ATXB + S)T is

the stabilizing DARE gain.
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2.2 Basic Facts about Gradients of Convex Functions

We first review several basic facts about gradients of convex functions.

Lemma 1. Suppose g ∈ F(m,∞) with m ≥ 0.

1. Given arbitrary x, y ∈ Rp, the following inequality holds:

[∇g(x)−∇g(y)]T (x− y) ≥ m‖x− y‖2 ≥ 0 (2.4)

In addition, if g ∈ F(m,L), then

[∇g(x)−∇g(y)−m(x− y)]T [∇g(x)−∇g(y)− L(x− y)] ≤ 0. (2.5)

2. If m > 0, then there exists a unique x∗ ∈ Rp such that g(x∗) ≤ g(x) for all

x ∈ Rp. In addition, x∗ is also the only point satisfying ∇g(x∗) = 0. Given

arbitrary x ∈ Rp, the following inequality holds:[
x− x∗

∇g(x)

]T [
−2mIp Ip

Ip 0p

][
x− x∗

∇g(x)

]
≥ 0 (2.6)

In addition, if g ∈ F(m,L), then[
x− x∗

∇g(x)

]T [
−2mLIp (m+ L)Ip

(m+ L)Ip −2Ip

][
x− x∗

∇g(x)

]
≥ 0 (2.7)

Proof. Statement 1 has been proved in [11]. Notice (2.4) is a restatement of (2.1.17)

in [11], while (2.5) is equivalent to (2.1.24) in [11].

The proof of Statement 2 is briefly sketched as follows. The strong convexity condi-

tion (2.2) implies that g is lower bounded by a quadratic function. Hence any sublevel

set of g is bounded. The continuity of g implies that g is a proper closed function

such that its sublevel sets are closed. Hence the sublevel sets of g are always compact.

Based on the well-known Bolzano-Weierstrass Theorem, there exists some x∗ satisfying

g(x∗) ≤ g(x) for all x ∈ Rp. The convexity of g implies that ∇g(x∗) = 0. The unique-

ness of x∗ is a direct consequence of Inequality (9.11) in [8]. Finally, we can set y = x∗

in (2.4) and (2.5) to obtain (2.6) and (2.7).
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2.3 Review of First-Order Optimization Methods

Consider the unconstrained minimization problem

min
x∈Rp

g(x) (2.8)

where g ∈ F(m,L) with m > 0. The strong convexity of g guarantees that there exists

a unique x∗ ∈ Rp satisfying ∇g(x∗) = 0. One can solve (2.8) by finding x∗.

A classical way to solve (2.8) is the gradient descent method, which uses the following

iteration to find x∗:

xk+1 = xk − α∇g(xk) (2.9)

Since g is strongly convex, the gradient method with a well-chosen constant step-

size α achieves a linear convergence rate [11]. Specifically, if α is chosen well, then there

exists a constant ρ ∈ [0, 1] and a constant c ∈ R such that

‖xk − x∗‖2 ≤ cρ2k‖x0 − x∗‖2 (2.10)

For example, we can choose α = 2
L+m and obtain ρ = L−m

L+m . Another popular choice

for α is that α = 1
L , which leads to the convergence rate ρ =

√
L−m
L+m . These results were

formally documented in [11, Theorem 2.1.15].

The gradient descent method can be further accelerated by incorporating memory

into the algorithm. Nesterov’s accelerated method uses the following iteration rule:

xk+1 = ζk − α∇g(ζk)

ζk = (1 + β)xk − βxk−1
(2.11)

Nesterov’s accelerated method with a well-chosen constant stepsize achieves a faster

linear convergence rate than the gradient descent method [11]. For example, if we

choose α = 1
L and β =

√
L−
√
m√

L+
√
m

, then we can obtain a linear rate ρ =
√

1−
√

m
L , which

is faster than the rates obtained by the gradient descent method. This fact was stated

in [11, Theorem 2.2.3].

Another popular method is the Heavy-ball method, which incorporates a momentum

term into the iteration:

xk+1 = xk − α∇g(xk) + β(xk − xk−1) (2.12)

Although the local convergence rate of the Heavy-ball method is very fast, there is no

global linear convergence guarantee for this method.
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2.4 Operator Theory

Several basic facts from operator theory are required in this dissertation. Most facts

here can be found in [35,36]. An operator is a mapping from one vector space to another.

We mainly consider the case where both spaces are `2e, i.e. ∆ : `2e → `2e.

Now we define the truncation operator PN : `2e → `2e, which maps a sequence

u ∈ `2e to v = PN (u) as follows:

vk :=

{
uk for k ≤ N
0 for k > N

(2.13)

For simplicity, PN (u) is occasionally abbreviated as (u)N . It is clear that the extended

space `2e is the set of sequences u such that PN (u) ∈ `2 for all N ≥ 0. 1

An operator represents any input-output relationship. In the controls field, a block

diagram is usually used to graphically represent this input-output characteristic. For

example, Figure 2.1 presents a block-diagram for an operator ∆ : `nv2e → `nw2e which maps

v to w.

∆

v
-

w
-

Figure 2.1: The Block-Diagram for an Operator ∆

Let ∆1 : `2e → `2e and ∆2 : `2e → `2e be two operators. Then the composition of

∆1 and ∆2 is also an operator which maps `2e to `2e. We denote the composition of ∆1

and ∆2 as ∆1 ◦∆2, which satisfies (∆1 ◦∆2)(v) = ∆1(∆2(v)) for any v ∈ `2e. A block

diagram for the composition u = (∆1 ◦∆2)(v) is shown in Figure 2.2.

The next fact is also important. Given any c1, c2 ∈ R, then c1∆1 + c2∆2 is also an

operator which maps `2e to `2e via (c1∆1 + c2∆2)(v) = c1∆1(v) + c2∆2(v).

An operator ∆ : `2e → `2e is said to be causal if PN ◦ ∆ ◦ PN = PN ◦ ∆ for all

N ≥ 0. A key point stated in [35, Section 2.4] is that the concept of boundedness for

1 Note that a sequence having a finite escape time in the `2-norm will have a finite escape time in
any other `p-norm. Hence any `p space can be extended to generate the same extended space. Here the
notation `2e is adopted to emphasize that the norms of the operators on `2e are induced by `2-norms.
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∆2 ∆1

∆1 ◦∆2

v
-

w
- -

u

Figure 2.2: The Block-Diagram for the Composition Operator ∆1 ◦∆2

causal operators on `2e can be naturally defined even though `2e itself is not a normed

space. Specifically, a causal ∆ is called bounded if ∆(0) = 0 and the following holds

‖∆‖ := sup
N>0;‖PN (v)‖2 6=0

‖(PN ◦∆)(v)‖2
‖PN (v)‖2

<∞. (2.14)

Notice c1v1 + c2v2 ∈ `2e if c1, c2 ∈ R and v1, v2 ∈ `2e. An operator ∆ is linear if

∆(c1v1 + c2v2) = c1∆(v1) + c2∆(v2) for all c1, c2 ∈ R and v1, v2 ∈ `2e. One example for

linear bounded operators is the truncation operator PN .

The triangle inequality for linear bounded operators is well-known. Similarly, the tri-

angle inequality for causal bounded operators also holds. The following two inequalities

are useful.

Lemma 2. Given any two (possibly nonlinear) causal bounded operators ∆0 : `2e → `2e

and ∆1 : `2e → `2e, the following inequality holds:

‖∆0 + ∆1‖ ≤ ‖∆0‖+ ‖∆1‖

‖∆1 ◦∆2‖ ≤ ‖∆1‖‖∆2‖
(2.15)

Proof. For any v ∈ `2e, we have PN (v) ∈ `2 and (PN ◦∆ ◦PN )(v) ∈ `2. Then the above

lemma can be easily proved using properties of operators on `2.

In functional analysis, bounded linear operators are well studied [37, 38]. However,

the bounded operators defined here need not be linear. Most bounded operators used in

this dissertation have been studied in the robust control literature [19]. Two particularly

important operators for analysis of optimization methods are now introduced. Given

a function g ∈ F(m,L) with m ≥ 0, we define the operator ∆̄g : `p2e → `p2e that maps

v ∈ `p2e to w = ∆̄g(v) as

wk = ∇g(vk). (2.16)
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Since m ≥ 0, there exists x∗ such that ∇g(x∗) = 0. Consequently, ‖wk‖ = ‖∇g(vk)‖ ≤
L‖vk − x∗‖ < ∞, and ∆̄g is a well-defined operator mapping `p2e to `p2e. It is straight-

forward to check that ∆̄g is causal. Since wk is completely determined by vk and

independent of vt (t 6= k), this operator is said to be static (or memoryless). Notice

that ∆̄g is not bounded in general since ∇g(0) may not be equal to 0. On the other

hand, a shifted version of ∆̄g (denoted as ∆g) is bounded. The operator ∆g : `p2e → `p2e

is defined to map v ∈ `p2e to w = ∆g(v) as

wk = ∇g(vk + v∗)−∇g(v∗) (2.17)

where v∗ is an arbitrary referencing point. We can verify that ∆g(0) = 0 and ‖wk‖ ≤
L‖vk‖ such that ∆g is a bounded operator satisfying ‖∆g‖ ≤ L. When v∗ satisfies

∇g(v∗) = 0, Equation (2.17) becomes wk = ∇g(vk + v∗), which can also be constructed

from (2.16) by shifting vk to (vk + v∗). Hence ∆g can be viewed as a shifted version

of ∆̄g in this case. The connection between ∆̄g and ∆g is important for the analysis in

this dissertation.

A discrete-time state-space model with a known initial condition can be viewed as

an operator. Section 2.5 reviews the required background on linear state-space models.

Several other operators which are useful for robustness analysis of optimization methods

are summarized in Section 2.11.

2.5 Linear State-Space Models

Now we briefly review some basic concepts regarding dynamic system theory. Let a

dynamic system G be governed by a linear state-space model, which is described by the

following recursive iteration:

ξk+1 = Aξk +Bwk

vk = Cξk +Dwk
(2.18)

where ξk ∈ Rnξ , wk ∈ Rnw , vk ∈ Rnv , A ∈ Rnξ×nξ , B ∈ Rnξ×nw , C ∈ Rnv×nξ , and

D ∈ Rnv×nw . In the controls literature, the step k is typically denoted as a subscript.

Here we adopt the convention in the optimization literature and write k as a superscript.

At each step k, the variables ξk, wk, and vk are referred to as the state, input, and
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output of the system G. When the initial condition ξ0 is given, one can use the state

space model (2.18) to determine the state ξ and the output v for any given input

sequence w. The state-space model (2.18) for G is linear in the sense that G becomes

a linear operator given zero initial conditions (ξ0 = 0). The dynamic system (2.18) is

completely determined by the matrices A, B, C, and D. We say that G is determined

by (A,B,C,D) or equivalently

G :=

[
A B

C D

]
. (2.19)

In the simplest case, A, B, C, and D are constant matrices which do not change with

k. Then the dynamic system G is said to be linear time-invariant (LTI), and has a

frequency domain representation G = C(zI − A)−1B + D. A thorough treatment of

the frequency domain characterizations of LTI systems can be found in [39]. It is worth

mentioning that the poles of G are the eigenvalues of A. Hence G ∈ RLnv×nw∞ if all the

eigenvalues of A are not on the unit circle. In addition, G ∈ RHnv×nw
∞ if A is a Schur

stable matrix.

From an input-output viewpoint, the model (2.18) defines a system G that maps

input w to output v. We denote this input-output relationship as v = G(w). One can

easily use induction to show that a state-space model (2.18) with an initial condition

ξ0 is an operator mapping from `nv2e to `nw2e . A block diagram can be used to graphi-

cally represent the input-output characteristic of a dynamic system. For example, the

dynamic system G described by the state-space model (2.18) can be represented by

the block-diagram, as shown in Figure 2.3. Although the states of G are not explicitly

shown in the block-diagram, the block-diagram captures the relationship v = G(w).

G

w
-

v
-

Figure 2.3: The Block-Diagram for a Dynamic System G

A complex system can be modeled by augmenting the state-space models of its

subsystems via several basic rules. The augmenting rule for series connection is now
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reviewed. The series connection of G1 and G2 in Figure 2.4 can be viewed as a compo-

sition of G1 and G2, and is denoted as G2 ◦ G1. Specifically, we have u = G1(w) and

v = G2(u). Hence v = G2 (G1(w)) = (G2 ◦G1)(w). Suppose G1 has a state-space model

(A1, B1, C1, D1) and G2 has a state-space model (A2, B2, C2, D2). Then G2 ◦ G1 also

has a state-space model. The input of G2 ◦ G1 is the input to G1, and the output of

G2 ◦ G1 is the output of G2. The state of G2 ◦ G1 is the augmentation of the state of

G1 and the state of G2. The state-space model for G2 ◦G1 is determined by
A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 . (2.20)

This is a standard result in the controls literature. More details can be found in [39].

G1 G2

G2 ◦G1

w
-

u
- -

v

Figure 2.4: The Block-Diagram for Series Connection G2 ◦G1

Given two state-space models G and Ψ, we define a specific augmentation G(G,Ψ) as

G(G,Ψ) = Ψ ◦

[
G

I

]
. (2.21)

Here the input dimension of Ψ is assumed to be equal to the sum of the input dimension

and output dimension of G. The state-space model for G(G,Ψ) is now presented. Suppose

G is described by (2.18), and the output of
[
G
I

]
(hence the input for Ψ) is [ vw ]. Suppose

the state-space model for Ψ is described by

ψk+1 = Aψψ
k +

[
Bψ1 Bψ2

] [vk
wk

]

rk = Cψψ
k +

[
Dψ1 Dψ2

] [vk
wk

] (2.22)
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Since vk = Cξk +Dwk, we can rewrite (2.22) as

ψk+1 = Aψψ
k +

[
Bψ1C Bψ1D +Bψ2

] [ξk
wk

]

rk = Cψψ
k +

[
Dψ1C Dψ1D +Dψ2

] [ξk
wk

]
.

(2.23)

Notice the state for G(G,Ψ) is
[
ξ
ψ

]
. We can augment (2.23) with (2.18) to obtain the

following state-space model for G(G,Ψ):[
ξk+1

ψk+1

]
=

[
A 0

Bψ1C Aψ

][
ξk

ψk

]
+

[
B

Bψ1D +Bψ2

]
wk

rk =
[
Dψ1C Cψ

] [ξk
ψk

]
+ (Dψ1D +Dψ2)wk

(2.24)

In other words, the state matrices (A,B, C,D) for the augmented system G(G,Ψ) are

determined by the state matrices of G and Ψ as follows:

A :=

[
A 0

Bψ1C Aψ

]
, B :=

[
B

Bψ1D +Bψ2

]
(2.25)

C :=
[
Dψ1C Cψ

]
, D := Dψ1D +Dψ2 (2.26)

An alternative way to derive the above result is first writing out the state-space

model for
[
G
I

]
and then augmenting with Ψ using the series connection rule (2.20).

2.6 Feedback Interconnection and Stability Concepts

In this section, we introduce the concept of an feedback interconnection. For a dynamic

system G and a causal operator ∆, a feedback interconnection of G and ∆ is shown

in Figure 2.5 and denoted as Fu(G,∆). The feedback connection states that v and w

musty satisfy v = G(w) and w = ∆(v) simultaneously.

To clarify what the feedback interconnection really stands for, consider the following

example. Recall ∆g maps v to w via wk = ∇g(vk + v∗)−∇g(v∗), and G is described by
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G

∆

v

-

w

�

Figure 2.5: The Block-Diagram for Feedback Interconnection Fu(G,∆)

the state-space model (2.18). The feedback interconnection Fu(G,∆g) represents the

following iteration:

ξk+1 = Aξk +Bwk

vk = Cξk +Dwk

wk = ∇g(vk + v∗)−∇g(v∗)

(2.27)

In the above iteration, the linear state-space model part states v = G(w), and the

nonlinear mapping part states w = ∆g(v). Clearly there is an issue on whether there

exist (ξ, w, v) ∈ `2e satisfying (2.27) such that the feedback interconnection Fu(G,∆g)

even makes sense. This is the so-called well-posedness issue in the controls literature.

Definition 1. The interconnection Fu(G,∆) is well-posed if for each ξ0 ∈ Rnξ there

exists a unique solution ξ ∈ `nξ2e , v ∈ `nv2e and w ∈ `nw2e satisfying Equation (2.18) and

w = ∆(v).

One commonly-used proof technique for well-posedness of discrete-time interconnec-

tions is induction. In general, the detailed proof of well-posedness is case-dependent.

In this dissertation, the feedback interconnection is mainly used to model optimization

methods. As we will later see, we mainly consider feedback interconnection Fu(G,∆)

with D = 0. In this case, the proof of well-posedness becomes straightforward. For

example, to prove that Fu(G,∆g) is well-posed, we can rewrite (2.27) as ξk+1 =

Aξk + B∇g(Cξk + v∗) − B∇g(v∗). Suppose ∇g does not map any finite number to

infinity. By induction, there always exists a unique `2e solution (ξ, v, w) satisfying

(2.27) for any initial condition ξ0 ∈ Rnξ . Therefore, Fu(G,∆g) is well-posed. Similarly,

we can use induction to show that Fu(G,∆) is well-posed given D = 0 and ∆ being

other causal operators mapping `2e to `2e.
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The feedback interconnection provides a compact expression for systems which are

pieced together by linear state-space models and other more troublesome operators.

This structure has been extensively used in the controls literature. In this dissertation,

we will use it to represent optimization methods. Two notions of stability are studied

in this dissertation.

Definition 2. The interconnection Fu(G,∆) is uniformly stable2 if it is well-posed and

if ∃ c ≥ 0 such that ‖ξk‖ ≤ c‖ξ0‖ for all ξ0 ∈ Rnξ and k ≥ 0.

Definition 3. Fu(G,∆) is exponentially stable with rate ρ (≥ 0) if it is well-posed and

if ∃ c ≥ 0 such that ‖ξk‖ ≤ cρk‖ξ0‖ for all ξ0 ∈ Rnξ and k ≥ 0.

In Definition 2, the stability is “uniform” in the sense that the constant c does

not depend on ξ0. In the traditional IQC setup [19], the feedback interconnection

involves two exogenous inputs for the purpose of input-output stability analysis. This

dissertation focuses on the analysis of optimization methods, and stability regarding

internal states is of interest. Hence the exogenous inputs are dropped in our current

setup. The stability analysis of Fu(G,∆) is typically non-trivial due to the troublesome

element ∆. For example, if g is not a quadratic function, then the operator ∆g becomes

nonlinear. As a result, we cannot directly apply the linear system theory in [39] to

study the stability of Fu(G,∆g). We will show how to use semidefinite programs to

check uniform stability and ρ-exponential stability of Fu(G,∆) for various G and ∆.

2.7 Integral Quadratic Constraints

One general framework for analysis of Fu(G,∆) is provided by integral quadratic con-

straints (IQCs) [19, 26]. The key idea is to replace the troublesome element ∆ with

quadratic constraints on its inputs and outputs. IQCs can be specified either in the

frequency or time domain. The definitions of IQCs are given as follows.

2 The notion of stability we use here is a special case of the so-called global uniform stability [40,
Lemma 4.5] when the required class K function is a linear function.
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Definition 4. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be given. A bounded, causal operator

∆ : `nv2e → `nw2e satisfies the frequency domain IQC defined by the multiplier Π, if the

following inequality holds for all v ∈ `nv2 and w = ∆(v)∫ 2π

0

[
V (ejω)

W (ejω)

]∗
Π(ejω)

[
V (ejω)

W (ejω)

]
dω ≥ 0 (2.28)

where V and W are discrete-time Fourier transforms of v and w.

Definition 5. Let Ψ be an nr × (nv + nw) LTI system governed by the state-space

model (2.22), and M = MT ∈ Rnr×nr .

(a) Assume Aψ is a Schur stable matrix. A bounded, causal operator ∆ : `nv2e → `nw2e

satisfies the time domain soft IQC defined by (Ψ,M) if the following inequality

holds for all v ∈ `nv2 and w = ∆(v)

∞∑
k=0

(rk)TMrk ≥ 0 (2.29)

where r is the output of the state-space model (2.22) with inputs (v, w) and zero

initial conditions.

(b) A causal operator ∆ : `nv2e → `nw2e satisfies the time domain hard IQC defined by

(Ψ,M) if the following inequality holds for all v ∈ `nv2e , w = ∆(v) and N ≥ 0

N∑
k=0

(rk)TMrk ≥ 0 (2.30)

where r is the output of the state-space model (2.22) with inputs (v, w) and zero

initial conditions.

The notation ∆ ∈ IQC(Π), ∆ ∈ SoftIQC(Ψ,M) and ∆ ∈ HardIQC(Ψ,M) will

be used when ∆ satisfies the corresponding frequency domain, time domain soft, or

time domain hard IQC, respectively. The definition of time domain hard IQCs does

not require ∆ to be bounded, while frequency domain IQCs and time domain soft

IQCs can only be defined for bounded operators. Time domain IQCs yield a graphical

interpretation as shown in Figure 2.6. Let the input and output signals of ∆ be filtered
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through Ψ with zero initial conditions. If ∆ ∈ SoftIQC(Ψ,M), then sequence r must

satisfy the infinite time horizon constraint in (2.29) for any v ∈ `nv2 and w = ∆(v). A

similar interpretation holds for time domain hard IQCs.

v - ∆
w-

-

- Ψ
r
-

Figure 2.6: Graphical Interpretation for Time Domain IQCs

A library of frequency domain IQCs for different continuous-time bounded operators

was summarized in [19]. Additional frequency domain IQCs have been developed for

time-varying delays [41–43] and nonlinearities [44]. Many of these continuous-time IQCs

have discrete-time counterparts [44–46]. Some IQCs were originally derived in the time

domain while many other IQCs were developed in the frequency domain. In Section 2.11,

we document existing IQCs for several discrete-time operators which are useful for

analysis of first-order optimization methods. The stability analysis in this dissertation

requires time domain hard IQCs. It is useful to connect frequency and time domain

IQCs so that the full library of known IQCs can be used within the proposed analysis

framework. This connection relies on factorizing a frequency domain multiplier as Π =

Ψ∼MΨ. Such a factorization is always possible as stated in the next lemma although

it is not unique.

Lemma 3. Suppose Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ . Then there exists real matrices Aψ,

Bψ, Q, S, and R of compatible dimensions with Aψ being Schur stable, Q = QT , and

R = RT such that

Π(z) :=

[
(zI −Aψ)−1Bψ

I

]∼ [
Q S

ST R

][
(zI −Aψ)−1Bψ

I

]
(2.31)

Proof. The proof given here is a modification of the continuous-time result presented

in [47, Section 7.3]. Separate Π = GS + GU where GS and GU are uniformly bounded

outside and inside the closed unit disk, respectively. In addition, without loss of gener-

ality, one can choose a specific GS satisfying GS(∞) = 0. Let (AS , BS , CS , 0) denote a
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realization for this GS , i.e. GS(z) = CS(zI −AS)−1BS . Here AS is a Schur stable ma-

trix since GS is bounded outside the closed unit disk. The assumption Π = Π∼ implies

that GS + GU = G∼S + G∼U . This can be rewritten as GS − G∼U = G∼S − GU where the

left and right sides are analytic outside and inside the (closed) unit disk, respectively.

Hence both sides must be analytic in the entire complex plane. By Liouville’s theorem,

one can conclude that G∼S − GU is a constant, i.e. there exists matrix R such that

GU (z) = G∼S (z) +R for all z ∈ C. This implies Π = GS +G∼S +R, and R = RT follows

immediately from Π = Π∼. Thus Π can be written as in Equation (2.31) with Aψ = AS ,

Bψ = BS , Q = 0, S = CTS and the constant matrix R.

Existing numerical algorithms can be used to construct the factorization presented

in Lemma 3. If Π is proper then the Matlab function stabsep can be used to separate

Π = GS + GU where GS is stable and causal. However, Π ∈ RLm×m∞ may be a non-

proper (polynomial) function of z, e.g. the multipliers used in [12, 48]. A descriptor

system representation of Π is required in such cases. If Π is a non-proper (descriptor)

system then the algorithm in [49] can be used to separate out the stable part. This

algorithm is easily implemented in Matlab and is based on LAPACK linear algebra

routines described in [50,51]. The stable part GS in this construction is strictly proper

and hence it has a standard state-space description. Finally, the matrix R can be

explicitly computed by evaluating R = Π(z0) − GS(z0) − GS(z−1
0 )T for some z0 ∈ C.

For example, evaluating at z0 = 1 is useful as both Π and GS are bounded on the unit

circle.

As mentioned in Section 2.5, LTI systems can be represented by rational functions.

Then frequency and time domain IQCs can be connected by the (non-unique) factor-

izations Π = Ψ∼MΨ. This is formalized in the next lemma.

Lemma 4. Let Π = Ψ∼MΨ with Ψ ∈ RHnr×(nv+nw)
∞ and M = MT ∈ Rnr×nr . Let

∆ : `nv2e → `nw2e be a bounded, causal operator. Then

1. ∆ ∈ IQC(Π) if and only if ∆ ∈ SoftIQC(Ψ,M).

2. ∆ ∈ IQC(Π) if ∆ ∈ HardIQC(Ψ,M).

Proof. To prove Statement 1, first assume ∆ ∈ IQC(Π). For any v ∈ `nv2 and w = ∆(v),
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the frequency domain IQC inequality (2.28) can be written as:∫ 2π

0
R(ejω)∗MR(ejω)dω ≥ 0 (2.32)

where R(ejω) = Ψ(ejω)
[
V (ejω)

W (ejω)

]
is the Fourier transform of an `2 signal since Ψ is

stable.3 By Parseval’s theorem [21], ∆ satisfies the time domain soft IQC defined by

(Ψ,M). The reverse implication of Statement 1 also follows via Parseval’s theorem.

To prove Statement 2, assume ∆ ∈ HardIQC(Ψ,M). Let r be the output of Ψ driven

by inputs v ∈ `nv2 and w ∈ `nw2 with zero initial conditions. Stability of Ψ implies r ∈ `nr2 .

Hence the hard IQC inequality (2.30) holds as N →∞ and ∆ ∈ SoftIQC(Ψ,M). This

implies ∆ ∈ IQC(Π) by Statement 1.

Statement 2 of Lemma 4 states that a time domain hard IQC with a stable filter

Ψ always leads to a frequency domain IQC. The reverse implication does not hold in

general. It is important to emphasize that factorizations of Π are not unique. Some

factorizations of Π may yield time domain hard IQCs while others do not. Thus the

hard/soft property is not inherent to the multiplier Π but depends on the factorization

(Ψ,M). The factorization introduced by Lemma 3 does not, in general, yield a valid

time domain hard IQC. Later in Section 3.1, we will develop a J-spectral factorization

approach, which can be used to systematically factorize frequency domain IQCs into

time domain hard IQCs under mild technical conditions.

2.8 Uniform Stability Analysis Using IQCs

The original work in [19] addresses input-output stability using IQCs. For the purpose

of this dissertation, uniform stability and ρ-exponential stability of Fu(G,∆) are consid-

ered. This section presents a standard dissipation inequality approach for uncertainty

analysis [27, 28, 40, 52]. Linear matrix inequality (LMI) conditions for uniform stability

of Fu(G,∆) are formulated using time domain hard IQCs.

First, the core idea of the IQC analysis is briefly explained. To better explain the

3 The transform R(ejω) is unrelated to the constant matrix R appearing in the basic IQC
factorization.
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IQC analysis, the notation (v, w) ∈ HardIQC(Ψ,M) is used when the sequence r gener-

ated by (2.22) with input pair (v, w) and zero initial conditions always satisfies the con-

straint (2.30). Therefore, ∆ ∈ HardIQC(Ψ,M) if and only if (v, w) ∈ HardIQC(Ψ,M)

for all v ∈ `nv2e and w = ∆(v). When analyzing Fu(G,∆), one aims to draw conclu-

sions on the pair (v, w) in the set {(v, w) ∈ `2e : v = G(w), w = ∆(v)}. Suppose

∆ ∈ HardIQC(Ψ,M), then the set {(v, w) ∈ `2e : v = G(w), w = ∆(v)} is a subset of

{(v, w) ∈ `2e : v = G(w), (v, w) ∈ HardIQC(Ψ,M)}. If one can prove that the state of

G is uniformly bounded for any pair (v, w) in the set {(v, w) ∈ `2e : v = G(w), (v, w) ∈
HardIQC(Ψ,M)}, then it is guaranteed that the state of G is uniformly bounded for

any pair (v, w) satisfying v = G(w) and w = ∆(v) simultaneously. Equivalently, the

uniform stability of Fu(G,∆) is guaranteed. Hence one can completely remove ∆ from

the analysis by enforcing the condition (v, w) ∈ HardIQC(Ψ,M). A graphical interpre-

tation is shown in Figure 2.7. After replacing ∆ with the IQC condition, the pair (v, w)

still satisfies v = G(w). In addition, let r = Ψ(v, w) = Ψ(G(w), w). Then r must satisfy

the constraint (2.30). From (2.21), we have r = G(G,Ψ)(w). Eventually we only need to

analyze G(G,Ψ) with input w ∈ `nw2e and the output r. By induction, w has to be in `nw2e ,

and r always satisfies the constraint (2.30) given the condition ∆ ∈ HardIQC(Ψ,M).

G

∆

v

-

w

�

-

- Ψ
r-

Figure 2.7: Uncertain LTI System Extended to Include Filter Ψ

The detailed analysis is now presented. Notice conservatism may be introduced in

the IQC analysis since the full information of ∆ is completely replaced by the IQC

condition. Multiple IQCs are typically used to reduce the potential conservatism.

Now the operator ∆ is assumed to satisfy multiple time domain hard IQCs defined

by {(Ψj ,Mj)}NJj=1. All {Ψj}NJj=1 are first aggregated into a single filter denoted Ψ with
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the following state-space realization:

[
ψk+1

rk

]
=

[
Aψ Bψ1 Bψ2

Cψ Dψ1 Dψ2

]
ψk

vk

wk

 (2.33)

where r := [rT1 . . . r
T
NJ

]T and rj is the output of the filter Ψj . As mentioned previously,

the uniform stability analysis of Fu(G,∆) is based on the extended system shown in

Figure 2.7. Consider the extended system G(G,Ψ) defined in Equation (2.24). Notice

G(G,Ψ) has the following state-space model:[
ηk+1

rk

]
=

[
A B
C D

][
ηk

wk

]
(2.34)

The extended state vector is ηk :=
[
ξk

ψk

]
∈ Rnξ+nψ . Based on (2.25) and (2.26), the

state matrices for the extended system G(G,Ψ) can be computed from the state matrices

of G and Ψ.

Now defineMλ := diag(λ1M1, . . . , λNJMNJ ), where the “diag” notation means block

diagonal concatenation. The next theorem presents LMI conditions for uniform stability

of Fu(G,∆) using time domain hard IQCs and a standard dissipation inequality. This

theorem uses an LMI defined by G and {(Ψj ,Mj)}NJj=1:

LMI(G,Ψ)(P,Mλ) :=

[
ATPA− P ATPB
BTPA BTPB

]
+

[
CT

DT

]
Mλ

[
C D

]
(2.35)

Theorem 1. Let G be an LTI system defined by (2.18) and ∆ : `nv2e → `nw2e be a causal

operator. Assume Fu(G,∆) is well-posed and ∆ ∈ HardIQC(Ψj ,Mj) for j = 1, . . . , NJ .

If one of the following conditions holds

(a) ∃ a matrix P = P T > 0 and scalars λj ≥ 0 such that LMI(G,Ψ)(P,Mλ) ≤ 0.

(b) ∃ a matrix P = P T ≥ 0 and scalars λj ≥ 0 such that LMI(G,Ψ)(P,Mλ) < 0.

Then Fu(G,∆) is uniformly stable.
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Proof. Given any fixed ξ0, let (ξ, v, w) be the unique `2e solution satisfying the feedback

iteration Fu(G,∆) with this initial condition ξ0, and let (ψ, r) be generated by Ψ with

inputs (v, w) and zero initial conditions. Since ηk =
[
ξk

ψk

]
, we can verify that (2.34)

holds with the current choice of (η, w, r) and the initial condition η0 =
[
ξ0

ψ0

]
. Here

ψ0 is the zero vector, since Ψ has zero initial conditions. Define a storage function by

V (ηk) = (ηk)TPηk. Since ηk+1 = Aηk + Bwk, one can show the following holds

V (ηk+1)− V (ηk) = (Aηk + Bwk)TP (Aηk + Bwk)− (ηk)TPηk

=

[
ηk

wk

]T [
ATPA− P ATPB
BTPA BTPB

][
ηk

wk

]
.

(2.36)

Similarly, since rk = Cηk +Dwk, one can show

NJ∑
j=1

λj(r
k
j )TMjr

k
j = (rk)TMλr

k =
[
(ηk)T (wk)T

] [CT
DT

]
Mλ

[
C D

] [ηk
wk

]
. (2.37)

Now assume Condition (a) holds. Left and right multiply LMI(G,Ψ)(P,Mλ) ≤ 0 by

[ηT , wT ] and [ηT , wT ]T to show that V satisfies:

V
(
ηk+1

)
− V

(
ηk
)

+

NJ∑
j=1

λj(r
k
j )TMjr

k
j ≤ 0 (2.38)

The above inequality can be summed from k = 0 to k = N to yield:

V
(
ηN+1

)
− V

(
η0
)

+

NJ∑
j=1

λj

(
N∑
k=0

(rkj )TMjr
k
j

)
≤ 0 (2.39)

Applying the time domain hard IQC conditions with the fact λj ≥ 0, we directly get

V
(
ηN+1

)
≤ V (η0), which is equivalent to V (ηk) ≤ V (η0). The zero initial condi-

tion for Ψ implies ‖ξk‖2 ≤ ‖ηk‖2 ≤ cond(P )‖η0‖2 = cond(P )‖ξ0‖2. Thus ‖ξk‖ ≤√
cond(P )‖ξ0‖, and Fu(G,∆) is uniformly stable.

Now assume Condition (b) holds. Since LMI(G,Ψ)(P,Mλ) < 0, ∃ ε > 0 such that

LMI(G,Ψ)(P + εI,Mλ) ≤ 0. Uniform stability follows from Condition (a) due to the

fact P + εI > 0.

Given (A,B, C,D) and Mj , the matrix LMI(G,Ψ)(P,Mλ) is linear in P and λj .

Therefore, the stability tests in the above theorem are presented as LMI conditions,
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whose feasible sets are convex and can be effectively searched using the state-of-the-art

convex optimization techniques, e.g. interior point method. Many optimization solvers

are available such that coding the LMI conditions in Theorem 1 is a straightforward

task. In this dissertation, the numerical calculations of LMI conditions were performed

using CVX [53,54] with the solver SDPT3 [55,56].

The dissipation inequality approach in Theorem 1 relies on the fact that the con-

straint (2.30) holds for any finite-horizon N ≥ 0. It does not require either G or Ψ to

be stable. It only requires that the states of G(G,Ψ) have no finite escape time. Hence,

the definition of time domain hard IQCs does not enforce the stability of Ψ. In prin-

ciple, one can use time domain hard IQCs with unstable Ψ, although the J-spectral

factorization of any frequency domain IQC always leads to stable Ψ.

In Theorem 1, Statement (b) is stronger than Statement (a) in the sense that State-

ment (b) is a sufficient condition for Statement (a). However, Statement (b) can be

generalized to formulate other uniform stability theorems under extra assumptions. In

Section 3.2, we will present one such generalization using a modified dissipation inequal-

ity. More specifically, when G ∈ RHnv×nw
∞ , a modified dissipation inequality can be used

to drop the constraint P ≥ 0 in Condition (b) of the above theorem. In addition, the

conic combination of time domain hard IQCs can be extended to more general IQC

parameterizations where soft IQCs are involved and Mλ is an affine function of λ [57].

This leads to potentially more flexible formulations of uniform stability tests.

It is possible to perform uniform stability analysis of Fu(G,∆) using some alternative

procedures (ν-gap metric theory in [58], dissipation inequality in [25], etc). These

procedures were originally developed for input-output stability analysis. A detailed

discussion on the adaption of these procedures for uniform stability analysis is beyond

the scope of this dissertation.

Remark 1. It is worth mentioning that the composition of two operators can also be

handled by the IQC framework. Specifically, the analysis of Fu(G,∆1 ◦ ∆2) can be

performed when IQCs are posed on ∆1 and ∆2 separately. In the controls literature, the

interconnection Fu(G,∆1 ◦∆2) is typically transformed into a new interconnection with

block diagonal perturbation diag(∆1,∆2). Then IQCs on diag(∆1,∆2) can be directly

constructed from the IQCs on ∆1 and ∆2, and used to formulate stability theorems. An

alternative approach was presented in [12, Section 5.2]. The idea is as follows. One can
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define an augmented operator ∆ =
[

∆2
∆1◦∆2

]
. Notice ∆1 ◦∆2 = [ 0 I ] ◦∆. One can show

that Fu(G,∆1◦∆2) is uniformly stable if and only if Fu(G◦[ 0 I ] ,∆) is uniformly stable.

Notice G ◦ [ 0 I ] is still governed by a linear state-space model. In addition, the IQCs

on ∆ can be efficiently constructed from the IQCs on ∆1 and ∆2. Hence the uniform

stability analysis of Fu(G ◦ [ 0 I ] ,∆) can be directly handled by Theorem 1.

2.9 ρ-Hard IQCs and ρ-Exponential Stability Analysis

Recently, it is recognized that many deterministic first-order optimization methods can

be cast as Fu(G,∆), and the concept of ρ-hard IQCs is further developed to analyze

the convergence rates of such interconnections [12]. Later we will use a state shifting

argument to show that the linear convergence rate analysis of an optimization method

is equivalent to the ρ-exponential stability analysis of a related interconnection. This

section reviews the ρ-hard IQC approach, which is inspired by early results on sector-

bounded nonlinearities [30] and formalized in [12]. The concept of time domain ρ-hard

IQCs is introduced, and a related dissipation inequality for ρ-exponential stability of

Fu(G,∆) is briefly reviewed.

Definition 6. Let Ψ be an nr × (nv + nw) LTI system governed by the state-space

model (2.22), and M = MT ∈ Rnr×nr . Suppose 0 < ρ ≤ 1. A causal operator ∆ :

`nv2e → `nw2e satisfies the time domain ρ-hard IQC defined by (Ψ,M, ρ), if the following

inequality holds for all v ∈ `nv2e , w = ∆(v) and N ≥ 0

N∑
k=0

ρ−2k(rk)TMrk ≥ 0 (2.40)

where r is the output of Ψ driven by inputs (v, w) with zero initial conditions.

The notation ∆ ∈ ρ-HardIQC(Ψ,M, ρ) will be used when ∆ satisfies the correspond-

ing time domain ρ-hard IQC. Suppose ∆ ∈ ρ-HardIQC(Ψj ,Mj , ρ) for j = 1, . . . , NJ .

All {Ψj}NJj=1 are aggregated into a filter Ψ governed by Equation (2.33). Let (A,B, C,D)

denote the state space realization of G(G,Ψ). Theorem 4 in [12] essentially states the

following result:
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Theorem 2. Let G be an LTI system defined by (2.18) and ∆ : `nv2e → `nw2e be a

causal operator. Assume Fu(G,∆) is well-posed, and ∆ ∈ ρ-HardIQC(Ψj ,Mj , ρ) for

j = 1, . . . , NJ . If one of the following conditions holds

(a) ∃ a matrix P = P T > 0 and scalars λj ≥ 0 such that[
ATPA− ρ2P ATPB
BTPA BTPB

]
+

[
CT

DT

]
Mλ

[
C D

]
≤ 0 (2.41)

(b) ∃ a matrix P = P T ≥ 0 and scalars λj ≥ 0 such that the left side of (2.41) is

negative definite.

Then Fu(G,∆) is exponentially stable with rate ρ.

Proof. Statement (a) has been proved in [12]. The proof is similar to the proof of

Theorem 1. The basic idea is sketched as follows. Set a storage function as V (ηk) =

(ηk)TPηk. Left and right multiply (2.41) by [ηT , wT ] and [ηT , wT ]T to show that V

satisfies: ρ−2kV (ηk+1) − ρ2−2kV (ηk) +
∑NJ

j=1 λjρ
−2k(rkj )TMjr

k
j ≤ 0. Summing this in-

equality from k = 0 to k = N with initial condition η0 =
[
ξ0

0

]
and applying the

time domain ρ-hard IQC conditions yields ρ−2NV
(
ηN+1

)
≤ ρ2V

(
η0
)
, which is equiv-

alent to ρ2−2kV
(
ηk
)
≤ ρ2V

(
η0
)
. Therefore, ‖ξk‖ ≤ ‖ηk‖ ≤

√
cond(P )‖η0‖ρk =√

cond(P )‖ξ0‖ρk, and Fu(G,∆) is exponentially stable with rate ρ. When Condition

(b) holds, the perturbation argument in the proof of Theorem 1 can be used again to

conclude the desired conclusion.

When formulating (2.41), Mj and the state matrices of G do not depend on ρ.

However, the state-space realization of Ψ may depend on ρ, e.g. see [12, Lemma 10].

Hence, (A,B, C,D) may depend on ρ. In addition, the term ρ2P is bilinear in ρ2 and

P . Hence, one cannot treat (2.41) as a single LMI when trying to find the smallest

ρ such that (2.41) is feasible. When ρ is fixed, (2.41) becomes an LMI with decision

variables P and λj . Hence Theorem 2 can be used to check whether an interconnection

Fu(G,∆) is exponentially stable with a given rate ρ. A bisection on ρ2 can then be used

to find the best (i.e. smallest) exponential rate bound for Fu(G,∆). If the state-space

realization of Ψ does not depend on ρ, the only bilinear term in (2.41) is ρ2P . One can

treat ρ2 as one variable. Solving smallest ρ with (2.41) becomes a generalized eigenvalue
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problem (GEVP) [33]. In this case, a bisection search on ρ is no longer required, and

more efficient algorithms are available [59].

The size of (2.41) depends on the state dimensions of G and Ψ. When applying

Theorem 2 to analyze deterministic first-order optimization methods, a dimension re-

duction step is involved and the resultant semidefinite programs typically have small

sizes. The dimension reduction relies on the following lemma.

Lemma 5. Suppose the matrices (A,B,C,D) and (Ã, B̃, C̃, D̃) satisfy[
A B

C D

]
=

[
Ã⊗ Ip B̃ ⊗ Ip
C̃ ⊗ Ip D̃ ⊗ Ip

]
. (2.42)

Similarly, suppose Aψ = Ãψ ⊗ Ip, Bψ1 = B̃ψ1 ⊗ Ip, Bψ2 = B̃ψ2 ⊗ Ip, Cψ = C̃ψ ⊗ Ip,
Dψ1 = D̃ψ1 ⊗ Ip, and Dψ2 = D̃ψ2 ⊗ Ip. Let (A,B, C,D) be determined by (2.25) and

(2.26), and let (Ã, B̃, C̃, D̃) be calculated from

Ã :=

[
Ã 0

B̃ψ1C̃ Ãψ

]
, B̃ :=

[
B̃

B̃ψ1D̃ + B̃ψ2

]
(2.43)

C̃ :=
[
D̃ψ1C̃ C̃ψ

]
, D̃ := D̃ψ1D̃ + D̃ψ2 (2.44)

Suppose P = P̃ ⊗ Ip and Mλ = M̃λ ⊗ Ip. Then[
ATPA− ρ2P ATPB
BTPA BTPB

]
+

[
CT

DT

]
Mλ

[
C D

]
=

([
ÃT P̃ Ã − ρ2P̃ ÃT P̃ B̃
B̃T P̃ Ã B̃T P̃ B̃

]
+

[
C̃T

D̃T

]
M̃λ

[
C̃ D̃

])
⊗ Ip

(2.45)

where the matrix dimensions are assumed to be compatible.

Proof. Based on the basic property of the Kronecker product, one can first verify[
A B
C D

]
=

[
Ã ⊗ Ip B̃ ⊗ Ip
C̃ ⊗ Ip D̃ ⊗ Ip

]
. (2.46)

Then one can combine the above relation with the facts P = P̃ ⊗ Ip and Mλ = M̃λ ⊗
Ip. The rest of the proof follows directly from the basic property of the Kronecker

product.
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Based on the above lemma, the dimension of the LMI condition (2.41) can be signifi-

cantly reduced in many optimization analysis problems. See Remark 2 in Section 2.11.3

and [12, Section 4.2] for further explanations.

2.10 Linear Rate Analysis of Optimization Methods

As presented in [12, Section 2], we can represent various first-order optimization methods

as feedback interconnections. For example, to rewrite the standard gradient descent

method xk+1 = xk − α∇g(xk), we can set ξ̄k = xk and use the following feedback

interconnection:

ξ̄k+1 = ξ̄k − αw̄k

v̄k = ξ̄k

w̄k = ∇g(v̄k)

(2.47)

which is equivalent to Fu(Ḡ, ∆̄g) with

Ḡ =

[
Ip −αIp
Ip 0p

]
. (2.48)

Recall that the operator ∆̄g is defined by (2.16).

Similarly, to represent Nesterov’s accelerated method (2.11), we can use Fu(Ḡ, ∆̄g)

with

Ḡ =


(1 + β)Ip −βIp −αIp

Ip 0p 0p

(1 + β)Ip −βIp 0p

 . (2.49)

To represent the Heavy-ball method (2.12), we can use Fu(Ḡ, ∆̄g) with

Ḡ =


(1 + β)Ip −βIp −αIp

Ip 0p 0p

Ip 0p 0p

 . (2.50)

The optimization method Fu(Ḡ, ∆̄g) is used to find the point x∗ satisfying ∇g(x∗) =

0. Hence ideally the gradient descent method should converge to ξ∗ = x∗. Nesterov’s

accelerated method and the Heavy-ball method should converge to ξ∗ =
[
x∗
x∗
]
. Now the

linear convergence of an optimization method Fu(Ḡ, ∆̄g) is defined as follows.
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Definition 7. The optimization method Fu(Ḡ, ∆̄) converges linearly at rate ρ if it is

well-posed and if ∃ c ≥ 0 such that ‖ξ̄k − ξ∗‖ ≤ cρk‖ξ̄0 − ξ∗‖ for all ξ̄0 and k ≥ 0.

In the above definition, we require the constant c to be independent of ξ̄0. This

dissertation focuses on the this strong notion of linear convergence. A weaker version of

linear convergence can be defined by allowing c to depend on ξ̄0. We do not specifically

study this weaker notion of linear convergence in this dissertation.

Now we state the equivalence between linear rate analysis of an optimization method

and ρ-exponential stability analysis of a related interconnection. The optimization

method Fu(Ḡ, ∆̄g) can be written as

ξ̄k+1 = Aξ̄k +Bw̄k

v̄k = Cξ̄k +Dw̄k

w̄k = ∇g(v̄k)

(2.51)

where A and C are assumed to satisfy Aξ∗ = ξ∗ and Cξ∗ = x∗, respectively. One can

easily verify the assumptions on A and C for various optimization methods (the gradient

descent method, Nesterov’s accelerated method, etc). Now set ξk = ξ̄k − ξ∗, wk = w̄k,

and vk = v̄k − x∗. Since ∇g(x∗) = 0, Aξ∗ = ξ∗, and Cξ∗ = x∗, it is straightforward to

rewrite (2.51) as

ξk+1 = Aξk +Bwk

vk = Cξk +Dwk

wk = ∇g(vk + x∗)−∇g(x∗)

(2.52)

which is equivalent to Fu(G,∆g). Here G and Ḡ have the same state matrices. The

operator ∆g has been defined in (2.17). The state of G and the state of Ḡ satisfy

ξk = ξ̄k − ξ∗. Therefore, the interconnection Fu(G,∆g) is ρ-exponentially stable if

and only if the optimization method Fu(Ḡ, ∆̄) converges to ξ∗ at a linear rate ρ. In

[12], time domain ρ-hard IQCs on ∆g were derived and applied to study the linear

convergence rates of several optimization methods. Notice the derivations in [12] were

slightly different from our arguments here. In the original work of [12], the concept of

time domain ρ-hard IQCs was modified such that the IQC analysis was directly applied

to Fu(Ḡ, ∆̄g). However, the modification in [12] is essentially equivalent to the state

shifting argument in this section.
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2.11 Related Operators and Existing IQCs

Now we present several operators which are useful for analysis of optimization methods.

In addition, we also briefly review some known IQCs on these operators.

2.11.1 Memoryless Nonlinearity in a Sector

Suppose the operator ∆ : `p2e → `p2e maps v to w = ∆(v) as wk = φ(vk, k), where

φ : Rp × Z+ → Rp is in a sector [m,L], i.e. the following inequality holds for all k:(
φ(vk, k)− Lvk

)T (
φ(vk, k)−mvk

)
≤ 0 (2.53)

Then this sector condition directly gives us a quadratic constraint:[
vk

wk

]T [
−2mLIp (L+m)Ip

(L+m)Ip −2Ip

][
vk

wk

]
≥ 0 (2.54)

Hence ∆ satisfies the sector IQC: ∆ ∈ HardIQC(Ψ,M) and ∆ ∈ ρ-HardIQC(Ψ,M, ρ)

where 0 < ρ ≤ 1 and the pair (Ψ,M) is given as

Ψ =

[
LIp −Ip
−mIp Ip

]
, M =

[
0p Ip

Ip 0p

]
. (2.55)

Notice (2.54) holds for any k. Hence the sector IQC is a time domain hard IQC as well

as a time domain ρ-hard IQC. This is the most commonly-used IQC in the analysis of

a feedback interconnection of a linear system and a nonlinearity.

When L > 0, (2.54) can be rewritten as[
vk

wk

]T [
−2mIp (1 + m

L )Ip

(1 + m
L )Ip − 2

LIp

][
vk

wk

]
≥ 0.

In the limiting case L→∞, the above inequality becomes[
vk

wk

]T [
−2mIp Ip

Ip 0p

][
vk

wk

]
≥ 0. (2.56)

Consequently, Ψ and M should also be modified accordingly.
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2.11.2 Static Nonlinearity

Suppose ∆ : `p2e → `p2e maps v to w = ∆(v) as wk = φ(vk), where φ : Rp → Rp is a

continuous function. This nonlinearity is static in the sense that the function φ does

not change with k. When φ lies within a sector [m,L] for finite m and L, the IQC

in Section 2.11.1 can be applied to ∆. Under certain circumstances, the Zames-Falb

IQCs [23,44] can be constructed for the static nonlinearity ∆. The nonlinear function φ

is bounded and monotone nondecreasing if φ(0) = 0, [φ(y1)− φ(y2)]T (y1 − y2) ≥ 0, and

‖φ(y1)‖ ≤ c‖y1‖ for some c and all y1, y2. When φ is bounded, the operator ∆ is also

bounded. The Zames-Falb IQCs can be specified in either frequency or time domain.

Lemma 6. Let φ : Rp → Rp be bounded and monotone nondecreasing. Suppose φ is a

gradient of some potential function which maps from Rp to R. Then

1. (Off-by-τ Hard IQC): For any v = {v0, v1, . . .} ∈ `p2e, and τ ≥ 0, we set wk =

φ(vk) for k ≥ 0, and define vk = 0 for −τ ≤ k < 0. Then for any N ≥ 0, the

following inequality always holds

N∑
k=0

(wk)T
(
vk − vk−τ

)
≥ 0. (2.57)

Hence ∆ ∈ HardIQC(Ψ,M) with

Ψ =



0p 0p . . . 0p −Ip 0p

Ip 0p . . . 0p 0p 0p
...

. . .
. . .

...
...

...

0p . . . Ip 0p 0p 0p

0p 0p . . . Ip Ip 0p

0p 0p . . . 0p 0p Ip


, M =

[
0p Ip

Ip 0p

]
. (2.58)

Here the state dimension of Ψ is pτ × 1.

2. (Frequency Domain Zames-Falb IQC): Let h ∈ `2e satisfy
∑∞

k=0 h
k ≤ 1 and hk ≥ 0

for all k. Then ∆ ∈ IQC(Π) with Π =
[

0 1−H∗

1−H 0

]
⊗ Ip where H denotes the

Laplace transform of h.
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3. (Off-by-τ ρ-hard IQC): For any v = {v0, v1, . . .} ∈ `p2e, and τ ≥ 0, we set wk =

φ(vk) for k ≥ 0, and define vk = 0 for −τ ≤ k < 0. Then for any N ≥ 0, the

following inequality always holds

N∑
k=0

ρ−2k(wk)T
(
vk − ρ2τvk−τ

)
≥ 0. (2.59)

Hence ∆ ∈ ρ-HardIQC(Ψ,M, ρ) with

Ψ =



0p 0p . . . 0p −Ip 0p

Ip 0p . . . 0p 0p 0p
...

. . .
. . .

...
...

...

0p . . . Ip 0p 0p 0p

0p 0p . . . ρ2τIp Ip 0p

0p 0p . . . 0p 0p Ip


, M =

[
0p Ip

Ip 0p

]
. (2.60)

Here the state dimension of Ψ is pτ × 1.

Proof. Statement 1 was originally proved as [44, Lemma 1]. Notice Statement 1 is a

special case of Statement 3 with the choice of ρ = 1. Statement 3 can be proved using

(18) and (19) in [60]. See [44, Corollary 1] for a proof of Statement 2.

The bounded and monotone properties are of fundamental importance in the con-

structions of Zames-Falb IQCs. These properties are quite common in convex optimiza-

tion. For example, the subdifferential of a convex function is monotone nondecreas-

ing [61, Proposition 6.1.1]. A general connection between convexity and monotonicity

is stated in [61, Theorem 4.1.4].

A bounded and monotone-nondecreasing function φ is further said to be slope-

restricted to the interval [m,L] if [φ(x)− φ(y)−m(x− y)]T [φ(x)− φ(y)− L(x− y)] ≤
0 for all x, y ∈ Rp. Zames-Falb IQCs characterized by m and L have been developed

for such nonlinearities, e.g. see [44, Corollary 1]. The details of these IQCs are omitted

here.

2.11.3 Gradients of Smooth Strongly-Convex Functions

Suppose g ∈ F(m,L) with m ≥ 0. Recall that the operator ∆g maps v ∈ `p2e to

w = ∆g(v) as wk = ∇g(vk + v∗) − ∇g(v∗). Several commonly-used IQCs on ∆g are
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listed as follows.

Lemma 7. Suppose g ∈ F(m,L) with m ≥ 0, v = {v0, v1, . . .} ∈ `p2e, v
∗ ∈ Rp, and

wk = ∇g(vk + v∗)−∇g(v∗) for k ≥ 0. Then

1. (Sector IQC): The pair (vk, wk) satisfies the sector constraint (2.54). Hence ∆g

satisfies the time domain hard and ρ-hard IQCs defined by (2.55).

2. (Off-by-One Hard IQC): Given any N ≥ 0, one has

N∑
k=0

(wk −mvk)T
(
Lvk − wk − Lvk−1 + wk−1

)
≥ 0 (2.61)

where vk and wk are set to be 0 for k = −1. Hence ∆g ∈ HardIQC(Ψ,M) with

Ψ =


0p −LIp Ip

Ip LIp −Ip
0p −mIp Ip

 , M =

[
0p Ip

Ip 0p

]
. (2.62)

3. (Off-by-One ρ-hard IQC): Given any 0 < ρ ≤ 1, and N ≥ 0, one has

N∑
k=0

ρ−2k(wk −mvk)T
(
Lvk − wk − ρ2Lvk−1 + ρ2wk−1

)
≥ 0 (2.63)

where vk and wk are set as 0 for k = −1. Hence ∆g ∈ ρ-HardIQC(Ψ,M, ρ) with

Ψ =


0p −LIp Ip

ρ2Ip LIp −Ip
0p −mIp Ip

 , M =

[
0p Ip

Ip 0p

]
. (2.64)

Proof. Statement 1 directly follows from Lemma 1. Statement 2 has been proved as [12,

Lemma 8]. See [12, Lemma 10] for a proof of Statement 3. It is worth mentioning

that the proof techniques in [12] work for arbitrary v∗ ∈ Rp, although the original

proofs for [12, Lemma 8, Lemma 10] were written in a more tutorial style such that

the discussions mainly focused on the case where v∗ is an optimal point for g such

that w∗ = ∇g(v∗) = 0. For readers’ convenience, we sketch the main idea of the proof

here. In the original proofs for [12, Lemma 8, Lemma 10], a new function h(x) :=
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g(x)− g(v∗)− m
2 ‖x− v

∗‖2 was introduced. When ∇g(v∗) = 0, one has h ∈ F(0, L−m),

∇h(v∗) = 0, h(x) ≥ h(v∗) = 0 ∀x ∈ Rp, and (L −m)h(x) − 1
2‖∇h(x)‖2 ≥ 0 ∀x ∈ Rp.

These facts were sufficient for constructing the proof in [12, Lemma 8, Lemma 10].

When v∗ ∈ Rp is arbitrary, one only needs to slightly modify the introduced function

as h(x) := g(x)− g(v∗)−∇g(v∗)T (x− v∗)− m
2 ‖x− v

∗‖2. Then the rest of the proof is

almost identical.

Here we only include the IQCs which are most commonly-used for optimization

analysis. It is worth mentioning that many other Zames-Falb IQCs on ∆g can be

derived using the slope-restricted property. By Lemma 1, it is clear that ∆g is given by

a nonlinearity which is slope-restricted to [m,L]. Hence the existing Zames-Falb IQCs

for slope-restricted nonlinearities in [44,60] can be directly applied to ∆g.

Remark 2. Recall that linear convergence rate analysis of a deterministic first-order op-

timization method is equivalent to ρ-exponential stability analysis of an interconnection

Fu(G,∆). Notice all (Ψ,M) in Lemma 7 have the repeated block diagonal structure.

For example, the state-space realization for Ψ in the off-by-one ρ-hard IQC is deter-

mined by
(

0⊗ Ip, [−L 1 ]⊗ Ip,
[
ρ2

0

]
⊗ Ip,

[
L −1
−m 1

]
⊗ Ip

)
. In addition, M = [ 0 1

1 0 ] ⊗ Ip.
Similarly, from Section 2.10, we can see that G also has this repeatable block diagonal

structure. When applying Theorems 1 and 2, we can make use of this repeated block

diagonal structure and Lemma 5 to formulate LMIs whose sizes are relatively small and

do not depend on the parameter p. More explanations can be found in [12, Section 4.2].

2.11.4 Multiplication with an Uncertain Parameter

In robustness analysis of optimization methods, a large class of perturbations ∆ have a

multiplicative form wk = δkvk, where δk is the uncertain source term. Some examples

of δk include, but are not limited to:

• Constant real scalar: δk = δ ∈ [−1, 1]

• Time-varying real scalar: δk ∈ [−1, 1]

• Time-varying real matrix: δk ∈ Rnw×nv
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• Coefficients from a polytope: δk is a measurable matrix in a polytope of matrices

with the extremal points δ1, . . . , δN

• Periodic real scalar: δk is a scalar function with period T , i.e. δk+T = δk

• Rate-bounded, time-varying scalar: δk satisfies |δk+1 − δk| ≤ d

A library of IQCs has been provided for the continuous-time counterparts of the

above operators [19]. Many of these continuous-time IQCs have discrete-time coun-

terparts. One example is provided by [12, Section 5.2], where IQCs for time-varying

multiplicative uncertainty have been applied to study optimization methods subject to

relative deterministic noise in the gradient computation.

The above multiplicative uncertainty can also be used in the worst-case analysis of

an optimization method when the constant stepsize is only known to be in an interval

[α1, α2]. Consider the gradient descent iteration xk+1 = xk − α∇g(xk) where α1 ≤ α ≤
α2. Then this iteration can be rewritten as xk+1 = xk− (α1+α2

2 + δα2−α1
2 )∇g(xk) where

δ is a constant in the interval [−1, 1]. Define the operator ∆δ : `p2e → `p2e which maps

v ∈ `p2e to w = ∆δ(v) as wk = δvk. Then the gradient descent iteration can be cast as

Fu(G,∆) where G is determined by (Ip,−Ip, Ip, 0p), and ∆ = (α1+α2
2 + α2−α1

2 ∆δ) ◦∆g.

Since δ is an unknown constant which does not change with k, hence ∆δ satisfies the

frequency domain IQC defined by the multiplier Π =
[
X(ejω) Y (ejω)

Y (ejω)∗ −X(ejω)

]
, where X(ejω) =

X(ejω)∗ ≥ 0 and Y (ejω) = −Y (ejω)∗ are bounded measurable matrix functions [19,

Section VI.B].

2.11.5 Time Delay

In some distributed optimization problems, the gradient computations are subject to

time delays [62]. The feedback representations of optimization methods with time delays

involve a time delay operator ∆τ , which is defined to map v ∈ `p2e to w = ∆τ (v) as

wk = 0 for k < τk and wk = vk−τ
k

for k ≥ τk, where 0 ≤ τk ≤ τmax.

Various IQCs for ∆τ are well documented in [46, Section III]. We briefly review one

simplest IQC on ∆τ as follows.

Lemma 8. ∆τ ∈ HardIQC(Ψ,M) with Ψ = diag(Ip, Ip) and M =
[
Ip 0
0 −(τmax+1)Ip

]
.
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Proof. Suppose v ∈ `p2e and w = ∆τ (v). For any N ≥ 0, we have

N∑
k=0

‖wk‖2 =
N∑
k=0

‖vk−τk‖2 ≤
N∑
k=0

 k∑
t=k−τmax

‖vk‖2
 ≤ (τmax + 1)

N∑
k=0

‖vk‖2 (2.65)

This leads to the desired conclusion.

The above bound on the gain of ∆τ is actually tight. In [46], it is stated that the

operator ∆τ is a bounded operator with ‖∆τ‖ =
√
τmax + 1.

We omit the details of many other related IQCs on ∆τ . See [46, Section III] for

a comprehensive treatment on related IQCs. Most of these IQCs involve loop trans-

formation of the original feedback interconnection. Therefore, the application of these

IQCs to uniform stability analysis requires careful justifications. The ρ-hard IQCs on

∆τ have not been well developed. In Chapter 4, we will present one way to construct

ρ-hard IQCs on ∆τ .



Chapter 3

Hard Factorizations of Frequency

Domain IQCs

As discussed previously, time domain hard IQCs are required in the dissipation inequal-

ity approach. This chapter focuses on the constructions of hard IQCs from frequency

domain IQCs for bounded causal operators. The main result is a special J-spectral

factorization [63,64] (Lemma 12 in Section 3.1). In particular, it is possible to factorize

frequency domain multipliers Π as Ψ∼MΨ. This factorization is not unique, and a time

domain hard IQC can be specified by (Ψ,M) obtained by the J-spectral factorization.

More specifically, (Ψ̂, Ĵ) is called a J-spectral factorization of Π = Π∼ if: (i) Π = Ψ̂∼ĴΨ̂,

(ii) Ĵ = diag(Inv ,−Inw) and (iii) Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)
∞ [63]. In other words, the

factorization yields a square, stable filter Ψ̂ with a stable inverse and Ĵ is a signature

matrix. A simple condition for the existence of a J-spectral factorization can be stated

using the following definition.

Definition 8. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12
Π∼

12 Π22

]
where

Π11 ∈ RLnv×nv∞ and Π22 ∈ RLnw×nw∞ . Π is a Strict Positive-Negative (PN) multiplier if

there exists ε > 0 such that

(a) Π11(ejω) ≥ ε I for all ω ∈ [0, 2π].

(b) Π22(ejω) ≤ −ε I for all ω ∈ [0, 2π].

Π is simply called a PN multiplier if (a) and (b) hold with ε = 0.

38
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The PN terminology refers to the Positive semidefinite and Negative semidefinite

properties specified by conditions (a) and (b) with ε = 0. Strict-PN multipliers strictly

satisfy (a) and (b) over all frequencies. It will be shown (Lemma 12 in Section 3.1.3)

that if Π is a Strict-PN multiplier then it has a J-spectral factorization. This result is

a variation of the canonical factorization theorem in [63]. Condition (a) with ε = 0 is

necessary and sufficient for the zero operator ∆ ≡ 0 to satisfy the frequency domain IQC

defined by Π. Condition (b) with ε > 0 implies that if ∆ ∈ IQC(Π) then ∆ maps zero

input to zero output. Bounded operators automatically have this zero input-zero output

property. Condition (b) with ε = 0 further implies that the set of all ∆ ∈ IQC(Π) is

a convex set [65, 66]. The class of PN multipliers is quite general and covers the most

typical multipliers used in IQC analysis. In fact, all of the IQCs listed in [19] satisfy

Conditions (a) and (b) with ε = 0 except for the IQCs for certain sector bounded

nonlinearities and polytopic uncertainties.

A detailed discussion on the J-spectral factorization of Strict-PN multipliers is pre-

sented in Section 3.1. A game-theoretic interpretation is used to prove several important

properties of this J-spectral factorization.

The J-spectral factorization result not only provides a systematic approach for hard

IQC constructions, but also plays an important role in the proof of the modified dissi-

pation inequality (Theorem 3) which differs in two respects from the standard dissipa-

tion/IQC result. Theorem 3 involves a dissipation inequality but it does not enforce the

storage function to be non-negative. In addition, Theorem 3 allows for more general

IQC parameterizations. In particular, the IQC need not be hard, i.e. it need not specify

a valid finite-horizon integral constraint. Instead, the modified dissipation inequality

replaces the constraints of non-negative storage functions and hard IQCs with a milder

technical assumption on the combined multiplier. This technical assumption essentially

implies that the combined multiplier has some hidden stored energy. As a result, the

analysis condition can be reformulated into a valid dissipation inequality with a single

hard IQC and a non-negative storage function. The modified dissipation inequality is

presented in Section 3.2. Then some related work is reviewed in Section 3.3.

The J-spectral factorization result (Lemma 12) may also have other applications,

e.g. formulating topological separation theorems [67]. A detailed discussion on these

further applications is beyond the scope of this dissertation.
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3.1 J-Spectral Factorizations and Related Games

This section presents a J-spectral factorization lemma (Lemma 12), which can be used

to construct time domain hard IQCs from frequency domain IQCs (or equivalently

time domain soft IQCs) for bounded causal operators. The J-spectral factorization

lemma can also be used to prove a modified dissipation inequality theorem which is later

presented in Section 3.2. This section first presents several intermediate game theory

results which are required in the proof of the main J-spectral factorization lemma.

3.1.1 Open-loop Dynamic Games and IQC Factorizations

Suppose Π = Ψ∼MΨ is an arbitrary (not necessarily hard) factorization of the frequency

domain IQC multiplier Π. This section connects properties of the factorization (Ψ,M) to

the upper and lower values of an open-loop linear quadratic (LQ) discrete-time game.

There is a large body of literature on linear quadratic discrete-time games [68, 69].

The results here build on previous results connecting discrete-time IQCs to min/max

games [70]. Consider a two-player, zero-sum, linear quadratic difference game with the

following cost defined by Ψ (with state space representation in Equation (2.33)) and

matrix M = MT :

JΨ,M (v, w, ψ0) :=
∞∑
k=0

(rk)TMrk (3.1)

subject to:

ψk+1 = Aψψ
k +Bψ1v

k +Bψ2w
k, ψ0 ∈ Rnψ

rk = Cψψ
k +Dψ1v

k +Dψ2w
k

The infinite horizon cost function JΨ,M is defined on v ∈ `nv2 , w ∈ `nw2 , and ψ0 ∈ Rnψ .

Player 1 uses the “control variable” v to minimize JΨ,M while Player 2 uses w to

maximize JΨ,M . The game has an open-loop information structure and neither player

can adapt their action during the game. The upper value of the game is defined as:

J̄Ψ,M (ψ0) := inf
v∈`nv2

sup
w∈`nw2

JΨ,M (v, w, ψ0) (3.2)
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The lower value of the game is defined as

JΨ,M (ψ0) := sup
w∈`nw2

inf
v∈`nv2

JΨ,M (v, w, ψ0) (3.3)

The next two lemmas relate the upper and lower values of this open-loop game to the

properties of the IQC factorization (Ψ,M). The proofs are only sketched as they are

similar to those used in the continuous-time counterparts [26, Lemma 2, Lemma 3].

Lemma 9. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈

RHnr×(nv+nw)
∞ . Let ∆ be a bounded, casual operator with ∆ ∈ IQC(Π). Then the

following inequality holds for all v ∈ `nv2e , w = ∆(v) and N ≥ 0:

N∑
k=0

(rk)TMrk ≥ −J̄Ψ,M (ψN+1) (3.4)

where r and ψ are the output and state of Ψ, respectively, driven by inputs (v, w) with ini-

tial condition ψ0 = 0. Moreover, if J̄Ψ,M (ψ) ≤ 0 ∀ψ ∈ Rnψ then ∆ ∈ HardIQC(Ψ,M).

Proof. Let v ∈ `nv2e and w = ∆(v) generate the state ψ and output r of Ψ from ψ0 = 0.

By Lemma 4, ∆ ∈ SoftIQC(Ψ,M). The time domain soft IQC inequality (2.29) holds,

by definition, for signals in `2. Hence it need not hold for r as the signals (v, w) are not

necessarily in `2. Instead the causality of ∆ is required to lower bound
∑N

k=0(rk)TMrk.

Let ṽ ∈ `nv2 be any signal that matches v up to time N , i.e. (ṽ)N = (v)N , and

define w̃ := ∆(ṽ). Let r̃ and ψ̃ denote the resulting output and state of Ψ starting from

ψ̃0 = 0. By causality of ∆ and Ψ, if (ṽ)N = (v)N then (w̃)N = (w)N and (r̃)N = (r)N .

This leads to the following bound:

N∑
k=0

(rk)TMrk =

N∑
k=0

(r̃k)TMr̃k ≥ −
∞∑

k=N+1

(r̃k)TMr̃k (3.5)

The inequality follows from the time domain soft IQC (Ψ,M) applied to the signals

(ṽ, w̃). Thus any ṽ satisfying (ṽ)N = (v)N can be used to lower bound the sum∑N
k=0(rk)TMrk for v. Maximizing over all feasible ṽ yields the following lower bound

on
∑N

k=0(rk)TMrk:

sup
ṽ∈`nv2

−
∞∑

k=N+1

(r̃k)TMr̃k (3.6)

subject to: (ṽ)N = (v)N , w̃ = ∆(ṽ), r̃ = Ψ
[
ṽ
w̃

]
, ψ̃0 = 0



42

The cost in this optimization only depends on the state of Ψ at k = N + 1 and the

signals (ṽ, w̃) for k ≥ N+1. Note that ψ̃N+1 is the same for all feasible ṽ. In particular,

((ṽ)N , (w̃)N ) = ((v)N , (w)N ) for any feasible ṽ. Hence Ψ evolves from ψ̃0 = 0 to the

state ψ̃N+1 = ψN+1 given by the inputs (v, w). Thus the lower bound can be expressed

as:

sup
ṽl∈`nv2

−
∞∑

k=N+1

(r̃k)TMr̃k (3.7)

subject to: w̃ = ∆(ṽ) where ṽk =

{
vk k ≤ N
ṽkl k > N

,

ψ̃k+1 = Aψψ̃
k +Bψ1ṽ

k +Bψ2w̃
k, ψ̃N+1 = ψN+1

r̃k = Cψψ̃
k +Dψ1ṽ

k +Dψ2w̃
k

In this bound, the relation w̃ = ∆(ṽ) is the only constraint that connects the past

(k ≤ N) to the future (k > N). This connection is removed by replacing the true future

output of ∆ with a minimization over all possible output signals. This leads to the

following lower bound on
∑N

k=0(rk)TMrk:

sup
ṽ∈`nv2

inf
w̃∈`nw2

−
∞∑

k=N+1

(r̃k)TMr̃k (3.8)

subject to:

ψ̃k+1 = Aψψ̃
k +Bψ1ṽ

k +Bψ2w̃
k, ψ̃N+1 = ψN+1

r̃k = Cψψ̃
k +Dψ1ṽ

k +Dψ2w̃
k

This removes the dependence on ∆ but introduces some conservatism, i.e. the bound

in Equation (3.8) is no greater than the bound in Equation (3.7). The time-invariance

of Ψ is used to equivalently write Equation (3.8) as −J̄(ψN+1). Hence (3.4) holds as

desired.

If J̄Ψ,M (ψ) ≤ 0 ∀ψ ∈ Rnψ , then ∆ ∈ HardIQC(Ψ,M) follows immediately from

(3.4).

Lemma 10. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈

RHnr×(nv+nw)
∞ . Let G ∈ RH(nv+ne)×(nw+nd)

∞ be given. If P = P T satisfies the condition
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LMI(G,Ψ)(P,M) < 0, then

V (η0) := (η0)TPη0 ≥ JΨ,M (ψ0) ∀η0 :=
[
ξ0

ψ0

]
∈ Rnξ+nψ (3.9)

Moreover, if JΨ,M (ψ0) ≥ 0 ∀ψ0 ∈ Rnψ then P ≥ 0.

Proof. JΨ,M

(
ψ0
)

involves a min over v ∈ `nv2 . The choice of v may depend on w as

long as v is an `2 signal. Choose v to be the output of G generated by w ∈ `nw2 with

any initial condition ξ0. G is stable by assumption and hence this choice for v belongs

to `nv2 . This yields a value that is no lower than the infimum over all possible v ∈ `nv2 .

Hence V ?
(
η0
)
≥ J

(
ψ0
)

where V ? is defined as:

V ?
(
η0
)

:= sup
w∈`nw2

∞∑
k=0

(rk)TMrk (3.10)

subject to:[
ηk+1

rk

]
=

[
A B
C D

][
ηk

wk

]
, η0 :=

[
ξ0

ψ0

]
∈ Rnξ+nψ (3.11)

The extended system state matrices (A,B, C,D) are defined in Equations (2.25) and

(2.26). The proof is completed by showing V (η0) ≥ V ?(η0) for all η0. This follows along

the lines of Theorems 2 and 3 in [71] and hence the proof is only sketched. Let η and r

be the resulting solutions of Ψ ◦
[
G
I

]
for a given input w ∈ `nw2 and the initial condition

η0. Multiply LMI(G,Ψ)(P,M) < 0 on the left/right by [ (ηk)T (wk)T ] and [ (ηk)T (wk)T ]T

to show V (ηk+1)−V (ηk) + (rk)TMrk ≤ 0. Sum this inequality from k = 0 to k = N to

obtain

V (η0) ≥ V (ηN+1) +

N∑
k=0

(rk)TMrk (3.12)

A is stable and hence limN→∞ η
N = 0 for any w ∈ `nw2 (this is the so-called input-to-

state stability). Maximizing the right side of Equation (3.12) over w ∈ `nw2 for N =∞
thus yields V (η0) ≥ V ?(η0). Hence V (η0) ≥ V ?(η0) ≥ J

(
ψ0
)
, and this proves (3.9).

If JΨ,M (ψ0) ≥ 0 ∀ψ0 ∈ Rnψ , then (η0)TPη0 ≥ 0 ∀η0 ∈ Rnξ+nψ and consequently

P ≥ 0.

By Lemma 9, J̄Ψ,M (ψ) ≤ 0 ensures the factorization (Ψ,M) leads to a time domain

hard IQC. By Lemma 10, JΨ,M (ψ0) ≥ 0 ensures the storage matrix satisfies P ≥ 0. It
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is easily shown that the two costs satisfy JΨ,M (ψ0) ≤ J̄Ψ,M (ψ0) [68,69]. Hence the two

conditions in Lemmas 9 and 10 can only be satisfied if J̄Ψ,M (ψ0) = JΨ,M (ψ0) = 0 for

all ψ0 ∈ Rnψ . It will be shown in Section 3.1.3 that the lower and upper values of the

game are both equal to zero if (Ψ,M) is a J-spectral factorization.

3.1.2 Nash Equilibrium for the Two-Player Game

This section provides explicit values for J̄Ψ,M (ψ0) and JΨ,M (ψ0) using the stabilizing

solution of a related discrete-time algebraic Riccati equation. It is known that the

upper and lower values can be effectively computed if a Nash equilibrium for the game

exists [72, Theorem 3.26]. The basic intuition is provided before formally stating the

result. Let Π = Ψ∼MΨ be the frequency domain multiplier associated with (Ψ,M). If

v ∈ `nv2 and ψ0 = 0 then Parseval’s theorem can be used to write JΨ,M (v, 0, 0) in the

frequency domain as:

JΨ,M (v, 0, 0) =
1

2π

∫ 2π

0
V (ejω)∗Π11(ejω)V (ejω)dω (3.13)

where V (ejω) is the discrete-time Fourier transform of v. If Π11(ejω) ≥ εI for all

ω ∈ [0, 2π] then JΨ,M (v, 0, 0) ≥ ε‖v‖2. Similarly if Π22(ejω) ≤ −εI then JΨ,M (0, w, 0) ≤
−ε‖w‖2 for all w ∈ `nw2 . Moreover, the Strict-PN condition actually implies that JΨ,M

is strictly convex in v and strictly concave in w. The following lemma constructs a Nash

Equilibrium using the Strict-PN assumption.

Lemma 11. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈

RHnr×(nv+nw)
∞ and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and

R := DT
ψMDψ where (Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. If Π is a Strict-PN

multiplier then

1. There exists a unique, real, stabilizing solution X = XT to DARE(Aψ, Bψ, Q,R, S).

In addition, R+BT
ψXBψ is nonsingular.

2. For ψ0 ∈ Rnψ define v ∈ `nv2 and w ∈ `nw2 by[
vk

wk

]
:= −K(Aψ −BψK)kψ0 (3.14)
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where K := (R + BT
ψXBψ)−1(ATψXBψ + S)T is the stabilizing DARE gain. This

input pair yields a value JΨ,M (v,w, ψ0) = ψ0Xψ0 for the two-player, LQ game

in Equation (3.1). In addition, (v,w) provides an open loop Nash equilibrium for

this game, i.e.

JΨ,M (v, w, ψ0) ≤ JΨ,M (v,w, ψ0) ≤ JΨ,M (v,w, ψ0), ∀v ∈ `nv2 , w ∈ `nw2 (3.15)

3. J̄Ψ,M (ψ0) = JΨ,M (ψ0) = (ψ0)TXψ0.

Proof. Statement 1 is a restatement of Lemma 26 in the appendix. If Aψ is singular then

Π has poles at z = ∞ and hence Π is non-proper. As a result, the proof of Lemma 26

requires the use of the descriptor system notation and results. This is the only technical

lemma that requires descriptor systems and hence the proof is given in the appendix

for readability.

To prove Statement 2, first note that Aψ − BψK is a Schur stable matrix since X

is the stabilizing solution of DARE(Aψ, Bψ, Q,R, S). Hence v and w are `2 signals as

claimed. The output of Ψ resulting from the inputs (v,w) and initial condition ψ0 is

rk := Cψψψψ
k +Dψ

[
vk

wk

]
(3.16)

where ψψψk := (Aψ −BψK)kψ0 is the state. This yields the following cost for the game:

JΨ,M (v,w, ψ0) =
∞∑
k=0

 ψψψk[
vk

wk

]T [ Q S

ST R

] ψψψk[
vk

wk

] (3.17)

Substitute for Q using the DARE and use [ v
w ] = −Kψψψ. After completing the square

the cost is written as

JΨ,M (v,w, ψ0) =

∞∑
k=0

(
(ψψψk)TXψψψk − (ψψψk+1)TXψψψk+1

)
(3.18)

This is a telescoping sum which yields JΨ,M (v,w, ψ0) = (ψ0)TXψ0.

Next let ψ ∈ `nψ2 denote the state of Ψ for initial condition ψ0 and arbitrary inputs

v ∈ `nv2 and w ∈ `nw2 . Define deviation signals as:

δψ := ψ −ψψψ, δv := v − v, δw := w −w (3.19)
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Note that δv belongs to `2 since it is a difference of `2 signals. Similarly, δw and δψ are

also in `2. By linearity, δψ is the state of Ψ driven by inputs (δv, δw) from zero initial

conditions (δ0
ψ = 0). The cost for the game with inputs (v, w) and initial condition ψ0

is:

JΨ,M (v, w, ψ0) =
∞∑
k=0

ψψψk + δkψ[
vk+δkv
wk+δkw

]T [ Q S

ST R

]ψψψk + δkψ[
vk+δkv
wk+δkw

] (3.20)

This can be expanded into four quadratic terms involving (ψψψ,v,w) and (δψ, δv, δw).

Simplify using a similar completion of square and telescoping sum argument as above:

JΨ,M (v, w, ψ0) = (ψ0)TXψ0 + (ψ0)TXδ0
ψ + (δ0

ψ)TXψ0 +
∞∑
k=0

 δkψ[
δkv
δkw

]T [ Q S

ST R

] δkψ[
δkv
δkw

]
(3.21)

The second and third terms are zero because δ0
ψ = 0. The fourth term is equal to

JΨ,M (δv, δw, 0). Therefore, Equation (3.21) can be rewritten as

JΨ,M (v, w, ψ0) = JΨ,M (v,w, ψ0) + JΨ,M (δv, δw, 0) (3.22)

This relation can be used to demonstrate that (v,w) provides an open loop Nash equi-

librium. Specifically, Equation (3.22) directly leads to

JΨ,M (v,w, ψ0)− JΨ,M (v,w, ψ0) = JΨ,M (δv, 0, 0) (3.23)

As discussed before the lemma, the Strict-PN assumption implies that JΨ,M (δv, 0, 0) ≥
0. Hence Equation (3.23) implies

JΨ,M (v,w, ψ0) ≤ JΨ,M (v,w, ψ0), ∀v ∈ `nv2 (3.24)

The Strict-PN assumption and Equation (3.22) similarly imply that

JΨ,M (v, w, ψ0) ≤ JΨ,M (v,w, ψ0), ∀w ∈ `nw2 (3.25)

This completes the proof of Statement 2.

Statement 3 follows from [72, Theorem 3.26]. The upper and lower values of the

discrete-time linear quadratic game are both equal to the game value at the Nash equi-

librium.
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Theorem 3.3 in [73] provides a related Nash equilibrium result for the continuous-

time LQ game. The continuous-time result is more general in that it only requires

(Aψ, Bψ) to be stabilizable. Lemma 11 requires the stronger assumption that Aψ is

stable. To the best of our knowledge, the discrete-time counterpart of Theorem 3.3 in

[73] has not been established. However, the assumption that Aψ is stable is sufficient for

the IQC analysis considered in this paper. The proof for Statement 1 in Lemma 11 has

some subtleties that do not appear in the continuous-time counterpart. In continuous-

time, Π is assumed to be bounded on the closed imaginary axis and this implies that Π

is proper. In discrete-time, Π is required to be bounded on the unit circle and hence Π

can be improper. As a consequence, the discrete-time proof for Statement 1 in Lemma

11 cannot simply mimic its continuous-time counterpart. Instead a descriptor system

representation of Π is required as is done for the proof of Lemma 26 in the appendix.

Finally, notice that Statements 1 and 3 in Lemma 11 can also be proved by tailoring

the operator-theoretic results in [64]. The operator-theoretic framework is more general

while the linear algebra approach in this chapter is more closely aligned with possible

numerical implementations.

3.1.3 J-Spectral Factorization for Strict-PN Multipliers

Lemma 12 provides a simple frequency domain condition on Π that is sufficient for

the existence of a J-spectral factor. In addition, this lemma provides several useful

properties of the J-spectral factorization. The Strict-PN assumption again plays a key

role in the result.

Lemma 12. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈

RHnr×(nv+nw)
∞ and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and

R := DT
ψMDψ where (Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. If Π is a Strict-PN

multiplier then

1. Π has a J-spectral factorization (Ψ̂, Ĵ) with Ĵ := diag(Inv ,−Inw). Moreover, this

J-spectral factorization can be constructed from the unique stabilizing solution X

of DARE(Aψ, Bψ, Q,R, S). Let D̂ψ satisfy D̂T
ψ ĴD̂ψ = R + BT

ψXBψ and define
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Ĉψ := ĴD̂−Tψ (BT
ψXAψ + ST ). Then (Ψ̂, Ĵ) is a J-spectral factorization of Π with

Ψ̂ :=

[
Aψ Bψ

Ĉψ D̂ψ

]
(3.26)

2. X̂ = 0 is the unique stabilizing solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ) where Q̂ :=

ĈTψ Ĵ Ĉψ, Ŝ := ĈTψ ĴD̂ψ, and R̂ := D̂T
ψ ĴD̂ψ.

3. J̄Ψ̂,Ĵ(ψ0) = J Ψ̂,Ĵ(ψ0) = 0, ∀ψ0 ∈ Rnψ .

4. ∆ ∈ HardIQC(Ψ̂, Ĵ) for any bounded, casual operator ∆ ∈ IQC(Π).

5. For any G ∈ RHnv×nw
∞ , and P = P T ,

LMI(G,Ψ)(P,M) = LMI(G,Ψ̂)(P̂ , Ĵ) (3.27)

where P̂ := P −
[

0 0
0 X

]
. Moreover, if LMI(G,Ψ̂)(P̂ , Ĵ) < 0 then P̂ ≥ 0.

Proof. The existence of the stabilizing solution X follows from Lemma 11. Recall the

stabilizing gain is given by K := (R + BT
ψXBψ)−1(ATψXBψ + S)T . A J-spectral fac-

torization of Π can be constructed from X using a standard expansion technique [74].

First express Π as:

Π(z) =

[
(zI −Aψ)−1Bψ

I

]∼ [
Q S

ST R

][
(zI −Aψ)−1Bψ

I

]
(3.28)

Use the DARE and the definition of K to show:[
Q S

ST R

]
=

[
KT

I

]
(R+BT

ψXBψ)
[
K I

]
−

[
ATψXAψ −X ATψXBψ

BT
ψXAψ BT

ψXBψ

]
(3.29)

Substitute Equation (3.29) into the expression for Π to obtain

Π(z) =

[
(zI −Aψ)−1Bψ

I

]∼([
KT

I

]
(R+BT

ψXBψ)
[
K I

])[(zI −Aψ)−1Bψ

I

]
(3.30)

The Strict-PN conditions imply that Π(ejω) has nv positive eigenvalues and nw negative

eigenvalues for all ω ∈ [0, 2π]. This follows from the Courant-Fischer minimax theorem
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[75]. Moreover, (R+BT
ψXBψ) must have the same signature as Π by Equation (3.30).

Thus there exists a nonsingular matrix D̂ψ such that D̂T
ψ ĴD̂ψ = R + BT

ψXBψ with

Ĵ := diag(Inv ,−Inw). Finally, it can be verified from Equation (3.30) that Ψ̂ as defined

in the lemma satisfies Π = Ψ̂∼ĴΨ̂. It remains to show that Ψ̂−1 is stable. A realization

for the inverse is

Ψ̂−1 :=

[
Aψ −BψD̂−1

ψ Ĉψ BψD̂
−1
ψ

−D̂−1
ψ Ĉψ D̂−1

ψ

]
(3.31)

The state matrix is Aψ−BψD̂−1
ψ Ĉψ = Aψ−BψK. This is a Schur stable matrix because

K is the stabilizing gain. Hence Ψ̂−1 is a stable system and this completes the proof of

Statement 1.

To prove Statement 2, first note that (Q̂, Ŝ, R̂) as defined can be written as:[
Q̂ Ŝ

ŜT R̂

]
=

[
KT

I

]
(R+BT

ψXBψ)
[
K I

]
(3.32)

R̂ = R + BT
ψXBψ is nonsingular as shown above and Q̂− ŜR̂−1ŜT = 0. Hence X̂ = 0

is a solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ). The corresponding gain K̂ = R̂−1ŜT = K is

stabilizing since Aψ − BψK̂ = Aψ − BψK is a Schur stable matrix. Thus X̂ = 0 is the

unique stabilizing solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ).

Next, note that J̄Ψ̂,Ĵ(ψ0) = J Ψ̂,Ĵ(ψ0) = (ψ0)T X̂ψ0 by Lemma 11. Hence Statement

3 follows from the fact X̂ = 0.

To prove Statement 4, note J̄Ψ̂,Ĵ(ψ0) = 0 for all ψ0 ∈ Rnψ . The factorization is hard

if J̄Ψ̂,Ĵ(ψ0) ≤ 0 for all ψ0 ∈ Rnψ by Lemma 9. Hence (Ψ̂, Ĵ) is a hard factorization of

Π.

To show Statement 5, first express the “M” term of LMI(G,Ψ)(P,M) as follows:[
CT

DT

]
M

[
CT

DT

]T
= LT

[
CTψ

DT
ψ

]
M
[
Cψ Dψ

]
L (3.33)

where L is given by

L =


0 I 0

C 0 D

0 0 I

 (3.34)
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Next use (3.29), (3.32) and the definitions of Q, S, R, Q̂, Ŝ, R̂ to show[
CTψ

DT
ψ

]
M
[
Cψ Dψ

]
=

[
ĈTψ

D̂T
ψ

]
Ĵ
[
Ĉψ D̂ψ

]
−

[
ATψXAψ −X ATψXBψ

BT
ψXAψ BT

ψXBψ

]
(3.35)

Substitute this expression into the “M” term of LMI(G,Ψ)(P,M, γ) (Equation (3.33)).

Some lengthy but straightforward algebraic manipulations yield LMI(G,Ψ)(P,M) =

LMI(G,Ψ̂)(P̂ , Ĵ). Finally, it remains to show that the assumption LMI(G,Ψ̂)(P̂ , Ĵ) < 0

implies P̂ ≥ 0. By Lemma 11, J Ψ̂,Ĵ(ψ0) = (ψ0)T X̂ψ0. By Lemma 10, P̂ ≥ 0 if

J Ψ̂,Ĵ(ψ0) ≥ 0 for all ψ0 ∈ Rnψ . Thus P̂ ≥ 0 since X̂ = 0 as already shown.

The above result complements the minimax theorems in [70]. In particular, [70,

Theorem 2.1] states a sufficient condition to ensure J̄Ψ,M (ψ0) = JΨ,M (ψ0). Statement

3 in Lemma 12 states the J-spectral factorization ensures the upper and lower game

values are, in fact, both equal to zero. Moreover, [70, Theorem 2.2] states a sufficient

condition to ensure a hard IQC factorization. The above result shows that the J-spectral

factorization is hard and satisfies the extra “storage function” property mentioned in

Statement 5 of Lemma 12.

Based on Lemma 12, time domain hard IQCs can be efficiently constructed from the

frequency domain IQCs with Strict-PN multipliers. As a matter of fact, the hard IQC

constructions can be done for non-strict PN multipliers using a perturbation argument.

Notice only bounded operators are considered. Hence it is natural to prove ∆ satisfies

‖∆‖ ≤ γ for some γ > 0. Hence, ∆ satisfies the multiplier Π0 =
[
γ2Inv 0

0 −Inw

]
. Any PN

multiplier Π can be perturbed to Π + εΠ0 for sufficiently small ε > 0. The perturbed

multipliers are Strict-PN such that the J-spectral factorization approach can be applied.

3.2 Modified Dissipation Inequality

As commented before, there are two key features of the standard dissipation inequality

results from the last chapter. First, the IQCs are specified by conic combinations of time

domain hard IQCs. The proof explicitly uses the time domain hard IQC inequalities∑N
k=0(rkj )TMjr

k
j ≥ 0 (j = 1, . . . , NJ). Second, the constraint P ≥ 0 is required for

the construction of a valid storage function. The J-spectral factorization result is now
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applied to prove a modified dissipation inequality that removes the constraint P ≥ 0

and allows for the use of time domain soft IQCs.

The modified dissipation inequality result is stated as Theorem 3 below. The proof

of this theorem relies on Lemma 12.

Theorem 3. Let G ∈ RHnv×nw
∞ be a stable LTI system defined by (2.18) and ∆ :

`nv2e → `nw2e be a bounded, causal operator. Assume Fu(G,∆) is well-posed and ∆ ∈
SoftIQC(Ψ,M(λ)) for all λ in some set Λ. If ∃ a matrix P = P T and vector λ ∈ Λ

such that Ψ∼M(λ)Ψ is a PN multiplier and LMI(G,Ψ)(P,M(λ)) < 0, then Fu(G,∆) is

uniformly stable.

Proof. First assume that Ψ∼M(λ)Ψ is a Strict-PN multiplier. By Statement 1 of

Lemma 12, this multiplier has a J-spectral factorization (Ψ̂, Ĵ) constructed from the

stabilizing solution X of a related DARE. By Statement 4 of Lemma 12, if ∆ ∈
SoftIQC(Ψ,M(λ)) then ∆ ∈ HardIQC(Ψ̂, Ĵ). In other words, the J-spectral factor-

ization provides a time domain hard IQC for ∆. By Statement 5 of Lemma 12,

LMI(G,Ψ̂)(P̂ , Ĵ) = LMI(G,Ψ)(P,M(λ)) < 0 where P̂ := P −
[

0 0
0 X

]
. Thus the LMI

condition can be rewritten using the J-spectral factorization. Finally, Statement 5 of

Lemma 12 also implies that P̂ ≥ 0. Hence the dissipation conditions hold using the

hard IQC (Ψ̂, Ĵ) and storage matrix P̂ ≥ 0. The analysis conclusions follow from the

standard dissipation result in Theorem 1.

A perturbation argument is needed if Ψ∼M(λ)Ψ is a PN multiplier. ∆ is a bounded

operator, by assumption. Hence it satisfies the multiplier Π0 := diag(‖∆‖Inv ,−Inw).

For all ε > 0, the perturbed multiplier Ψ∼M(λ)Ψ + εΠ0 is a Strict-PN multiplier that

defines a valid frequency domain IQC for ∆. In addition, it can be factorized as:

Ψ∼pertMpert(λ, ε)Ψpert :=

[
Ψ

I

]∼ [
M(λ) 0

0 εΠ0

][
Ψ

I

]
(3.36)

By Lemma 4, ∆ ∈ SoftIQC(Ψpert,Mpert(λ, ε)). Moreover, LMI(G,Ψ)(P,M(λ)) < 0

implies that LMI(G,Ψpert)(P,Mpert(λ, ε)) < 0 holds for sufficiently small ε > 0. The

result now follows using the arguments above with the Strict-PN multiplier given in

Equation (3.36).
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3.3 Related Work

The results in this chapter complement several existing results in the literature. First,

the results here provide a discrete-time counterpart to the continuous-time results in [25,

26, 76, 77]. The intermediate results regarding discrete-time IQC factorizations and a

related open-loop LQ difference game in this chapter parallel existing continuous-time

results for J-spectral factorizations [78] and open loop LQ differential games [72, 73].

The generalization in this chapter is not immediate since descriptor systems are needed

to handle non-proper multipliers that appear in some proofs. Similar discrete-time

technical results on factorizations and LQ games are provided in [70] and [64] using

operator theoretic methods. This chapter provides alternative linear algebra proofs for

completeness. In particular, the minimax theorems in [70] were used to demonstrate

the existence of hard IQCs for both discrete-time and continuous-time systems. This

paper extends the game theoretic results to show several desired properties of a specific

J-spectral factorization.

The benefit of the time domain dissipation theory is that it enables generalization to

cases where the known system in the feedback connection is not necessarily LTI. For ex-

ample, the approach enables the analysis of uncertain linear parameter varying systems

or uncertain time-varying systems over finite horizons. The standard IQC homotopy

theory developed for both continuous and discrete-time systems [19, 46, 48, 79, 80] can

also be generalized for systems which do not have frequency domain interpretations [58].

The homotopy approach emphasizes input-output properties while internal states are

incorporated more transparently in the dissipativity approach. Directly handling inter-

nal states can be potentially beneficial for the analysis of optimization methods since

internal states are of interest in this setup [12]. In general, the two approaches are

complementary and both are useful.



Chapter 4

Linear Rate Analysis Using

Internal Uniform Stability Tests

We have demonstrated that the uniform stability analysis of Fu(G,∆) can be performed

for a large class of ∆. The main reason for this is that there exist a large library of known

IQCs. In addition, both frequency and time domain IQCs can be directly incorporated

into the uniform stability analysis. On the other hand, the library of ρ-hard IQCs is

still under development. It is beneficial to connect the recently developed ρ-hard IQC

approach with the standard IQC approach. In Section 2.10, we have explained that

linear convergence rate analysis of a first-order optimization method is equivalent to ρ-

exponential stability analysis of a related interconnection. In this chapter, we show that

ρ-exponential stability of an interconnection Fu(G,∆) is equivalent to uniform stability

of a related scaled interconnection (Section 4.1). This enables derivation of linear rate

testing conditions from uniform stability conditions using standard IQCs. This connec-

tion requires IQCs to be constructed for a scaled perturbation operator. A library of

IQCs for this scaled perturbation operator is derived in Section 4.2. Section 4.3 dis-

cusses the connections between the proposed framework and the ρ-hard IQC approach.

Section 4.4 builds upon our proposed framework and presents a GEVP formulation for

linear rate analysis of deterministic first-order methods. In Section 4.5, we illustrate

the utility of the derived GEVP condition via a case study of Nesterov’s accelerated

method.

53
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4.1 Equivalence between ρ-Exponential Stability Analysis

and Uniform Stability Analysis

This section establishes the connections between linear rate analysis and uniform sta-

bility analysis. The connections are built upon a specific loop transformation, as shown

in Figure 4.1. For any fixed ρ ∈ (0, 1], define the scaling operator Sρ+ : `nv2e → `nv2e

that maps vρ to v = Sρ+(vρ) as follows: vk := ρkvkρ . Notice ρk denotes the k-th power

of ρ while vkρ is the k-th entry of the sequence vρ. Similarly, define another scaling

operator Sρ− : `nw2e → `nw2e that maps w to wρ = Sρ−(w) by setting wkρ := ρ−kwk.

The operators Sρ+ and Sρ− have well-defined inverse operators denoted by S−1
ρ+ and

S−1
ρ− , respectively. Notice S−1

ρ+ = Sρ− and S−1
ρ− = Sρ+ if and only if nv = nw. The

connections between Fu(G,∆) and Fu(S−1
ρ+ ◦ G ◦ S−1

ρ− ,Sρ− ◦ ∆ ◦ Sρ+) are important

for the results in this chapter. An almost identical loop transformation has been

used in [29], which defines the scaled plant S−1
ρ+ ◦ G ◦ S−1

ρ− in the frequency domain

and relates the ρ-exponential stability of Fu(G,∆) to the input-output stability of

Fu(S−1
ρ+ ◦G ◦ S−1

ρ− ,Sρ− ◦∆ ◦ Sρ+). We will relate the ρ-exponential stability of Fu(G,∆)

to the uniform stability of Fu(S−1
ρ+ ◦ G ◦ S−1

ρ− ,Sρ− ◦ ∆ ◦ Sρ+). This requires a specific

time domain state space definition for S−1
ρ+ ◦G ◦S−1

ρ− , which leads to useful relationships

between the states of the original and transformed interconnections.

G S−1
ρ−S−1

ρ+

Gρ

∆

∆ρ

Sρ−Sρ+

vρ

v

�

--

wρ

w-

� �

Figure 4.1: Transformed Interconnection

Define the scaled systems Gρ := S−1
ρ+ ◦G ◦ S−1

ρ− and ∆ρ := Sρ− ◦∆ ◦ Sρ+. These are

input/ouput definitions for the scaled systems. A specific, state-space realization for

Gρ can be obtained from shifting the state-space model of G in Equation (2.18). Define
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ξkρ := ρ−kξk. A state-space realization for Gρ is then given by:

ξk+1
ρ = ρ−1Aξkρ + ρ−1Bwkρ

vkρ = Cξkρ +Dwkρ

(4.1)

As a slight abuse of notation, the scaled system Gρ will always refer to this specific

state-space realization. The main loop transformation result is now stated.

Theorem 4. Assume 0 < ρ ≤ 1. Fu(G,∆) is well-posed if and only if Fu(Gρ,∆ρ)

is well-posed. Moreover, Fu(G,∆) is exponentially stable with rate ρ if and only if

Fu(Gρ,∆ρ) is uniformly stable.

Proof. It is straightforward to prove that ξ ∈ `nξ2e , v ∈ `nv2e , and w ∈ `nw2e is a solution

for Equation (2.18) and w = ∆(v) with initial condition ξ0 ∈ Rnξ if and only if (ξkρ−k,

vkρ−k, wkρ−k) provides an `2e solution for Equation (4.1) and wρ = ∆ρ(vρ) with initial

condition ξ0
ρ = ξ0. Therefore, Fu(G,∆) is well-posed if and only if Fu(Gρ,∆ρ) is well-

posed. Next suppose Fu(G,∆) and Fu(Gρ,∆ρ) are well-posed and have the same initial

condition ξ0 = ξ0
ρ. The following holds

ξkρ = ρ−kξk

wkρ = ρ−kwk

vkρ = ρ−kvk

(4.2)

where (ξ, v, w) and (ξρ, vρ, wρ) are the resultant `2e solutions for Fu(G,∆) and Fu(Gρ,∆ρ),

respectively. Moreover, ‖ξk‖ ≤ c‖ξ0‖ρk ⇔ ‖ξkρ‖ ≤ c‖ξ0
ρ‖. Therefore, Fu(G,∆) is expo-

nentially stable with rate ρ if and only if Fu(Gρ,∆ρ) is uniformly stable.

Remark 3. Proposition 5 in [29] states that input-output stability of the transformed

loop is a sufficient condition for ρ -exponential stability of the original loop. Theorem 4

here states that uniform stability of the transformed loop is a necessary and sufficient

condition for ρ-exponential stability of the original loop.

Theorem 4 states that a uniform stability test for Fu(Gρ,∆ρ) is equivalent to a ρ-

exponential stability test for Fu(G,∆). Thus LMI conditions formulated for uniform

stability of the scaled interconnection Fu(Gρ,∆ρ) can be used to test ρ-exponential
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stability of the original loop. This approach requires IQCs to be specified for ∆ρ. Most

existing IQCs were specified for the unscaled operator ∆. One contribution of this

chapter is that a library of IQCs for ∆ρ is derived in Section 4.2 for a large class of

operators. Note that this IQC construction step requires the operator ∆ρ to be causal. It

is easily shown that causality of ∆ρ is equivalent to causality of ∆. This follows because

Sρ− and Sρ+ are memoryless, pointwise-in-time multiplication operators. The frequency

domain construction of IQC multipliers for ∆ρ requires its boundedness, which is not

as straightforward. Since Sρ− is an unbounded operator, it is possible for a bounded

operator ∆ to yield an unbounded scaled operator ∆ρ. The boundedness of ∆ρ needs

to be proven for each specific ∆. This issue is addressed in Section 4.2.

LMI conditions for ρ-exponential stability of Fu(G,∆) are now formulated using

the loop transformation result in Theorem 4 and the IQC-based uniform stability tests

(Theorems 1 and 3).

Theorem 5. Let G be an LTI system defined by (2.18) and ∆ : `nv2e → `nw2e be a causal

operator such that Fu(G,∆) is well-posed. If one of the following conditions holds

1. The operator ∆ρ satisfies the time domain hard IQCs defined by {(Ψj ,Mj)}NJj=1,

and ∃ a matrix P = P T > 0 and scalars λj ≥ 0 such that LMI(Gρ,Ψ)(P,Mλ) ≤ 0.

2. The operator ∆ρ is bounded, and ∆ρ ∈ SoftIQC(Ψ,M(λ)) for all λ in some set Λ.

In addition, Gρ ∈ RHnv×nw
∞ and there exists a matrix P = P T and vector λ ∈ Λ

such that Ψ∼M(λ)Ψ is a PN multiplier and LMI(Gρ,Ψ)(P,M(λ)) < 0.

then Fu(G,∆) is exponentially stable with rate ρ.

Proof. By Theorem 4, the well-posedness of Fu(G,∆) implies that Fu(Gρ,∆ρ) is well-

posed. Moreover, the causality of ∆ implies the causality of ∆ρ. Clearly, ∆ρ maps `2e

signals to `2e signals. It follows from Theorems 1 and 3 that Fu(Gρ,∆ρ) is uniformly

stable. Based on Theorem 4, Fu(G,∆) is exponentially stable with rate ρ.

4.2 Boundedness and IQCs for Scaled Perturbation

This section provides a list of IQCs for the scaled operator ∆ρ. The results are de-

veloped for several important (unscaled) components ∆, which have been reviewed in
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Section 2.11.

Some IQCs developed in this section are specified as frequency domain multipliers.

The frequency domain IQC constructions for ∆ρ require its boundedness. Hence we

also check the boundedness of ∆ρ for each specific ∆. If the boundedness of ∆ρ is

checked and the specified frequency domain IQC multiplier is PN, then the J-spectral

factorization results and related perturbation arguments in the last chapter can be used

to construct corresponding time domain hard IQCs.

4.2.1 Scaled Operator for Memoryless Nonlinearity in a Sector

Consider the operator ∆ defined in Section 2.11.1. Suppose the operator ∆ : `p2e → `p2e

maps v to w = ∆(v) as wk = φ(vk, k), where φ : Rp × Z+ → Rp is in a sector:(
φ(vk, k)− Lvk

)T (
φ(vk, k)−mvk

)
≤ 0. Then ∆ρ maps vρ to wρ = ∆ρ(vρ) as wkρ =

ρ−kφ(vkρρ
k, k). It is straightforward to verify(

ρ−kφ(vkρρ
k, k)− Lvkρ

)T (
ρ−kφ(vkρρ

k, k)−mvkρ
)
≤ 0 (4.3)

Therefore, ∆ρ is a bounded operator and ‖∆ρ‖ ≤ max(|m|, |L|). Moreover, ∆ρ ∈
HardIQC(Ψ,M) with Ψ =

[
LIp −Ip
−mIp Ip

]
and M =

[
0p Ip
Ip 0p

]
.

4.2.2 Scaled Operator for Static Nonlinearity

Consider the static nonlinearity in Section 2.11.2. Suppose ∆ : `p2e → `p2e maps v to

w = ∆(v) as wk = φ(vk), where φ : Rp → Rp is a continuous function. In addition,

φ is assumed to be bounded, i.e. ∃c s.t. ‖φ(x)‖ ≤ c‖x‖, ∀x ∈ Rp. Then ∆ρ maps

vρ to wρ = ∆ρ(vρ) as wkρ = ρ−kφ(ρkvkρ). The boundedness of φ implies that ‖wkρ‖ ≤
cρ−k‖ρkvkρ‖ = c‖vkρ‖ for some c. Hence ∆ρ is bounded. When φ lies within a sector

[m,L] for finite m and L, the multiplier in Section 4.2.1 can be directly applied. When

φ is bounded and monotone nondecreasing, Zames-Falb IQCs can be constructed for

∆ρ. The following lemma is useful for such IQC constructions.

Lemma 13. Let φ : Rp → Rp be bounded and monotone nondecreasing. Suppose φ is a

gradient of some potential function which maps from Rp to R. Then
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1. For any v = {v0, v1, . . .} ∈ `p2, τ ≥ 0, and k0 ≥ 0, one has

∞∑
k=k0

(vk)T
(
wk − wk+τ

)
≥ 0 (4.4)

where wk = φ(vk).

2. If 0 < ρ ≤ 1, {vkρ−k : k = 0, 1, . . .} ∈ `p2, wk = φ(vk), and τ ≥ 0, then

∞∑
k=0

ρ−2k(vk)T (wk − wk+τ ) ≥ 0 (4.5)

In addition, set vk = 0 for k < 0. One has

∞∑
k=0

ρ−2(k−τ)(wk)T vk−τ ≤
∞∑
k=0

ρ−2k(wk)T vk (4.6)

Proof. To prove Statement 1, first let k0 = 0. It follows from (2.57) that:

∞∑
k=0

(wk)T vk ≥
∞∑
k=0

(wk)T vk−τ (4.7)

where vk = 0 for k < 0. The right side can be re-written with a change of variables as:

∞∑
k=0

(wk)T vk ≥
∞∑
k=0

(wk+τ )T vk (4.8)

Notice (wk)T vk = (vk)Twk, and hence (4.4) holds for k0 = 0. For k0 ≥ 1, set ṽ :=

v − Pk0−1(v). Then

∞∑
k=0

(ṽk)T
(
w̃k − w̃k+τ

)
≥ 0, ∀τ ≥ 0 (4.9)

This proves Statement 1 for any k0 ≥ 0.

To prove Statement 2, first notice {wkρ−k : k = 0, 1, . . .} ∈ `p2 since {vkρ−k : k =

0, 1, . . .} ∈ `p2 and φ is bounded. Therefore, the integral on the left side of (4.5) is finite

(Cauchy-Schwartz). Since ρ−2k = 1 +
∑k

k0=1(1− ρ2)ρ−2k0 , the left side of (4.5) equals

∞∑
k=0

(vk)T
(
wk − wk+τ

)

+
∞∑
k=0

 k∑
k0=1

(1− ρ2)ρ−2k0

 (vk)T
(
wk − wk+τ

) (4.10)
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The first summation on the left side is finite because v, w ∈ `p2 (Cauchy-Schwartz) and

hence the double integral is also finite. From Fubini’s theorem, this double summation

can be re-arranged as

∞∑
k0=1

 ∞∑
k=k0

(vk)T
(
wk − wk+τ

) (1− ρ2)ρ−2k0 (4.11)

Statement 1 implies the inner summation in (4.11) is ≥ 0 ∀k0 ≥ 0. Thus the double

summation in (4.10) is ≥ 0. By Statement 1, the first term in (4.10) is also ≥ 0.

Hence (4.5) holds. Finally, rewrite the left side of (4.6) with a change of variables as∑∞
k=0 ρ

−2k(wk+τ )T vk. Thus (4.6) is equivalent to (4.5), and Statement 2 is true.

Now Zames-Falb IQCs for ∆ρ can be constructed as follows.

Lemma 14. Let φ : Rp → Rp be bounded and monotone nondecreasing. Suppose φ is a

gradient of some potential function which maps from Rp to R. Then

1. (Off-by-τ Hard IQC): For any vρ = {v0
ρ, v

1
ρ, . . .} ∈ `p2e, τ ≥ 0, 0 < ρ ≤ 1, and

N ≥ 0, one has

N∑
k=0

(wkρ)T
(
vkρ − ρτvk−τρ

)
≥ 0 (4.12)

where vkρ = 0 for k < 0 and wkρ = ρ−kφ(ρkvkρ). Hence ∆ρ ∈ HardIQC(Ψ,M) with

Ψ =



0p 0p . . . 0p −Ip 0p

Ip 0p . . . 0p 0p 0p
...

. . .
. . .

...
...

...

0p . . . Ip 0p 0p 0p

0p 0p . . . ρτIp Ip 0p

0p 0p . . . 0p 0p Ip


, M =

[
0p Ip

Ip 0p

]
. (4.13)

Here the state dimension of Ψ is pτ × 1.

2. (Forward Off-by-τ Soft IQC): For any vρ ∈ `p2, 0 < ρ ≤ 1, and τ ≥ 0, one has

∞∑
k=0

(ρ−τvkρ)T
(
ρ−τwkρ − wk+τ

ρ

)
≥ 0 (4.14)

where wk = ρ−kφ(ρkvkρ).
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3. (Frequency Domain Zames-Falb IQC): Let h ∈ `2e satisfy
∑∞

k=0 ρ
−khk ≤ 1 for

some 0 < ρ ≤ 1 and hk ≥ 0 for all k. Then, ∆ρ ∈ IQC(Π) with Π =
[

0 1−H∗

1−H 0

]
⊗

Ip where H denotes the Laplace transform of h.

Proof. To prove Statement 1, we define w̃ρ = PN (wρ), ṽρ = PN (vρ), ṽ
k = ρkṽkρ , and

w̃k = ρkw̃kρ . By Lemma 13, we have

∞∑
k=0

ρ−2(k−τ)(w̃k)T ṽk−τ ≤
∞∑
k=0

ρ−2k(w̃k)T ṽk (4.15)

The above inequality immediately leads to the off-by-τ IQC for ∆ρ.

To prove Statement 2, we define vk = ρkvkρ , and wk = ρkwkρ . Then by Lemma 13,

we know (4.5) holds. Notice (4.5) is equivalent to (4.14). Then Statement 2 is true.

To prove Statement 3, let vρ be in `p2. It suffices to show that

∞∑
k=0

(wkρ)T (h ∗ vρ)k ≤
∞∑
k=0

(wkρ)T vkρ (4.16)

where (h ∗ vρ)k denotes the k-th entry of the sequence h ∗ vρ, which is the convolution

of h and vρ. Notice (4.16) is equivalent to

∞∑
k=0

ρ−2k(wk)T (h̄ ∗ v)k ≤
∞∑
k=0

ρ−2k(wk)T vk (4.17)

where h̄τ := ρτhτ ∈ `1. Since vρ ∈ `p2 and ∆ρ is bounded, one has wρ ∈ `p2. Moreover

h ∈ `1 implies h ∗ vρ ∈ `p2. It follows from Cauchy-Schwartz inequality that the left side

of (4.16) (and hence the left side of (4.17)) is finite. Hence, Fubini’s Theorem can be

used to rewrite the left side of (4.17) as

∞∑
k=0

∞∑
τ=0

ρ−2k(wk)T h̄τvk−τ =

∞∑
τ=0

ρ−2τ h̄τ

( ∞∑
k=0

ρ−2(k−τ)(wk)T vk−τ

)
(4.18)

Since vρ, wρ ∈ `p2, Statement (2) of Lemma 13 can be directly applied to show the first

inequality below:

∞∑
k=0

ρ−2k(wk)T (h̄ ∗ v)k ≤

( ∞∑
τ=0

ρ−2τ h̄τ

)( ∞∑
k=0

ρ−2k(wk)T vk

)
≤
∞∑
k=0

ρ−2k(wk)T vk

(4.19)

The second inequality follows from the definition of h̄ and the assumptions on h. Thus

(4.17) holds. This completes the proof.
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The forward off-by-τ soft IQC (4.14) is important since it can be used to formulate

a GEVP for rate analysis. We will discuss this more carefully in Section 4.4.

Remark 4. Following the procedure in [44], the above result can be extended to odd or

slope-restricted nonlinearities. Another important related result is the frequency domain

ρ-IQC construction of Zames-Falb multipliers for the original operaotr ∆ [29].

4.2.3 Scaled Operator for Gradients of Smooth Strongly-Convex Func-

tions

Suppose g ∈ F(m,L) with m ≥ 0. Recall that the operator ∆g maps v ∈ `p2e to

w = ∆g(v) as wk = ∇g(vk + v∗) − ∇g(v∗). Then ∆ρ maps vρ to wρ = ∆ρ(vρ)

as wkρ = ρ−k
(
∇g(ρkvkρ + v∗)−∇g(v∗)

)
. It is straightforward to show that ‖wkρ‖ ≤

Lρ−k‖ρkvkρ‖ = L‖vkρ‖. Hence ∆ρ is bounded. Now we present the following Zames-Falb

IQCs on ∆ρ.

Lemma 15. Suppose g ∈ F(m,L) with m ≥ 0, vρ = {v0
ρ, v

1
ρ, . . .} ∈ `2e, v∗ ∈ Rp, and

wkρ = ρ−k
(
∇g(ρkvkρ + v∗)−∇g(v∗)

)
for k ≥ 0. Then

1. (Sector IQC): The pair (vkρ , w
k
ρ) satisfies the sector constraint (2.54). Hence ∆ρ

satisfies the time domain hard and ρ-hard IQCs defined by (2.55).

2. (Off-by-One Hard IQC): For any N ≥ 0, one has

N∑
k=0

(wkρ −mvkρ)T
(
Lvkρ − wkρ − ρ(Lvk−1

ρ − wk−1
ρ )

)
≥ 0 (4.20)

where v−1
ρ = 0 and w−1

ρ = 0. Hence ∆ρ ∈ HardIQC(Ψ,M) with

Ψ =


0p −LIp Ip

ρIp LIp −Ip
0p −mIp Ip

 , M =

[
0p Ip

Ip 0p

]
. (4.21)

3. (Forward Off-by-One Soft IQC): If vρ = {v0
ρ, v

1
ρ, . . .} ∈ `

p
2, and 0 < ρ ≤ 1, one has

∞∑
k=0

ρ−1(Lvkρ − wkρ)T
(
ρ−1(wkρ −mvkρ)− (wk+1

ρ −mvk+1
ρ )

)
≥ 0 (4.22)
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Hence ∆ρ ∈ SoftIQC(Ψ,M) with

Ψ =


0p 0p ρ−1LIp −ρ−1Ip

0p 0p −ρ−1mIp ρ−1Ip

Ip 0p 0p 0p

0p Ip mIp −Ip

 , M =

[
0p Ip

Ip 0p

]
. (4.23)

Proof. By Lemma 1, we have[
ρkvkρ

∇g(ρkvkρ + v∗)−∇g(v∗)

]T [
−2mLIp (m+ L)Ip

(m+ L)Ip −2Ip

][
ρkvkρ

∇g(ρkvkρ + v∗)−∇g(v∗)

]
≥ 0

We can extract the factor ρk out of the above inequality to prove Statement 1.

Statements 2 and 3 can be proved using the same technique in Lemma 14. Specifi-

cally, one can combine the expanding trick in Lemma 13 with Inequality (2.61) to prove

these statements. The details are omitted.

Notice the forward off-by-one soft IQC has a very special Ψ whose state matrices

have the form (ρ−1A, ρ−1B,C,D) where A, B, C, D are constant matrices which do not

depend on ρ. Moreover, Gρ also has this property. Hence a GEVP can be formulated

when we use this forward off-by-one soft IQC to derive LMIs for the uniform stability

analysis of Fu(Gρ,∆ρ). We will further discuss this in Section 4.4.

4.2.4 Scaled Operator for Multiplicative Perturbation

As discussed in Section 2.11.4, a large class of perturbations ∆ have a multiplicative

form wk = δkvk, where δk is the uncertain source term. Some examples of δ have been

reviewed in Section 2.11.4. In this case, ∆ and the scaling operator Sρ± commute:

∆ ◦ Sρ± = Sρ± ◦∆. Therefore, the scaling relationship directly leads to wkρ = δkvkρ , and

∆ρ = ∆. The boundedness of ∆ guarantees that ∆ρ is a bounded operator, and any

IQCs on ∆ are directly IQCs on ∆ρ. The IQCs on ∆ are well documented in [19, Section

VI]. All these IQCs can be directly applied to describe the input/output behavior of

∆ρ.
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4.2.5 Scaled Operator for Delay

In Section 2.11.5, a delay operator ∆ is defined as wk = 0 for k < τk and wk = vk−τ
k

for k ≥ τk, where τk ∈ [0, τmax]. When k ≥ τk, one can use the scaling relationship to

get:

wkρ = wkρ−k = vk−τ
k
ρ−k = vk−τ

k

ρ ρ−τ
k

(4.24)

When k < τk, one trivially gets wkρ = 0. Therefore, wkρ = 0 for k < τk and wkρ =

vk−τ
k

ρ ρ−τ
k

for k ≥ τk. It is straightforward to verify that ∆ρ is bounded and ‖∆ρ‖ ≤
√
τmax + 1ρ−τmax .

∆ρ is the product of the original delay ∆ and a multiplicative perturbation δ = ρ−τ
k
.

The scaled system Fu(Gρ,∆ρ) can be transformed into a system with block diagonal

uncertainty diag(∆, δ). There exist standard IQCs for time delays ∆ [19, 41–43] and

uncertain real parameters [19]. This approach decouples ∆ρ into two operators and

constructs separate IQCs for ∆ and δ.

4.3 Equivalence between ρ-Hard IQCs on ∆ and Hard

IQCs on ∆ρ

This section discusses the connections between our proposed approach (Theorem 4) and

the ρ-hard IQC approach in Section 2.9.

The next lemma provides a connection between time domain hard IQCs for the scaled

operator ∆ρ and time domain ρ-hard IQCs for the original operator ∆. The lemma state-

ment involves the scaled filter Ψρ = S−1
ρ+ ◦Ψ ◦ S−1

ρ− . As discussed in Section 4.1, Ψρ will

denote the specific LTI state-space realization
(
ρ−1Aψ, ρ

−1 [Bψ1 Bψ2 ] , Cψ, [Dψ1 Dψ2 ]
)
.

Similarly, G(G,Ψ)
ρ denotes the specific state-space realization for S−1

ρ+ ◦G(G,Ψ) ◦S−1
ρ− based

on shifting the state matrices of G(G,Ψ). The use of Sρ± here involves a slight abuse of

notation because Ψ and G(G,Ψ) have different input/output dimensions than G.

Lemma 16. Let G be an nv×nw LTI system described by Equation (2.18). ∆ satisfies

the time domain ρ-hard IQC defined by (Ψ,M) if and only if ∆ρ satisfies the time
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domain hard IQC defined by (Ψρ,M). Moreover, G(G,Ψ)
ρ = G(Gρ,Ψρ), and

ρ2LMI(Gρ,Ψρ)(P,Mλ) =

[
ATPA− ρ2P ATPB
BTPA BTPB

]
+ ρ2

[
CT

DT

]
Mλ

[
C D

]
(4.25)

where A, B, C, and D are the state matrices of G(G,Ψ).

Proof. The proof follows by simply tracking the various signal definitions. The key of

the proof is the following fact. Let r be the output of Ψ driven by (v, w) with zero

initial condition. Set rkρ := ρ−krk. Then rρ will be the output of Ψρ driven by (vρ, wρ)

with zero initial condition. The details of the proof are omitted.

Remark 5. The frequency domain ρ-IQCs introduced in [29] can be connected to the

frequency domain IQCs on ∆ρ in a similar manner.

Lemma 16 states that Theorem 2 and Statement 1 in Theorem 5 are equivalent. Both

theorems use time domain proofs and can be extended to other linear systems which

do not have frequency domain interpretations. Note the non-negativity constraint on P

has been dropped in Statement 2 of Theorem 5 using the modified dissipation inequality

developed in the last chapter.

Based on Lemma 16, one can also efficiently construct time domain ρ-hard IQCs for

various ∆ using the IQCs in Section 4.2. For example, consider the static nonlinearity

∆g where g ∈ F(m,L) with m ≥ 0. Based on Lemma 16 and (4.21), it is straightforward

to verify that ∆g ∈ ρ-HardIQC(Ψ,M, ρ) with

Ψ =


0p −ρLIp ρIp

ρIp LIp −Ip
0p −mIp Ip

 , M =

[
0p Ip

Ip 0p

]
, (4.26)

which is just another state-space realization of the off-by-one ρ-hard IQC (2.63).

In the original work of [12], there are cases where the specified {(Ψj ,Mj)}NJj=1 do

not depend on ρ. In this case, the state space matrices (A,B, C,D) in Theorem 2 do

not depend on ρ, and LMI (2.41) leads to a GEVP. However, a direct application of

the off-by-one ρ-hard IQC does not lead to a GEVP. To find the best (i.e. smallest)

exponential rate bound for Fu(G,∆) in this case, a bisection algorithm is required. In
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next section, we show how to obtain a GEVP formulation for linear rate analysis of first-

order optimization methods by combining the forward off-by-one soft IQC in Lemma 15

with the LMI condition in Statement 2 of Theorem 5.

4.4 A GEVP Formulation for Linear Rate Analysis of De-

terministic First-Order Optimization Methods

Feedback representations for optimization methods are not unique. To apply Statement

2 of Theorem 5, we need to obtain a scaled feedback interconnection Fu(Gρ,∆ρ) with

Gρ ∈ RHnv×nw
∞ and ∆ρ described by some PN multipliers. As commented in Chapter 3,

the zero operator should be included in the perturbation set. Now we present new

feedback representations for several optimization methods such that Statement 2 of

Theorem 5 can be applied. The gradient descent method can be rewritten as:

ξ̄k+1 = (1− αm)ξ̄k − αw̄k

v̄k = ξ̄k

w̄k = ∇g(v̄k)−mv̄k
(4.27)

This is a feedback form Fu(Ḡ, ∆̄) where Ḡ is determined by ((1− αm)Ip,−αIp, Ip, 0p),
and ∆̄ is defined to map v̄ ∈ `p2e to w̄ = ∆̄(v̄) as w̄k = ∇g(v̄k) −mv̄k. Now, assume

g ∈ F(m,L) with m > 0. We can shift the gradient descent iteration as

ξ̄k+1 − x∗ = (1− αm)(ξ̄k − x∗)− α(w̄k +mx∗)

v̄k − x∗ = ξ̄k − x∗

w̄k +mx∗ = ∇g(v̄k)−m(v̄k − x∗)

(4.28)

where x∗ is the unique point satisfying∇g(x∗) = 0. We set ξk = ξ̄k−x∗, wk = w̄k+mx∗,

and vk = v̄k − x∗. Then we get the shifted feedback interconnection Fu(G,∆):

ξk+1 = (1− αm)ξk − αwk

vk = ξk

wk = ∇g(vk + x∗)−mvk
(4.29)

Eventually, we need to analyze the ρ-exponential stability of Fu(G,∆) where G is de-

termined by ((1−αm)Ip,−αIp, Ip, 0p), and ∆ is defined to map v ∈ `p2e to w = ∆(v) as
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wk = ∇g(vk +x∗)−mvk. Here ∆(0) = 0, and ∆ is bounded. More importantly, we can

pose PN multipliers on ∆ as described later. Define the scaled operator ∆ρ which maps

vρ ∈ `p2e to wρ = ∆ρ(vρ) as wkρ = ρ−k
(
∇g(ρkvkρ + v∗)−∇g(v∗)

)
−mvkρ with v∗ = x∗.

Based on the triangle inequality, the above scaled operator ∆ρ is also bounded.

Nesterov’s accelerated method and the Heavy-ball method can be rewritten in a

similar manner. With the same choice of ∆, Nesterov’s accelerated method can be cast

as Fu(G,∆) with

G =


(1− αm)(1 + β)Ip −(1− αm)βIp −αIp

Ip 0p 0p

(1 + β)Ip −βIp 0p

 . (4.30)

With the same choice of ∆, the Heavy-ball method can be cast as Fu(G,∆) with

G =


(1 + β − αm)Ip −βIp −αIp

Ip 0p 0p

Ip 0p 0p

 . (4.31)

PN IQC multipliers on the resultant ∆ρ can be constructed as follows.

Lemma 17. Suppose g ∈ F(m,L) with m ≥ 0, vρ = {v0
ρ, v

1
ρ, . . .} ∈ `

p
2e, v

∗ ∈ Rp, and

∆ρ maps vρ to wρ = ∆ρ(vρ) as wkρ = ρ−k
(
∇g(ρkvkρ + v∗)−∇g(v∗)

)
−mvkρ . Then

1. (Sector IQC): ∆ρ satisfies the time domain hard and ρ-hard IQCs defined by

Ψ =

[
(L−m)Ip −Ip

0p Ip

]
, M =

[
0p Ip

Ip 0p

]
. (4.32)

In addition, the frequency domain representation of Ψ∼MΨ is a PN multiplier.

2. (Forward Off-by-One Soft IQC): Given any 0 < ρ ≤ 1, we define

[
Aψ Bψ

Cψ Dψ

]
=


0p 0p (L−m)Ip −Ip
0p 0p 0p Ip

Ip 0p 0p 0p

0p Ip 0p −Ip

 , M =

[
0p Ip

Ip 0p

]
. (4.33)

Then ∆ρ ∈ SoftIQC(Ψ,M) with Ψ = (ρ−1Aψ, ρ
−1Bψ, Cψ, Dψ). Moreover, the

frequency domain representation of Ψ∼MΨ is a PN multiplier.
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Proof. Notice we have[
vkρ

ρ−k
(
∇g(ρkvkρ + v∗)−∇g(v∗)

)] =

[
Ip 0p

mIp Ip

][
vkρ

wkρ

]
. (4.34)

We can combine the above relationship with Lemma 15 to show that ∆ρ satisfies the

IQCs specified by (4.32) and (4.33). Now we need to check that (4.32) and (4.33) both

lead to PN multipliers. For (4.32), we have Ψ∼MΨ =
[

0 L−m
L−m −2

]
⊗ Ip, which is clearly

PN. For (4.33), it is straightforward to verify that Ψ∼MΨ has an zero (1, 1)-entry and

a non-positive (2, 2)-entry. Hence Ψ∼MΨ is also a PN multiplier in this case. This

completes the proof.

Finally, we can combine Statement 2 of Theorem 5 with the above IQCs to obtain

LMI conditions for linear rate analysis of first-order methods. The resultant LMI con-

dition can be rewritten as a GEVP for linear rate analysis of first-order methods due

to (4.25) and the specific state matrices of Ψ in Lemma 17. This is formalized by the

following result.

Theorem 6. Let G be an LTI system defined by (2.18) and ∆ : `nv2e → `nw2e be a causal

operator such that Fu(G,∆) is well-posed. Assume Gρ ∈ RHnv×nw
∞ , and 0 < ρ ≤ 1. Sup-

pose Ψ is governed by (Aψ, Bψ, Cψ, Dψ), and Ψρ is governed by (ρ−1Aψ, ρ
−1Bψ, Cψ, Dψ).

Here (Aψ, Bψ, Cψ, Dψ) are known matrices which do not depend on ρ. Let (A,B, C,D)

be the state matrices of G(G,Ψ). Suppose the operator ∆ρ is bounded. In addition, as-

sume ∆ρ ∈ SoftIQC(Ψρ,Mλ) given λj ≥ 0 for all j. If there exists a matrix P = P T

and λj ≥ 0 such that Ψ∼ρMλΨρ is a PN multiplier and[
ATPA− ρ2P ATPB
BTPA BTPB

]
+

[
CT

DT

]
Mλ

[
C D

]
< 0 (4.35)

then Fu(G,∆) is exponentially stable with rate ρ.

Proof. If (4.35) is feasible with P = P T and λj ≥ 0, then the following inequality holds

with this P and λ̃j = ρ−2λj ≥ 0[
ATPA− ρ2P ATPB
BTPA BTPB

]
+ ρ2

[
CT

DT

]
Mλ̃

[
C D

]
< 0 (4.36)
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Based on (4.25), we have LMI(Gρ,Ψρ)(P,Mλ̃) < 0. Then, Statement 2 of Theorem 5 can

be used to conclude that Fu(G,∆) is exponentially stable with rate ρ.

Notice (4.35) provides a GEVP formulation for ρ-exponential stability analysis, since

the state matrices (A,B, C,D) do not depend on ρ. To apply this GEVP formulation,

one needs to justify two issues. First, one needs to ensure that Ψ∼ρMλΨρ is a PN

multiplier. Notice the conic combinations of PN multipliers will still be PN. Hence the

combined multiplier Ψ∼ρMλΨρ is guaranteed to be PN if we use a conic combination

of the sector IQC (4.32) and the forward off-by-one soft IQC (4.33) to formulate the

GEVP (4.35). Second, it is also necessary to check the condition Gρ ∈ RHnv×nw
∞ . This

can be easily done using well-known results from linear system theory. Recall that the

state-space realization of G is (A,B,C,D), and consequently the state-space realization

of Gρ is (ρ−1A, ρ−1B,C,D). If the eigenvalues of A have simple analytical expressions,

one can use these expressions to check whether ρ−1A is Schur stable. Otherwise, one

can use an LMI approach. If there exists a matrix P > 0 such that

ATPA− ρ2P < 0, (4.37)

then ρ−1A is Schur stable and Gρ ∈ RHnv×nw
∞ . We will illustrate the utility of the

GEVP (4.35) in next section.

Remark 6. When ρ is given, (4.37) is an LMI and can be solved in a numerically

efficient manner. However, a typical task is finding the smallest ρ such that (4.35) and

(4.37) are both feasible (with potentially different choices of P ). In this case, (4.35) and

(4.37) both become GEVPs. One can get two rate bounds by solving these two GEVPs

separately, and then take the larger one from the two resultant rate bounds as the final

convergence rate of the feedback interconnection.

4.5 Numerical Example: Analysis of Nesterov’s Acceler-

ated Method

We will demonstrate the application of (4.35) and Lemma 17 by a case study on Nes-

terov’s accelerated method. Suppose g ∈ F(m,L) with m > 0. Theorem 2.2.3 in [11]

states that in this case one can apply Nesterov’s accelerated method (2.11) with α = 1
L
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and β =
√
L−
√
m√

L+
√
m

to guarantee a linear convergence rate ρ =
√

1−
√

m
L . A better nu-

merical rate bound has been obtained in [12, Section 4.5] by applying Theorem 2 with a

conic combination1 of the sector IQC and the ρ-hard off-by-one IQC. Currently there is

no analytical expression for the numerical rate bounds in [12, Section 4.5]. Notice this

formulation does not lead to a GEVP, and a bisection on ρ is required to make (2.41) an

LMI. Lemma 5 was used to reduce the dimension of the testing LMI (2.41). The details

of this ρ-hard IQC approach are now presented. Specifically, set M̃1 = M̃2 = [ 0 1
1 0 ]. We

further specify the following matrices

Ã =

[
1 + β −β

1 0

]
, B̃ =

[
−α
0

]
, C̃ =

[
1 + β −β

]
, D̃ = 0 ,

Ãψ = 0 , B̃ψ1 = −L , B̃ψ2 = 1 , C̃ψ =


0

0

ρ2

0

 , D̃ψ1 =


L

−m
L

−m

 , D̃ψ2 =


−1

1

−1

1

 .
(4.38)

Let (Ã, B̃, C̃, D̃) be calculated from (2.43) and (2.44). Set M̃λ = diag(λ1M̃1, λ2M̃2). If

∃P̃ > 0, λ1 ≥ 0, and λ2 ≥ 0 such that[
ÃT P̃ Ã − ρ2P̃ ÃT P̃ B̃
B̃T P̃ Ã B̃T P̃ B̃

]
+

[
C̃T

D̃T

]
M̃λ

[
C̃ D̃

]
≤ 0, (4.39)

then ([
ÃT P̃ Ã − ρ2P̃ ÃT P̃ B̃
B̃T P̃ Ã B̃T P̃ B̃

]
+

[
C̃T

D̃T

]
M̃λ

[
C̃ D̃

])
⊗ Ip ≤ 0. (4.40)

Consequently, LMI (2.41) is feasible with P = P̃ ⊗ Ip > 0, and Nesterov’s accelerated

method is guaranteed to have the linear convergence rate ρ. Hence one only needs to

check the feasibility of LMI (4.39) for any given ρ. Notice (4.39) is a 4 × 4 LMI with

the above specified state matrices for any fixed ρ. In addition, C̃ψ directly depends on

ρ2, and hence (4.39) does not lead to a GEVP.

1 This conic combination was originally termed as “weighted off-by-one IQC” in [12].
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On the other hand, we can also apply the soft-IQC approach to analyze Nesterov’s

accelerated method. Specifically, we can use a conic combination of the forward off-by-

one soft IQC and the sector IQC in Lemma 17. Since a soft IQC is involved, Theorem 6

is required to formulate the testing condition. The forward off-by-one IQC depends

on ρ in a special way such that the resultant testing condition is a GEVP. Lemma 5

was also used to reduce the dimension of the testing LMI (4.35). Hence we still set

M̃1 = M̃2 = [ 0 1
1 0 ]. Now the state matrices are set as

Ã =

[
(1− αm)(1 + β) −(1− αm)β

1 0

]
, B̃ =

[
−α
0

]
,

C̃ =
[
1 + β −β

]
, D̃ = 0 ,

Ãψ =

[
0 0

0 0

]
, B̃ψ1 =

[
L−m

0

]
, B̃ψ2 =

[
−1

1

]
,

C̃ψ =


0 0

0 0

1 0

0 1

 , D̃ψ1 =


L−m

0

0

0

 , D̃ψ2 =


−1

1

0

−1

 .

(4.41)

Let (Ã, B̃, C̃, D̃) be calculated from (2.43) and (2.44). Suppose ρ is given. If ∃P̃ =

P̃ T , λ1 ≥ 0, and λ2 ≥ 0 such that LMI (4.39) is feasible, then Theorem 6 can be

used to conclude that Nesterov’s accelerated method has the linear convergence rate

ρ. Notice P̃ is no longer required to be positive definite. For any fixed ρ, the LMI

(4.39) is 5 × 5. Notice the LMI size here is slightly larger compared with the ρ-hard

IQC approach. However, the resultant testing condition potentially leads to a GEVP.

To apply Theorem 6, one needs to ensure the stability of Gρ. Since we have a simple

analytical expression of Ã, there is no need to solve the LMI (4.37). We can write

out an analytical formula for the eigenvalues of Ã and show that the stability of Gρ is

guaranteed if ρ ≥ 1−
√

m
L .

The numerical rate results obtained by the above two approaches are summarized

in Table 4.1. It is an important fact that Theorem 6 drops the positivity constraint on

P . To highlight this, Table 4.1 also presents the rate results obtained by the soft-IQC

approach but with the positivity constraint enforced. The notation “−” means “infea-

sible”. For comparison, the theoretical rate bound for Nesterov’s accelerated method
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ρ =

√
1−

√
m
L

)
and the rate value guaranteeing the stability of Gρ

(
ρ = 1−

√
m
L

)
are

also presented. A practical issue in numerically solving the LMIs is how to break ho-

mogeneity. There are multiple ways to address this issue. We replaced the zero matrix

on the right side of (4.39) with the multiplication of an identity matrix and (−ε) where

ε is a small positive number. When formulating the LMIs, we also set m = 1 and vary

the value of L. Theoretically, the rate results should only depend on the ratio L/m and

there is no need to fix the value of m. However, a very large value of L will lead to

an extremely small value of α. This potentially leads to ill-conditioning issues. We fix

m = 1 and choose ε = 10−5. The obtained results suggested that the ill-conditioning

issues are avoided with such choices of parameters. One can try other values of m.

Based on our numerical observations, the resultant rates only depend on L/m when

there is no ill-conditioning issue. It is emphasized that the selections of m and ε are

not general. One has to carefully address this issue when applying the LMI methods to

analyze other optimization algorithms.

L/m 5 10 100 500 103 104

ρ-Hard IQC Approach 0.633 0.752 0.928 0.969 0.978 0.994

Soft-IQC Approach with P̃ = P̃ T 0.633 0.752 0.928 0.969 0.979 0.994

Soft-IQC Approach with P̃ > 0 0.666 0.810 - - - -

ρ =
√

1−
√

m
L 0.744 0.827 0.949 0.978 0.984 0.995

ρ = 1−
√

m
L 0.553 0.684 0.900 0.956 0.969 0.990

Table 4.1: Various Numerical Rate Results for Nesterov’s Accelerated Method

Table 4.1 shows that the ρ-hard IQC approach and the soft-IQC approach agree with

each other. Although we use a bisection on ρ in both approaches, the soft-IQC approach

provides a GEVP formulation which can be potentially solved by more efficient algo-

rithms. Notice the standard GEVP algorithm in [59] requires the positivity constraint

on P̃ . To fully take the advantage of the soft-IQC approach, one needs to develop more

general algorithms for the case where such positivity constraints are dropped.

Notice the rate bounds obtained by the soft-IQC approach are always larger than(
1−

√
m
L

)
. This justifies the application of Theorem 6. Moreover, Table 4.1 also high-

lights the importance of dropping the positivity constraint on P in Theorem 6. Without

dropping this constraint, the soft-IQC approach may even be infeasible.



Chapter 5

Analysis for SAG and Related

Variants Using IQCs and Jump

System Formulations

In many machine learning problems, the objective function is a sum of smooth convex

functions, i.e. g(x) = 1
n

∑n
i=1 fi(x). The minimization problem becomes:

min
x∈Rp

g(x) :=
1

n

n∑
i=1

fi(x) (5.1)

where fi ∈ F(mi, Li) and g ∈ F(m,L). In practice, fi can be a regularizer or the

loss function evaluated at one data block. The framework of (2.8) is useful for the `2-

regularized empirical risk minimization problems, e.g. `2-regularized logistic regression,

ridge regression, smooth support vector machine, etc. The key feature of (5.1) is that

n is typically quite large. This is related to the recent development of big data science.

The deterministic first-order methods, e.g. the gradient descent method (2.9), Nes-

terov’s accelerated method (2.11), etc, can be applied to solve (5.1). However, this type

of deterministic methods requires the computation of the full gradient and may have a

high iteration cost when the size of the training set is large.

A widely-used alternative approach for solving (5.1) is the stochastic gradient (SG)

method [81,82], which uses the following iteration:

xk+1 = xk − α∇fik(xk)

72
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where for each step k, the index ik is sampled uniformly from the set N := {1, 2, . . . , n}.
The SG method has an iteration cost independent of n, and hence has been widely

applied for large-scale empirical risk minimization problems. However, the SG method

only linearly converges to some tolerance of the optimum of (5.1) given a well-chosen

constant stepsize. If a diminishing stepsize is used, the SG method will converge to the

optimum but at a sublinear rate. Hence the SG method is efficient for obtaining a rough

approximated solution for (5.1) but inefficient when an accurate solution is desired.

More recently, the stochastic average gradient (SAG) method [14,15] has been pro-

posed to combine the advantages of the deterministic full gradient descent method and

the SG method. The SAG method converges linearly to the optimum point while pre-

serving the iteration cost of the SG method. SAG uses the following iteration rule:

xk+1 = xk − α

n

n∑
i=1

yki (5.2)

where at each step k, a random training example ik is drawn uniformly from the set N
and

yki :=

{
∇fi(xk) if i = ik

yk−1
i otherwise

. (5.3)

The development of SAG is inspired by the incremental aggregated gradient (IAG)

method [83], which draws the index ik cyclically based on a deterministic order and also

applies the iteration rule (5.2) (5.3). SAG has many variants, e.g. SAGA [16]. Although

convergence rate guarantees have been proved for SAG, SAGA, and IAG with certain

stepsizes, there is a need to develop a unified analysis for variants of SAG with arbitrary

stepsizes and more complicated sampling strategies.

The objective of this chapter is to present a unified IQC-based framework to analyze

the convergence rates of SAG and its variants with arbitrary stepsizes and possibly non-

uniform sampling strategies. Our approach can be viewed as a stochastic analog of the

analysis in Sections 2.9 and 2.10. The key insight here is that SAG can be viewed as

a feedback interconnection of a dynamic jump system and a static nonlinearity. Notice

that a jump system is described by a linear state space model whose state matrices are

functions of a jump parameter sampled from a given distribution. Instead of modeling

the randomness in SAG as additive noises, we capture the randomness in these methods
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using the jump system model. Since Lyapunov theory for jump systems has been

well established in the controls field, we can incorporate IQCs to obtain semidefinite

programs for convergence rate analysis of SAG and its variants. The jump system

viewpoint on SAG and its variants plays a key role in our analysis. The IQC analysis of

the SG method with a constant stepsize can also be done. However, the SG method with

a constant stepsize converges linearly only up to some tolerance. The IQC framework

has to be modified significantly to capture this phenomenon. We will present the IQC

analysis of the SG method in Chapter 6.

Our analysis and the existing theoretical rate analysis in [14–16] provide complemen-

tary benefits. The main advantage of the IQC framework is that the IQC analysis can

be automated for many variants of SAG and can even handle the non-uniform sampling

strategies. However, our approach relies on numerically solving semidefinite programs

and is subject to numerical errors. Our approach is most useful for two cases. First,

our approach is useful in providing numerical confirmations of existing theoretical rate

results for SAG and its variants. Second, our approach is also useful when one wants to

get some initial analysis results for a new variant of SAG, e.g. SAG with non-uniform

sampling strategies or Nesterov’s version of SAG.

Section 5.1 reviews the basic concepts of stochastic jump systems. In Section 5.2,

we provide a jump system formulation for SAG and develop an IQC framework to

analyze the convergence rates of SAG. Then we present how the proposed IQC approach

automates the convergence rate analysis for variants of SAG (Section 5.3).

5.1 Background of Dynamic Jump Systems

The underlying probability space for the sampling index ik is denoted as (Ω,F ,P). Let

Fk be the σ-algebra generated by (i1, i2, . . . , ik). Clearly, ik is Fk-adapted and we obtain

a filtered probability space (Ω,F , {Fk},P) which the SAG iteration is defined on.

Now we briefly review some required concepts in jump system theory. When A,

B, C, and D in (2.18) are functions of a random process {ik : k = 1, 2, . . .}, the

system G is then referred to as a linear dynamic jump system with the jump parameter

ik. Specifically, a dynamic jump system is typically described by the following set of
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recursive equations:

ξk+1 = Aikξ
k +Bikw

k

vk = Cikξ
k +Dikw

k.
(5.4)

At each step k, the jump parameter ik is a random variable taking value in a finite set

N = {1, · · · , n}. In addition, Aik : N → Rnξ×nξ , Bik : N → Rnξ×nw , Cik : N → Rnv×nξ ,
and Dik : N → Rnv×nw are functions of ik. When ik = i ∈ N , clearly we have Aik = Ai,

Bik = Bi, Cik = Ci, and Dik = Di. When the process {ik : k = 1, 2, . . .} is a Markov

chain, the resultant jump system is termed as a discrete-time Markovian jump linear

system (MJLS). There is a large body of literature on MJLS in the controls field [84,85].

We confine our scope to the special case where ik is an identically and independently

distributed (IID) process. When ik is sampled from a uniform distribution, we have the

following assumption:

Assumption 1. P(ik = i | Fk−1) = P(ik = i) = 1
n for all k ∈ Z+, and i ∈ N .

When ik is generated cyclically based on a deterministic order, the model (5.4) is no

longer a jump system. In this case, the system is termed as a linear periodic system.

5.2 IQC-Based Analysis for SAG

5.2.1 A Jump System Formulation for SAG

To rewrite the SAG iteration as a feedback interconnection, we first need to define the

operator ∆̄f : `p2e → `np2e that maps v̄ ∈ `p2e to w̄ = ∆̄f (v̄) as

w̄k =


∇f1(v̄k)

∇f2(v̄k)
...

∇fn(v̄k)

 . (5.5)

Next, we show how to cast SAG into a feedback interconnection Fu(Ḡ, ∆̄f ) where

Ḡ is a linear jump system.
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Notice a key iteration rule for SAG is (5.3). Now we use the following notation:

yk =


yk1

yk2
...

ykn

 (5.6)

In addition, set v̄k = xk. Then the iteration rule (5.3) can be rewritten as:

yk =
(
(In − eike

T
ik

)⊗ Ip
)
yk−1 +

(
(eike

T
ik

)⊗ Ip
)
w̄k (5.7)

where ik is uniformly sampled from N at each step k, and w̄k is given by Equation (5.5).

The iteration (5.2) can be rewritten as:

xk+1 = xk − α

n

n∑
i=1

yki

= xk − α

n
(eT ⊗ Ip)yk

= xk − α

n
(eT ⊗ Ip)

(
(In − eike

T
ik

)⊗ Ip
)
yk−1 − α

n
(eT ⊗ Ip)

(
(eike

T
ik

)⊗ Ip
)
w̄k

= xk − α

n

(
(e− eik)T ⊗ Ip

)
yk−1 − α

n
(eTik ⊗ Ip)w̄

k

(5.8)

Since v̄k = xk, we can combine (5.7) and (5.8) to obtain the following jump system

model mapping from w̄ to v̄:[
yk

xk+1

]
=

[
(In − eikeTik)⊗ Ip 0̃⊗ Ip
−α
n (e− eik)T ⊗ Ip Ip

][
yk−1

xk

]
+

[
(eike

T
ik

)⊗ Ip
(−α

ne
T
ik

)⊗ Ip

]
w̄k

v̄k =
[
0̃T ⊗ Ip Ip

] [yk−1

xk

] (5.9)

The above jump system model can be denoted as v̄ = Ḡ(w̄). Notice that the state

for Ḡ at the step k is ξ̄k =
[
yk−1

xk

]
. In addition, we already have w̄ = ∆̄f (v̄). Hence we

can combine v̄ = Ḡ(w̄) with w̄ = ∆̄f (v) to conclude that the feedback representation

for SAG is Fu(Ḡ, ∆̄f ). Denote the state matrices of Ḡ as (Aik , Bik , C,D). It is obvious
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that D = 0̃T ⊗ Ip. Therefore, the feedback form Fu(Ḡ, ∆̄f ) can be cast as:

ξ̄k+1 = Aik ξ̄
k +Bikw̄

k

v̄k = Cξ̄k

w̄k =


∇f1(v̄k)

∇f2(v̄k)
...

∇fn(v̄k)


(5.10)

Later we will see similar jump system formulations for variants of SAG can be

generated in a highly automated manner by applying the series connection rule of state-

space models.

We can shift Fu(Ḡ, ∆̄f ) to another interconnection Fu(G,∆) with ∆ being bounded.

Let x∗ be the unique point satisfying ∇g(x∗) = 0. First, based on the facts Aik +Bik =

In ⊗ Ip and
∑n

i=1∇fi(x∗) = n∇g(x∗) = 0, we can rewrite the feedback interconnection

of SAG as

ξ̄k+1 − ξ∗ = Aik(ξ̄k − ξ∗) +Bik(w̄k − w∗)

v̄k − v∗ = C(ξ̄k − ξ∗)

w̄k − w∗ =


∇f1(v̄k)−∇f1(x∗)

∇f2(v̄k)−∇f2(x∗)
...

∇fn(v̄k)−∇fn(x∗)


(5.11)

with w∗ =
[
∇f1(x∗)T . . . ∇fn(x∗)T

]T
, v∗ = x∗, and ξ∗ =

[
w∗

x∗

]
. Now we denote

ξk = ξ̄k − ξ∗, wk = w̄k − w∗, and vk = v̄k − v∗. In addition, let the jump system G be

governed by the state-space model:

ξk+1 = Aikξ
k +Bikw

k

vk = Cξk
(5.12)
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And define the operator ∆f : `p2e → `np2e that maps v ∈ `p2e to w = ∆f (v) as

wk =


∇f1(vk + x∗)−∇f1(x∗)

∇f2(vk + x∗)−∇f2(x∗)
...

∇fn(vk + x∗)−∇fn(x∗)

 (5.13)

Then the SAG iteration (5.11) can be rewritten as Fu(G,∆f )

ξk+1 = Aikξ
k +Bikw

k

vk = Cξk

wk =


∇f1(vk + x∗)−∇f1(x∗)

∇f2(vk + x∗)−∇f2(x∗)
...

∇fn(vk + x∗)−∇fn(x∗)


(5.14)

We are interesting in analyzing ‖ξ̄k − ξ∗‖2. Equivalently, we only need to analyze

Fu(G,∆f ) and draw conclusions on ‖ξk‖2. Next, we will construct ρ-hard IQCs for ∆f ,

and develop a jump system dissipation inequality to analyze the linear convergence rate

of Fu(G,∆f ).

It is worth mentioning that there is a well-posedness issue implicitly embedded

with the feedback setup Fu(G,∆f ). It is straightforward to check that Fu(G,∆f ) is

well-posed for every sample path of ik. More specifically, the feedback interconnection

Fu(G,∆f ) adopts a unique `2e solution from any initial conditions in the almost sure

sense. Therefore, we do not need to worry about this issue, and we will not explicitly

mention this well-posedness issue from now on.

5.2.2 ρ-Hard IQCs on ∆f

We can easily obtain ρ-hard IQCs on ∆f by manipulating the ρ-hard IQCs introduced

in Section 2.11.3. To see this, define the operator ∆
(i)
f : `p2e → `p2e that maps v ∈ `p2e to

wi = ∆
(i)
f (v) as

wki = ∇fi(vk + x∗)−∇fi(x∗) (5.15)
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The condition g ∈ F(m,L) implies ∆g satisfies the sector IQC and the off-by-one ρ-hard

IQC in Lemma 7. Similarly, the condition fi ∈ F(mi, Li) also poses a sector IQC and

an off-by-one ρ-hard IQC for ∆
(i)
f . Since ∆g = ( 1

ne
T ⊗Ip)◦∆f and ∆

(i)
f = (eTi ⊗Ip)◦∆f ,

we can easily obtain the following ρ-hard IQC result for ∆f .

Lemma 18. Suppose g ∈ F(m,L) with m ≥ 0, and fi ∈ F(mi, Li) with mi ≥ 0.

Assume 0 < ρ ≤ 1 is given. Then ∆f ∈ ρ-HardIQC(Ψ,M, ρ) with (Ψ,M) defined by

1. (Sector IQC Related to g):

Ψ =

[
LIp − 1

ne
T ⊗ Ip

−mIp 1
ne

T ⊗ Ip

]
, M =

[
0p Ip

Ip 0p

]
. (5.16)

2. (Off-by-One ρ-hard IQC Related to g):

Ψ =


0p −LIp 1

ne
T ⊗ Ip

ρ2Ip LIp − 1
ne

T ⊗ Ip
0p −mIp 1

ne
T ⊗ Ip

 , M =

[
0p Ip

Ip 0p

]
. (5.17)

3. (Sector IQC Related to fi):

Ψ =

[
LiIp −eTi ⊗ Ip
−miIp eTi ⊗ Ip

]
, M =

[
0p Ip

Ip 0p

]
. (5.18)

4. (Off-by-One ρ-hard IQC Related to fi):

Ψ =


0p −LiIp eTi ⊗ Ip
ρ2Ip LiIp −eTi ⊗ Ip
0p −miIp eTi ⊗ Ip

 , M =

[
0p Ip

Ip 0p

]
. (5.19)

Proof. Since ∆g = ( 1
ne

T ⊗ Ip) ◦∆f and ∆
(i)
f = (eTi ⊗ Ip) ◦∆f , we can directly rewrite

the IQCs in Lemma 7 to prove the above lemma. The details are omitted.

We can see that ρ-hard IQCs can be flexibly constructed under various assumptions

on g and fi. The existing analysis for SAG in [15] is analytical and assumes fi ∈ F(0, L).

It is very difficult to extend the analytical approach in [15] to the cases where we have

different conditions on each fi, i.e. mi 6= 0. On the other hand, the IQC analysis can

be easily automated when the conditions on fi vary with i.
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5.2.3 Convergence Rate Analysis of SAG Using Semidefinite Pro-

grams

Suppose ∆f ∈ ρ-HardIQC(Ψj ,Mj , ρ) for j = 1, . . . , NJ . All {Ψj}NJj=1 are aggregated

into a filter Ψ governed by Equation (2.33). Similar to the deterministic case, the IQC

analysis of Fu(G,∆f ) is based on the extended system G(G,Ψ) shown in Figure 5.1.

G

∆f

v

-

w

�

-

- Ψ
r-

Figure 5.1: Removing ∆ by Enforcing a Constraint on the Output of Ψ

From (2.24), we can see that the state space realization of G(G,Ψ) has the form

(Aik ,Bik , C,D) where C and D do not depend on the sampling index ik. Hence G(G,Ψ)

has the following state-space model:[
ηk+1

rk

]
=

[
Aik Bik
C D

][
ηk

wk

]
(5.20)

The extended state vector is ηk :=
[
ξk

ψk

]
∈ Rnξ+nψ . Based on (2.25) and (2.26), the

state matrices for the extended system G(G,Ψ) can be computed from the state matrices

of G and Ψ.

Still define Mλ = diag(λ1M1, . . . , λNJMNJ ). The next theorem presents an LMI

condition for linear rate analysis of SAG using time domain ρ-hard IQCs and a jump

system dissipation inequality.

Theorem 7. Let G be a jump system defined by (5.12) and ∆ ∈ ρ-HardIQC(Ψj ,Mj , ρ)

for j = 1, . . . , NJ . Suppose Fu(G,∆f ) is well-posed almost surely, and ξk is generated

by the interconnection Fu(G,∆) with the initial condition ξ0. Assume ik is sampled in

an IID manner and P(ik = i) = pi. If ∃ a matrix P = P T > 0 and scalars λj ≥ 0 s.t.[∑n
i=1 piATi PAi − ρ2P

∑n
i=1 piATi PBi∑n

i=1 piBTi PAi
∑n

i=1 piBTi PBi

]
+

[
CT

DT

]
Mλ

[
C D

]
≤ 0 (5.21)
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Then E
[
‖ξk‖2

]
≤ ρ2k

(
cond(P )‖ξ0‖2

)
holds for all k ≥ 1 and ξ0 ∈ Rnξ .

Proof. Let (ξ, v, w) be generated by Fu(G,∆) with the initial condition ξ0. Let r be

generated by (2.22) with initial condition ψ0 = 0. Let ηk =
[
(ξk)T (ψk)T

]T
. We can

verify that (5.20) holds with the current choice of (η, w, r) with the initial condition

η0 =
[
(ξ0)T 0

]T
. Moreover, the solution (η, w, r) is in `2e almost surely.

Define the storage function by V (ηk) = (ηk)TPηk. Based on (5.20), we have the

following key relation:

E[V (ηk+1) | Fk−1]

= E[(ηk+1)TPηk+1 | Fk−1]

=
n∑
i=1

P(ik = i)
(
Aiηk + Biwk

)T
P
(
Aiηk + Biwk

)

=

[
ηk

wk

]T [∑n
i=1 piATi PAi

∑n
i=1 piATi PBi∑n

i=1 piBTi PAi
∑n

i=1 piBTi PBi

][
ηk

wk

]
(5.22)

Therefore, left and right multiply the LMI condition (5.21) by [ηT , wT ] and [ηT , wT ]T

to show that V satisfies:

E[V (ηk+1) | Fk−1]− ρ2V (ηk) +

NJ∑
j=1

λj(r
k
j )TMjr

k
j ≤ 0 (5.23)

We can take full expectation to get

EV (ηk+1)− ρ2EV (ηk) + E

NJ∑
j=1

λj(r
k
j )TMjr

k
j

 ≤ 0 (5.24)

Multiply the above inequality by ρ−2k and sum over k to yield:

ρ2−2kEV (ηk)− ρ2V (η0) +

NJ∑
j=1

E

[
k−1∑
t=0

ρ−2tλj(r
t
j)
TMjr

t
j

]
≤ 0 (5.25)

Since
∑k−1

t=0 ρ
−2tλj(r

t
j)
TMjr

t
j ≥ 0 for every sample path of ik, we have the expected

quadratic constraint E
[∑k−1

t=0 ρ
−2tλj(r

t
j)
TMjr

t
j

]
≥ 0. Therefore, (5.25) implies:

ρ2−2kEV (ηk)− ρ2V (η0) ≤ 0 (5.26)
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Hence EV (ηk) ≤ ρ2kV (η0), and we immediately get

E[‖ξk‖2] ≤ E[‖ηk‖2] ≤ ρ2k
(
cond(P )‖η0‖2

)
= ρ2k

(
cond(P )‖ξ0‖2

)
(5.27)

This completes the proof.

When y0 = 0, we have ‖ξ0‖2 = ‖ξ̄0 − ξ∗‖2 = ‖x0 − x∗‖2 +
∑n

i=1 ‖∇fi(x∗)‖2. This

term depends on
∑n

i=1 ‖∇fi(x∗)‖2 as expected. We can see that the proof of the jump

system dissipation inequality is very similar to its deterministic counterpart. For any

fixed 0 < ρ ≤ 1, the testing condition (5.21) is an LMI. In principle, we can solve

the semidefinite program (5.21) to certify the linear convergence rate of SAG even if

the sampling strategy is not uniform, i.e. pi 6= 1
n . However, numerically checking the

feasibility of (5.21) is practical only if the size of (5.21) is not too large. Notice the size

of (5.21) is roughly proportional to both n and p. We can easily extend Lemma 5 to

reduce (5.21) to a smaller LMI whose size does not depend on p. Similar arguments can

be found in Remark 2 (Section 2.11.3) and [12, Section 4.2]. The real challenge is how

to make use of (5.21) given the fact that the resultant LMI can only be numerically

checked for intermediate values of n (i.e. n ≤ 400).

5.2.4 Numerical Results on SAG

Now we use Theorem 7 to analyze the convergence rate of SAG. Suppose ik is sampled

from a uniform distribution, i.e. pi = 1
n for all i. In addition, assume mi = 0 and

Li = L. Hence g ∈ F(m,L) and fi ∈ F(0, L). The most relevant existing result for

this case was presented in [15, Theorem 1] and states the following fact. If one chooses

α = 1
16L , then the SAG iteration converges at a linear rate ρ =

√
1−min{ m

16L ,
1

8n} in

the mean square sense. This result demonstrates the power of the SAG method. Notice

the full gradient descent method accesses the oracle n times at one iteration, since the

computation of ∇g requires the computation of ∇fi for all i. Roughly speaking, the

full gradient descent iteration shrinks at a certain factor which depends on the ratio

L/m after accessing the oracle n times. On the other hand, the SAG method in big

data applications shrinks at a factor which is independent of L/m after accessing the

oracle n times. To see this, notice n is typically quite large for big data applications.

Hence SAG converges at a rate ρ2 = 1 − 1
8n . After accessing the oracle n times, the

SAG iteration shrinks at a factor (1− 1
8n)n ≈ 0.8825.
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We can apply the LMI method to verify and strengthen the above result. In big

data applications, n is typically very large. Evaluating the LMI with that large n

is impractical. Based on the result in [15, Theorem 1], it is reasonable to guess the

convergence rate of SAG takes the form of ρ2 = 1 − 1
cn for some c when n is large.

Hence it makes sense to study the case where n is large enough such that (1 − 1
cn)n

approaches its limit and 1
cn ≤

m
16L . To determine the range of n for our LMI tests, we

compute the values of (1− 1
cn)n for different c. The result is summarized in Table 5.1.

From Table 5.1, we can see (1− 1
cn)n usually already approaches its limit even when n

is 20. Hence we can select n based on the value of L/m. For example, if L/m = 10, we

can choose n to be larger than 160/c where c is related to the tested rate.

n 5 20 50 100 103 104

(1− 1
8n)n 0.8811 0.8822 0.8824 0.8824 0.8825 0.8825

(1− 1
6n)n 0.8441 0.8459 0.8462 0.8464 0.8465 0.8465

(1− 1
2n)n 0.5905 0.6027 0.6050 0.6058 0.6065 0.6065

(1− 2
3n)n 0.4889 0.5076 0.5111 0.5123 0.5133 0.5134

(1− 1
n)n 0.3277 0.3585 0.3642 0.3660 0.3677 0.3679

Table 5.1: Values of
(
1− 1

cn

)n
for c ∈ {8, 6, 2, 1.5, 1}

Now we present the details of our LMI analysis. We use the sector IQCs (5.16)

(5.18) and the off-by-one ρ-hard IQC in (5.17) to formulate the LMI condition. Since

pi = 1
n , the LMI condition (5.21) becomes[

1
n

∑n
i=1ATi PAi − ρ2P 1

n

∑n
i=1ATi PBi

1
n

∑n
i=1 BTi PAi

1
n

∑n
i=1 BTi PBi

]
+

[
CT

DT

]
Mλ

[
C D

]
≤ 0 (5.28)

Since totally (n + 2) ρ-hard IQCs are used, we have NJ = n + 2. Similar to the

deterministic case, we can set P = P̃ ⊗ Ip and reduce the above LMI to a smaller

LMI whose size does not depend on p. The resultant LMI can be further simplified by

exploiting the symmetry in the problem setup. There is some symmetry in Ai and Bi.

In addition, there is also some symmetry between the sector IQCs on different fi. Hence
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we set λj for all the sector IQCs on fi to be one parameter, and parameterize P̃ as

P̃ =


p1In + p2(eT e) p3e p4e

p3e
T p5 p6

p4e
T p6 p7

 (5.29)

where pj (j = 1, . . . , 7) are scalar decision variables. Without this parameterization, P̃

is an (n+ 2)× (n+ 2) matrix. With this parameterization, the number of the decision

variables is significantly reduced. The number of the decision variables of the resultant

LMI becomes 10, and the LMI can be solved when n is several hundred. The decision

variable reductions here are quite intuitive. Although we do not have a proof to show

that this step does not introduce any further conservatism, we did some numerical tests

and the results seemed to confirm the applicability of such variable reduction.

Another practical issue is how to break homogeneity in the LMI. Instead of enforcing

P̃ > 0, we actually use the condition P̃ ≥ εI with ε = 10−3. The choice of ε can affect

the result especially when n is large. Some infeasible points may become feasible if

smaller ε is used. Larger ε leads to slightly more conservative ρ2.

Now we check the feasibility of the resultant LMI with various choices of ρ2. The

size of the LMI is large such that a bisection on ρ2 becomes inefficient. Hence we test

the feasibility of the LMI with several prescribed ρ2. The result for the case where

m = 1 and L = 10 is summarized in Table 5.2. The notation “Y” means the LMI is

feasible while “-” means the LMI is not feasible.

n 20 50 100 200 300

ρ2 = 1− 1
8n Y Y Y Y Y

ρ2 = 1− 1
6n Y Y Y Y Y

ρ2 = 1− 1
2n - Y Y Y Y

ρ2 = 1− 2
3n - - - Y Y

ρ2 = 1− 1
n - - - - -

Table 5.2: Numerical Rate Results for SAG with m = 1, mi = 0, Li = L = 10, and
α = 1

16L

The results in Table 5.2 confirm [15, Theorem 1] since 1
8n ≤

1
160 for n ≥ 20 and

the LMI is feasible with ρ2 = 1− 1
8n for all tested n. However, Table 5.2 also suggests

that [15, Theorem 1] can be conservative. The LMI method implies that SAG may
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converge at a faster rate. In addition, Table 5.2 also implies that faster rates will be

obtained when SAG is applied to problems with large n. Hence a rate bound which

does not hold for small n could potentially hold for large n. An important future task

is to develop less conservative rate bounds which only hold for large n. We also present

the LMI results for L/m = 100 (Table 5.3). The same trend has been observed, i.e.

better rate bounds may hold only for large n. Another interesting observation is that

the LMI is not feasible for the rate ρ2 = 1 − 2
3n when L/m = 100. There are three

possibilities here. One possibility is that n is not large enough to make the LMI feasible

with this rate. The second possibility is that the rate bound of the SAG may still get

worse for larger values of L/m even for big data applications. The third possibility is

that this is a numerical error. One evidence for this is that the LMI with ρ2 = 1 − 2
3n

becomes feasible for n = 300 and L/m = 100 if we choose ε = 10−5 instead of 10−3.

It is emphasized that the LMI method is subject to numerical errors. The numerical

errors can even be more significant when n is large. Hence the LMI method is only used

to complement the theoretical rate results at this point.

n 200 250 300 400

ρ2 = 1− 1
4n Y Y Y Y

ρ2 = 1− 1
2n - - Y Y

ρ2 = 1− 2
3n - - - -

Table 5.3: Numerical Rate Results for SAG with m = 1, mi = 0, Li = L = 100, and
α = 1

16L

5.3 Generalizations for Variants of SAG

5.3.1 Variants of SAG

SAG has many possible variants. An important variant for the SAG method is the

Nesterov’s version of stochastic average gradient method [15]. This variant applies the
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following iteration:

xk+1 = rk − α

n

n∑
i=1

yki

rk = (1 + β)xk − βxk−1

(5.30)

where at each iteration k, the index ik is drawn uniformly from the set N and

yki :=

{
∇fi(rk) if i = ik

yk−1
i otherwise

(5.31)

Theoretically, it is not clear whether the above method has better worst-case guarantees

than SAG or not.

Another important variant for the SAG method is the SAGA method [16], which

uses the following iteration:

xk+1 = xk − α

(
∇fik(xk)− yk−1

ik
+

1

n

n∑
i=1

yk−1
i

)
(5.32)

where at each iteration k, a random training example ik is drawn uniformly from the

set N and yki is updated by (5.3).

Potentially, one can also obtain a Nesterov’s version and a Heavy-ball version for

the SAGA method.

5.3.2 Jump System Formulations for Variants of SAG

In this section, we summarize a general jump system formulation for variants of SAG.

We represent variants of SAG into the feedback form Fu(G,∆f ) as shown in Figure 5.2.

GD GS

∆f

v

-

w

��
u

G := GD ◦GS

Figure 5.2: The Block-Diagram for Variants of SAG
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In Figure 5.2, G is the series connection of a deterministic LTI system GD (the sub-

script “D” stands for “deterministic”) and a jump system GS (the subscript “S” stands

for “stochastic”) which involves the iteration of yk. Choose GD = (Ip,−αIp, Ip, 0p) and

GS =

[
(In − eikeTik)⊗ Ip (eike

T
ik

)⊗ Ip
1
n(eT ⊗ Ip)

(
(In − eikeTik)⊗ Ip

)
1
n(eT ⊗ Ip)

(
(eike

T
ik

)⊗ Ip
) ] , (5.33)

Then we recover the SAG iteration as Fu(GD ◦GS ,∆f ).

Choose GD = (Ip,−αIp, Ip, 0p) and

GS =

[
(In − eikeTik)⊗ Ip (eike

T
ik

)⊗ Ip(
( 1
ne

T − eTik)⊗ Ip
)

eTik ⊗ Ip

]
. (5.34)

Then we recover the SAGA iteration as Fu(GD ◦GS ,∆f ).

We can choose GD as (2.49) and GS as (5.33) to recover the Nesterov’s accelerated

variant of SAG. Similarly, we can choose GD as (4.31) and GS as (5.33) to recover the

Heavy-ball variant of SAG. The Nesterov’s variant and the Heavy-ball variant of SAGA

can be obtained using the same technique.

Now we highlight the key feature of Fu(GD ◦GS ,∆f ). Since the D matrix for GD is

a zero matrix, we can directly use the series connection rule (2.20) to show that the D

matrix for GD ◦GS is also a zero matrix, and the C matrix for GD ◦GS does not depend

on the sampling index ik. Without loss of generality, the feedback form Fu(G,∆f )

can always be cast as (5.14). Hence Theorem 7 provides a general tool for analysis of

variants of SAG.

5.3.3 Numerical Results on SAGA

Now we use Theorem 7 to analyze the convergence rate of SAGA. Suppose ik is sampled

from a uniform distribution, i.e. pi = 1
n for all i. In addition, assume mi = 0 and Li = L.

Hence g ∈ F(m,L) and fi ∈ F(0, L). The key convergence result in [16] states that

SAGA with the stepsize α = 1
3L achieves a rate ρ =

√
1−min{ m3L ,

1
4n} in this case.

We formulate the testing LMI using the same technique in Section 5.2.4 and check

the feasibility of the resultant LMI with various choices of ρ2. The result for the case

where m = 1 and L = 10 is summarized in Table 5.2.
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n 20 50 100 200 300

ρ2 = 1− 1
4n Y Y Y Y Y

ρ2 = 1− 1
2n - - - Y Y

ρ2 = 1− 2
3n - - - - -

Table 5.4: Numerical Rate Results for SAGA with m = 1, mi = 0, Li = L = 10, and
α = 1

3L

Since L/m = 10, hence 1
4n ≤

m
3L for n ≥ 8. Hence 1 − min{ m3L ,

1
4n} = 1 − 1

4n .

The results in Table 5.2 confirm the rate result in [16] since the LMI is feasible with

ρ2 = 1− 1
4n for all tested n. The trends in the numerical rate results for SAG and SAGA

are similar. This is consistent with the fact that SAG and SAGA have similar practical

performances. Although Table 5.4 gives slightly worse results compared with Table 5.2,

this difference could be caused by numerical errors. Notice we replaced P̃ > 0 with

P̃ ≥ 10−3I when we did the computation. If we use P̃ ≥ 10−5I, then the difference

becomes much smaller. Hence the more useful information from Table 5.4 is the trend in

the numerical rate results. Table 5.4 also suggests that there may exist less conservative

SAGA rate bounds which only hold for large n. We believe this is the most important

message from the LMI results.

5.3.4 Further Discussions

The LMI approach proposed in Theorem 7 has the following advantages:

1. The result includes a linear rate certification for yk. If (5.21) is feasible, we not

only know xk converge to x∗ at a linear rate ρ, but also can conclude that yk

converges at the same rate.

2. The full information of the randomness in the optimization method is captured

by the jump system model GS . The linear state-space structures of these jump

systems are used in the analysis to reduce the conservatism.

3. IQCs on the mapping ∆f have been well established. ∆f itself is a deterministic

element, which has been studied thoroughly in the controls literature. When we

try to analyze other variants of SAG, we do not need to derive new ρ-hard IQCs.



89

However, despite all the above advantages, Theorem 7 has a significant drawback.

It is impractical to solve the resultant LMI numerically when n is very large. One way

to address this issue is to construct analytical solutions for LMI (5.21). Then we no

longer need to numerically solve the semidefinite programs. However, the construction

of P becomes case-dependent again, and one cannot automate this proof process for

various algorithms. On the other hand, in many situations, it is sufficient to prove that

xk converges to x∗ in the mean square sense. We do not need to draw conclusion on

the convergence rate of yk. If this is the case, we may absorb GS into the troublesome

element as shown in Figure 5.3 and derive a semidefinite program whose size does not

depend on n.

∆f GS

GD

v

-

u

�

-w

∆ := GS ◦∆f

Figure 5.3: The Block-Diagram for Reducing-Order Modeling

Now we need to directly pose ρ-hard IQCs between v and u. The drawback is that

this new composite troublesome element has not been extensively studied in the controls

literature, and there is a need to develop new ρ-hard IQCs. Moreover, since GS is a

stochastic jump system, it is very possible that we need stochastic averaged IQCs on ∆

in this case. We will investigate this approach more carefully in the future.

5.3.5 Remarks on Increment Aggregated Gradient

SAG has a deterministic counterpart, which is the so-called incremental aggregated

gradient (IAG) method [83]. The iteration rule for IAG is identical to SAG except that in

IAG, the index ik is drawn cyclically based on a prescribed deterministic order. Actually,

IAG was first proposed and inspired the development of SAG. All the stochastic variants

of SAG will have incremental counterparts by changing the sampling rule of ik to a

known cyclic order. The existing results on IAG only give convergence guarantees for

small stepsize [86]. Clearly, we can combine the periodic system theory with IQCs to
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obtain LMI conditions for IAG and its variants. However, the dissipation inequality

for periodic systems usually lead to n coupled LMIs. This makes the LMI approach

less practical for such incremental methods. It is possible to study IAG using the idea

introduced in the end of last section. We may absorb the periodic dynamics into the

troublesome element and develops periodic constraints on the resultant troublesome

element. This may improve the applicability of the LMI approach for incremental

optimization methods.



Chapter 6

IQC Analysis of Stochastic

Gradient with a Constant

Stepsize

In this chapter, we revisit the analysis of the stochastic gradient method with a constant

stepsize, and develop an IQC-based framework with the aim of automating the analysis

for such optimization algorithms. Consider the empirical risk minimization problem

min
x∈Rp

g(x) =
1

n

n∑
i=1

fi(x)

where g : Rp → R is the objective function. The SG method uses the following iteration

rule:

xk+1 = xk − α∇fik(xk) (6.1)

where at each k, the index ik is uniformly sampled from N = {1, 2, . . . , n} in an IID

manner. It is well known that the convergence of the above SG method with a fixed

choice of α requires very strong assumptions on the relations between different fi [87].

In a general setup, the SG method with a constant stepsize typically achieves a linear

convergence rate only up to some fixed tolerance [88, Proposition 3.4]. This well-known

result is formally stated as follows.

91
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Proposition 1. Assume fi ∈ F(0,∞) and ‖∇fi(xk)‖ ≤ c for all xk generated by the SG

iteration (6.1) with any 1 ≤ i ≤ n. In addition, assume there exists x∗ ∈ Rp satisfying

∇g(x∗) = 1
n

∑n
i=1∇fi(x∗) = 0 and

g(x)− g(x∗) ≥ m‖x− x∗‖2

2
(6.2)

for some m > 0 and all x ∈ Rp. Then the sequence xk generated by the SG method

(6.1) with 0 < α ≤ 1
m satisfies

E[‖xk − x∗‖2] ≤ (1− αm)k ‖x0 − x∗‖2 +
αc2

m
. (6.3)

The original version of the above proposition and related proof were presented in [88],

although slightly different notation is used there. More specifically, the cost function

considered in [88] is
∑n

i=1 fi(x) while we consider the averaged sum 1
n

∑n
i=1 fi(x). Hence

µ in (38) of [88] is equivalent to mn
2 in our setup, and the statement of Proposition 1 is

consistent with [88, Proposition 3.4].

Now we give some interpretations of Proposition 1. The error term E[‖xk − x∗‖2] is

bounded by the sum of two terms. The first term converges to 0 at a linear rate while the

second term is a constant for a given fixed stepsize. Therefore, given a constant stepsize,

the SG method converges linearly only up to the tolerance level αc
2

m . It is also interesting

to notice the trade-off between the convergence rate and the computation accuracy. The

tolerance level αc
2

m is proportional to the stepsize α. Thus the optimization requires small

α to obtain high accuracy, but this comes at the expense of a slow convergence rate.

On the other hand, selecting α to be its maximum 1
m causes the convergence rate to be

zero. But the tolerance level is c2

m2 . This means the SG iteration with such a stepsize is

not leading to any benefits in the case g ∈ F(m,∞) since the strong convexity condition

on g directly guarantees ‖x− x∗‖ ≤ ‖∇g(x)‖2
m2 ≤ c2

m2 for all x ∈ Rp.
The above proposition highlights the trade-off between the convergence rate and the

computation accuracy. For machine learning problems, there is typically no need to

optimize below the so-called estimation error and obtain an extremely accurate solution

[89]. Hence, the SG method with a constant stepsize has been used quite frequently in

machine learning [13]. Notice SAG and SG have similar iteration costs. The accuracy

of SAG is much higher than the SG method while the memory size required by SAG
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is much larger than the SG method. It is possible to balance this trade-off between

computation accuracy and the required memory size by designing new optimization

methods which lie in the middle of the SG method and the SAG method. There is a

need to develop a unified framework to analyze these generalizations of the SG method.

The goal of this chapter is to develop an IQC approach which automates the analysis

of the SG method and its variants.

In this chapter, ik is always assumed to be sampled from a uniform distribution

in an IID manner. The underlying probability space for the sampling index ik is still

denoted as (Ω,F ,P). And Fk denotes the σ-algebra generated by (i1, i2, . . . , ik). Clearly,

ik is Fk-adapted and we obtain a filtered probability space (Ω,F , {Fk},P) which the

SG iteration is defined on. Given x0, the SG iteration (6.1) defines an Fn-predictable

process xk whose sample path is almost surely in `2e.

6.1 An IQC-Based Proof for Proposition 1

6.1.1 Stochastic Quadratic Constraints

We rewrite the SG method (6.1) as the following feedback interconnection:

xk+1 − x∗ = xk − x∗ − αwk

wk = ∇fik(xk)
(6.4)

where x∗ is a point satisfying ∇g(x∗) = 0. We want to analyze the term ‖xk − x∗‖2

for increasing k. It is crucial to construct quadratic constraints between (xk − x∗) and

wk. The assumption fi ∈ F(0,∞) provides known constraints between (xk − x∗) and

(wk −∇fik(x∗)) (Section 2.2). Moreover, the assumption on g and the fact ∇g(x∗) = 0

provide known constraints between (xk − x∗) and ∇g(xk). We can use the statistical

properties of ik to manipulate these constraints into the required quadratic constraints

between (xk − x∗) and wk. This is formally stated in the next lemma. These quadratic

constraints hold in the mean sense, and should be sufficiently useful when we want to

study E[‖xk − x∗‖2].

Lemma 19. Assume fi ∈ F(0,∞) for 1 ≤ i ≤ n. In addition, assume there exists

x∗ ∈ Rp satisfying ∇g(x∗) = 0 and Condition (6.2) holds. Suppose xk is an Fn-
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predictable process whose sample path is almost surely in `2e, and wk = ∇fik(xk). Then

for all k ≥ 0, we have

E

[xk − x∗
wk

]T [
−mIp Ip

Ip 0p

][
xk − x∗

wk

] ≥ 0 (6.5)

Proof. Since fi ∈ F(0,∞), the following inequality holds in the almost sure sense:[
xk − x∗

∇fi(xk)

]T [
0p

1
2Ip

1
2Ip 0p

][
xk − x∗

∇fi(xk)

]
≥ fi(xk)− fi(x∗) (6.6)

Notice ik and xk are independent. Moreover, xk is Fk−1-measurable. We have

E

[xk − x∗
wk

]T [
0p

1
2Ip

1
2Ip 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1


=

n∑
i=1

P(ik = i)

[
xk − x∗

∇fi(xk)

]T [
0p

1
2Ip

1
2Ip 0p

][
xk − x∗

∇fi(xk)

]

=
1

n

n∑
i=1

[
xk − x∗

∇fi(xk)

]T [
0p

1
2Ip

1
2Ip 0p

][
xk − x∗

∇fi(xk)

]

≥ 1

n

n∑
i=1

(fi(x
k)− fi(x∗)) = g(xk)− g(x∗)

(6.7)

This can be combined with Condition (6.2) to conclude:

E

[xk − x∗
wk

]T [
0p

1
2Ip

1
2Ip 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1

 ≥ m

2
‖xk − x∗‖2 (6.8)

Notice

m

2
‖xk − x∗‖2 = E

[m
2
‖xk − x∗‖2 |Fk−1

]
= E

[xk − x∗
wk

]T [
m
2 Ip 0p

0p 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1


Therefore, (6.8) can be rewritten as

E

[xk − x∗
wk

]T [
−m

2 Ip
1
2Ip

1
2Ip 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1

 ≥ 0 (6.9)
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Taking the full expectation of the above inequality leads to the desired conclusion (6.5).

Another useful quadratic constraint is posed by the condition ‖∇fi(xk)‖ ≤ c. This

condition leads to the fact that −‖∇fik(xk)‖2 ≥ −c2, and hence we have the following

quadratic constraint:

E

[xk − x∗
wk

]T [
0p 0p

0p −Ip

][
xk − x∗

wk

] ≥ −c2 (6.10)

There is a hidden energy term (−c2) in this constraint. Later we will see this hidden

energy can be viewed as a disturbance added into the dissipation inequality. The SG

method with a constant stepsize does not converge due to this disturbance term.

6.1.2 Recovery of Proposition 1

We will first state an IQC-based lemma and then use this lemma to recover the proof

of Proposition 1. In an IQC-based analysis, we always try to obtain some testing

conditions in the form of matrix inequalities. For analysis of the SG method, we derive

the following testing condition.

Lemma 20. Let xk be generated by the SG method (6.1). Assume fi ∈ F(0,∞) and

‖∇fi(xk)‖ ≤ c for all 1 ≤ i ≤ n. In addition, assume there exists x∗ ∈ Rp satisfying

∇g(x∗) = 0 and Condition (6.2) holds. If there exists λ1 ≥ 0, λ2 ≥ 0, and 0 < ρ2 ≤ 1

such that [
(1− ρ2) −α
−α α2

]
+ λ1

[
−m 1

1 0

]
+ λ2

[
0 0

0 −1

]
≤ 0 (6.11)

Then

E[‖xk − x∗‖2] ≤ ρ2k‖x0 − x∗‖2 +
λ2c

2

1− ρ2
(6.12)

Proof. It (6.11) holds, then we can use the property of the Kronecker product [12,

Section 4.2] to obtain the following inequality:([
(1− ρ2) −α
−α α2

]
+ λ1

[
−m 1

1 0

]
+ λ2

[
0 0

0 −1

])
⊗ Ip ≤ 0 (6.13)
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which is equivalent to[
(1− ρ2)Ip −αIp
−αIp α2Ip

]
+ λ1

[
−mIp Ip

Ip 0p

]
+ λ2

[
0p 0p

0p −Ip

]
≤ 0 (6.14)

We also have

‖xk+1 − x∗‖2 = ‖xk − x∗ − αwk‖2 =

[
xk − x∗

wk

]T [
Ip −αIp
−αIp α2Ip

][
xk − x∗

wk

]
(6.15)

Therefore, left and right multiply (6.14) by [(xk−x∗)T , (wk)T ] and [(xk−x∗)T , (wk)T ]T ,

and take full expectation to get

E[‖xk+1 − x∗‖2]− ρ2E[‖xk − x∗‖2]

+ λ1E

[ xk − x∗
∇fik(xk)

]T [
−mIp Ip

Ip 0p

][
xk − x∗

∇fik(xk)

]− λ2E[‖wk‖2] ≤ 0
(6.16)

Applying the constraints (6.5) and (6.10) to the above inequality, we can get:

E[‖xk+1 − x∗‖2]− ρ2E[‖xk − x∗‖2] ≤ λ2c
2 (6.17)

Equation (6.17) yields the following relation which completes the proof:

E[‖xk − x∗‖2] ≤ ρ2k‖x0 − x∗‖2 + λ2c
2
k−1∑
k0=0

ρ2k0 ≤ ρ2k‖x0 − x∗‖2 +
λ2c

2

1− ρ2

Notice the matrix inequality (6.11) is equivalent to:[
1− ρ2 − λ1m −α+ λ1

−α+ λ1 α2 − λ2

]
≤ 0 (6.18)

Therefore, Proposition 1 follows as a Corollary to Lemma 20 with the special choices of

λ2 = α2, λ1 = α, and ρ2 = 1− αm.

The SG iteration with a constant stepsize does not converge due to the hidden energy

term (−c2) in the constraint (6.10). Similarly, we should expect to use similar terms in

the study of other optimization methods which only converge to some tolerance level.

As we will demonstrate later, the IQC approach is powerful in automating analysis for

variants of the SG method.
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6.2 IQC Analysis for SG with General Cost Functions

Proposition 1 requires a strong boundedness condition ‖∇fi(xk)‖ ≤ c. This assump-

tion is considered unrealistic for many machine learning problems. In this section, we

will adapt the IQC analysis for a bigger class of cost functions. For example, we will

consider the case where fi ∈ F(0, L) and g ∈ F(m,L) with m > 0. This is the case for

most `2-regularized empirical risk minimization problems. We still consider the SG iter-

ation (6.1) with a constant α. We will develop quadratic constraints between (xk − x∗)
and wk under several relaxed assumptions on g and fi. Then we apply these constraints

to construct matrix inequalities for the analysis of the SG iterations.

6.2.1 A General Construction of Stochastic Quadratic Constraints

As commented in last section, the assumption on fi typically provides known constraints

between (xk − x∗) and (∇fi(xk)−∇fi(x∗)), while the assumption on g provides known

constraints between (xk − x∗) and ∇g(xk). Now we show how to convert these known

constraints into the required quadratic constraints between (xk − x∗) and wk.

Lemma 21. Suppose xk is an Fn- predictable process whose sample path is almost

surely in `2e, and wk = ∇fik(xk). Let the symmetric matrices Q ∈ Rp×p, S ∈ Rp×p,
and R ∈ Rp×p be given. Moreover, x∗ ∈ Rp satisfies ∇g(x∗) = 0.

1. Assume the following constraint between (xk−x∗) and ∇g(xk) holds almost surely:[
xk − x∗

∇g(xk)

]T [
Q S

ST 0p

][
xk − x∗

∇g(xk)

]
≥ 0 (6.19)

Then for all k ≥ 0, the following constraint holds:

E

[xk − x∗
wk

]T [
Q S

ST 0p

][
xk − x∗

wk

] ≥ 0 (6.20)

2. Assume the following constraint between (xk−x∗) and
(
∇fi(xk)−∇fi(x∗)

)
holds

almost surely:[
xk − x∗

∇fi(xk)−∇fi(x∗)

]T [
Q S

ST −R

][
xk − x∗

∇fi(xk)−∇fi(x∗)

]
≥ 0 (6.21)
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where R is positive semidefinite. Then for all k ≥ 0, we have

E

[xk − x∗
wk

]T [
2Q 2S

2ST −R

][
xk − x∗

wk

] ≥ − 2

n

n∑
i=1

(∇fi(x∗))TR∇fi(x∗) (6.22)

Proof. To prove Statement 1, first notice ik and xk are independent. Moreover, xk is

Fk−1-measurable. We have

E

[xk − x∗
wk

]T [
Q S

ST 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1


=

n∑
i=1

P(ik = i)

[
xk − x∗

∇fi(xk)

]T [
Q S

ST 0p

][
xk − x∗

∇fi(xk)

]

=
1

n

n∑
i=1

[
xk − x∗

∇fi(xk)

]T [
Q S

ST 0p

][
xk − x∗

∇fi(xk)

]

=

[
xk − x∗

∇g(xk)

]T [
Q S

ST 0p

][
xk − x∗

∇g(xk)

]
(6.23)

The last step relies on the following fact:

1

n

n∑
i=1

(xk − x∗)TS∇fi(xk) = (xk − x∗)TS

(
1

n

n∑
i=1

∇fi(xk)

)
= (xk − x∗)TS∇g(xk)

(6.24)

Hence the constraint (6.19) can be combined with (6.23) to show:

E

[xk − x∗
wk

]T [
Q S

ST 0p

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1

 ≥ 0 (6.25)

We can complete the proof of Statement 1 by taking the full expectation of the above

inequality.

To prove Statement 2, we first obtain:

E

[xk − x∗
wk

]T [
2Q 2S

2ST −R

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1


=

1

n

n∑
i=1

[
xk − x∗

∇fi(xk)

]T [
2Q 2S

2ST 0p

][
xk − x∗

∇fi(xk)

]
− 1

n

n∑
i=1

‖∇fi(xk)‖2R

(6.26)
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where ‖x‖2R = xTRx, which is the R-weighted `2 seminorm. Notice

1

n

n∑
i=1

(xk − x∗)TS∇fi(x∗) = (xk − x∗)TS

(
1

n

n∑
i=1

∇fi(x∗)

)
= 0 (6.27)

Hence the first term on the right side of (6.26) is equal to the following term

1

n

n∑
i=1

[
xk − x∗

∇fi(xk)−∇fi(x∗)

][
2Q 2S

2ST 0p

][
xk − x∗

∇fi(xk)−∇fi(x∗)

]
(6.28)

By the constraint condition (6.21), we know the above term is greater than or equal to
2
n

∑n
i=1 ‖(∇fi(xk)−∇fi(x∗)‖2R. Hence (6.26) leads to the following inequality:

E

[xk − x∗
wk

]T [
2Q 2S

2ST −R

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1


≥ 1

n

n∑
i=1

(
2‖(∇fi(xk)−∇fi(x∗)‖2R − ‖∇fi(xk)‖2R

) (6.29)

By the triangle inequality, we have

‖∇fi(xk)‖R ≤ ‖∇fi(xk)−∇fi(x∗)‖R + ‖∇fi(x∗)‖R (6.30)

Therefore, the following holds

‖∇fi(xk)‖2R ≤ 2(‖∇fi(xk)−∇fi(x∗)‖2R + ‖∇fi(x∗)‖2R) (6.31)

The above inequality can be combined with (6.29) to show

E

[xk − x∗
wk

]T [
2Q 2S

2ST −R

][
xk − x∗

wk

] ∣∣∣∣∣∣ Fk−1

 ≥ − 2

n

n∑
i=1

‖∇fi(x∗)‖2R (6.32)

Taking the full expectation leads to the desired conclusion.

Now we can use the above result to construct corresponding stochastic quadratic

constraints between (xk − x∗) and wk under various assumptions on fi and g. We

summarize several useful constraints between (xk − x∗) and wk in next lemma.

Lemma 22. Assume x∗ ∈ Rp satisfies ∇g(x∗) = 0. Suppose xk is an Fn- predictable

process whose sample path is almost surely in `2e, and wk = ∇fik(xk).
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1. If g ∈ F(m,∞), then

E

[xk − x∗
wk

]T [
−2mIp Ip

Ip 0p

][
xk − x∗

wk

] ≥ 0 (6.33)

2. If fi has L-smooth gradients, then

E

[xk − x∗
wk

]T [
2L2Ip 0p

0p −Ip

][
xk − x∗

wk

] ≥ − 2

n

n∑
i=1

‖∇fi(x∗)‖2 (6.34)

3. If fi ∈ F(0, L), then

E

[xk − x∗
wk

]T [
0p LIp

LIp −Ip

][
xk − x∗

wk

] ≥ − 2

n

n∑
i=1

‖∇fi(x∗)‖2 (6.35)

4. If fi ∈ F(m,L), then

E

[xk − x∗
wk

]T [
−2mLIp (L+m)Ip

(L+m)Ip −Ip

][
xk − x∗

wk

] ≥ − 2

n

n∑
i=1

‖∇fi(x∗)‖2

(6.36)

Proof. This lemma follows as a consequence of Lemma 21 and known quadratic inequal-

ities in Chapter 2. The details are omitted.

It is worth mentioning that Statement 2 in the above lemma works for even non-

convex fi. In addition, Statement 1 of the above lemma also holds for non-convex g

with gradients in the sector [m,∞), although we stated the result assuming the strong

convexity on g.

6.2.2 Analysis Results

Now we formulate an LMI condition for general analysis of the SG method.

Lemma 23. Suppose x∗ ∈ Rp satisfies ∇g(x∗) = 0. Let xk be generated by the SG

method (6.1) with a constant stepsize α. Assume for each k, (xk − x∗) and wk satisfy
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the quadratic constraints:

E

[xk − x∗
wk

]T
(Mj ⊗ Ip)

[
xk − x∗

wk

] ≥ −c2
j (6.37)

where Mj = MT
j ∈ R2×2 and cj ∈ R for j = 1, . . . , NJ . If there exists λj ≥ 0 for all j

and 0 < ρ2 ≤ 1 such that [
(1− ρ2) −α
−α α2

]
+

NJ∑
j=1

λjMj ≤ 0 (6.38)

Then

E[‖xk − x∗‖2] ≤ ρ2k‖x0 − x∗‖2 +
1

1− ρ2

NJ∑
j=1

λjc
2
j (6.39)

Proof. It (6.38) holds, then we can use the property of the Kronecker product [12,

Section 4.2] to obtain the following inequality:[(1− ρ2) −α
−α α2

]
+

NJ∑
j=1

λjMj

⊗ Ip ≤ 0 (6.40)

which is equivalent to[
(1− ρ2)Ip −αIp
−αIp α2Ip

]
+

NJ∑
j=1

λj(Mj ⊗ Ip) ≤ 0 (6.41)

Left and right multiply (6.41) by [(xk − x∗)T , (wk)T ] and [(xk − x∗)T , (wk)T ]T , and

take full expectation to get

E[‖xk+1 − x∗‖2]− ρ2E[‖xk − x∗‖2] +

NJ∑
j=1

λjE

[xk − x∗
wk

]T
(Mj ⊗ Ip)

[
xk − x∗

wk

] ≤ 0

(6.42)

Applying the constraint conditions (6.37) to the above inequality, we can get:

E[‖xk+1 − x∗‖2]− ρ2E[‖xk − x∗‖2] ≤
NJ∑
j=1

λjc
2
j (6.43)
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Equation (6.43) yields the following relation which completes the proof:

E[‖xk − x∗‖2] ≤ ρ2k‖x0 − x∗‖2 +

 k−1∑
k0=0

ρ2k0

NJ∑
j=1

λjc
2
j


≤ ρ2k‖x0 − x∗‖2 +

∑NJ
j=1 λjc

2
j

1− ρ2

Notice (6.38) is linear in λj and ρ2, yielding an LMI condition when α is given. This

LMI has a simple form and can be solved analytically. This leads to the following result.

Theorem 8. Assume x∗ ∈ Rp satisfies ∇g(x∗) = 0.

1. If g ∈ F(m,∞) with m > 0, and ‖∇fi(xk)‖ ≤ c for all xk generated by (6.1) and

all i, then the sequence xk generated by the SG method (6.1) with 0 ≤ α ≤ 1
2m

satisfies

E[‖xk − x∗‖2] ≤ (1− 2αm)k ‖x0 − x∗‖2 +
αc2

2m
. (6.44)

2. If the gradients of fi are L-smooth, and g ∈ F(m,L) with m > 0, then the sequence

xk generated by the SG method (6.1) with 0 ≤ α ≤ m
L2 satisfies

E[‖xk − x∗‖2] ≤ (1− 2mα+ 2L2α2)k‖x0 − x∗‖2 +
α

(m− L2α)n

n∑
i=1

‖∇fi(x∗)‖2

(6.45)

3. If fi ∈ F(0, L) and g ∈ F(m,L) with m > 0, then the sequence xk generated by

the SG method (6.1) with 0 ≤ α ≤ 1
L satisfies

E[‖xk − x∗‖2] ≤ (1− 2mα+ 2mLα2)k‖x0 − x∗‖2 +
α

m(1− Lα)n

n∑
i=1

‖∇fi(x∗)‖2

(6.46)

4. If fi ∈ F(m,L) and g ∈ F(m,L) with m > 0, then the sequence xk generated by

the SG method (6.1) with 0 ≤ α ≤ 1
L+m satisfies

E[‖xk − x∗‖2] ≤ (1− 2mα+ 2m2α2)k‖x0 − x∗‖2 +
α

m(1−mα)n

n∑
i=1

‖∇fi(x∗)‖2

(6.47)
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Proof. The proof of the above theorem is based on a direction combination of Lemma 22

and Lemma 23. To prove Statement 1, we are using the constraints (6.33) and (6.10).

Hence we set M1 =

[
−2m 1

1 0

]
, c1 = 0, M2 =

[
0 0

0 −1

]
, and c2 = c. The matrix

inequality (6.38) becomes[
(1− ρ2) −α
−α α2

]
+ λ1

[
−2m 1

1 0

]
+ λ2

[
0 0

0 −1

]
≤ 0 (6.48)

We can choose λ1 = α, λ2 = α2, and ρ2 = 1 − 2mα to make the left side of the

above inequality to be the zero matrix. This choice of parameters leads to the desired

conclusion.

To prove Statement 2, we require the constraints (6.33) and (6.34). Hence we set

M1 =

[
−2m 1

1 0

]
, c1 = 0, M2 =

[
2L2 0

0 −1

]
, and c2

2 = 2
n

∑n
i=1 ‖∇fi(x∗)‖2. The matrix

inequality (6.38) becomes[
(1− ρ2) −α
−α α2

]
+ λ1

[
−2m 1

1 0

]
+ λ2

[
2L2 0

0 −1

]
≤ 0 (6.49)

We can choose λ1 = α, λ2 = α2, and ρ2 = 1− 2mα+ 2L2α2 to make the left side of the

above inequality to be the zero matrix. This choice of parameters leads to the desired

conclusion.

To prove Statement 3, we require the constraints (6.33) and (6.35). Hence we set

M1 =

[
−2m 1

1 0

]
, c1 = 0, M2 =

[
0 L

L −1

]
, and c2

2 = 2
n

∑n
i=1 ‖∇fi(x∗)‖2. The matrix

inequality (6.38) becomes[
(1− ρ2) −α
−α α2

]
+ λ1

[
−2m 1

1 0

]
+ λ2

[
0 L

L −1

]
≤ 0 (6.50)

We can choose λ1 = α − α2L, λ2 = α2, and ρ2 = 1 − 2mα + 2mLα2 to make the left

side of the above inequality to be the zero matrix. This choice of parameters leads to

the desired conclusion.

To prove Statement 4, we require the constraints (6.33) and (6.36). Hence we set

M1 =

[
−2m 1

1 0

]
, c1 = 0, M2 =

[
−2mL L+m

L+m −1

]
, and c2

2 = 2
n

∑n
i=1 ‖∇fi(x∗)‖2. The
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matrix inequality (6.38) becomes[
(1− ρ2) −α
−α α2

]
+ λ1

[
−2m 1

1 0

]
+ λ2

[
2mL L+m

L+m −1

]
≤ 0 (6.51)

We can choose λ1 = α− α2(L+m), λ2 = α2, and ρ2 = 1− 2mα+ 2m2α2 to make the

left side of the above inequality to be the zero matrix. Since λ1 ≥ 0, we have α ≤ 1
L+m .

This choice of parameters leads to the desired conclusion.

Now we compare the above results to existing results. Statement 1 of the above

theorem does not require fi to be convex, and hence can be viewed as an extension

of Proposition 1. We compare Statements 2 and 3 with [62, Theorem 2]. One can

set τmax = 0 and θ = 1 in [62, Theorem 2] and show that the SG iteration with the

conditions fi ∈ F(0, L) and g ∈ F(m,L) satisfies:

E[g(xk)]− g(x∗) ≤ (1− 2mα+ 2L2α2)k(g(x0)− g(x∗)) +
αL

2(m− L2α)n

n∑
i=1

‖∇fi(x∗)‖2

Notice g(xk)− g(x∗) ≤ L
2 ‖x

k − x∗‖2. Hence Statement 2 in Theorem 8 leads to

E[g(xk)]− g(x∗) ≤ (1− 2mα+ 2L2α2)k
‖x0 − x∗‖2L

2
+

αL

2(m− L2α)n

n∑
i=1

‖∇fi(x∗)‖2

Hence both the convergence rate and the tolerance level in [62, Theorem 2] and State-

ment 2 of Theorem 8 match up. However, Statement 2 of Theorem 8 does not require fi

to be convex while the proof of [62, Theorem 2] relies on the convexity of fi (see Section

6.1 in [62]). When fi is further assumed to be convex, we can get Statement 3 in the

above theorem, which allows a larger step size compared with Statement 2. Finally,

when fi is assumed to be strongly-convex, the result is strengthened as Statement 4 in

Theorem 8, which gives better rates and smaller error terms for α ≤ 1
L+m . We can now

see the benefit of the quadratic constraint approach. Specifically, this approach clarifies

the precise assumptions required to obtain a certain result. Moreover, the analysis is

highly automated. Once the stochastic quadratic constraints between (xk − x∗) and

wk are derived, we can apply Lemma 23 to formulate a related matrix inequality in an

automated manner. In Section 6.3, we will show how this analysis can be automated
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for the case where the SG method uses a gradient computation subject to relative de-

terministic noise. In Section 6.4, we further show how to perform similar analysis for

variants of the SG method.

Notice the testing condition (6.38) is not linear in α. Actually Shur complements

can be used to rewrite (6.38) as an equivalent LMI condition which is linear in ρ2, λj

and α at the same time. See Equation (4.8) in [12] for the related transformation tricks.

6.3 Robustness of SG with respect to Deterministic Noise

Now we consider the following noisy SG iteration:

xk+1 = xk − α(Ip + δk)∇fik(xk) (6.52)

where ik is uniformly sampled from N , and δk = diag(δk1 , . . . , δ
k
p) with δkj ∈ R represents

the relative deterministic noise ratio at the j-th direction of the gradient. We assume

|δkj | ≤ δ where δ quantifies the noise level. When the gradient computation is accurate,

we expect to have small noise level, i.e. δ ≤ 0.01. If the gradient computation is

inaccurate, then we have large δ. Now we define εk := δk∇fik(xk) and obtain the

following feedback interconnection:

xk+1 − x∗ = xk − x∗ − αwk − αεk

wk = ∇fik(xk)

εk = δkwk

(6.53)

where x∗ ∈ Rp satisfies ∇g(x∗) = 0. Notice ‖ε‖2 ≤ δ2‖wk‖2. This can be rewritten as a

constraint:

E



xk − x∗

wk

εk


T 

0p 0p 0p

0p δ2Ip 0p

0p 0p −Ip



xk − x∗

wk

εk


 ≥ 0 (6.54)

The above type of constraints are very useful in the analysis of noisy SG iterations.

Now we are ready to derive the analysis condition for the noisy SG iteration (6.52).
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Lemma 24. Suppose x∗ ∈ Rp satisfies ∇g(x∗) = 0. Let xk be generated by the noisy

SG iteration (6.52). Assume for each k, the following quadratic constraints hold:

E



xk − x∗

wk

εk


T

(Mj ⊗ Ip)


xk − x∗

wk

εk


 ≥ −c2

j (6.55)

where Mj = MT
j ∈ R3×3 and cj ∈ R for j = 1, . . . , NJ . If there exists λj ≥ 0 for all j

and 0 < ρ2 ≤ 1 such that 
1− ρ2 −α −α
−α α2 α2

−α α2 α2

+

NJ∑
j=1

λjMj ≤ 0 (6.56)

then

E[‖xk − x∗‖2] ≤ ρ2k‖x0 − x∗‖2 +
1

1− ρ2

NJ∑
j=1

λjc
2
j (6.57)

Proof. Define the Lyapunov function V k = ‖xk − x∗‖2. Notice the following holds

‖xk+1 − x∗‖2 = ‖xk − x∗ − αwk − αεk‖2

=


xk − x∗

wk

εk


T 

Ip −αIp −αIp
−αIp α2Ip α2Ip

−αIp α2Ip α2Ip



xk − x∗

wk

εk


Since (6.56) holds, we have


1− ρ2 −α −α
−α α2 α2

−α α2 α2

+

NJ∑
j=1

λjMj

⊗ Ip ≤ 0 (6.58)

Left and right multiply the above inequality by [(xk−x∗)T , (wk)T , (εk)T ] and [(xk−
x∗)T , (wk)T , (εk)]T , and take full expectation to get

E[V k+1]− ρ2E[V k] +

NJ∑
j=1

λjE



xk − x∗

wk

εk


T

(Mj ⊗ Ip)


xk − x∗

wk

εk


 ≤ 0 (6.59)
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Applying the constraint conditions (6.55) to the above inequality, we can get:

E[V k+1]− ρ2E[V k] ≤
NJ∑
j=1

λjc
2
j (6.60)

Equation (6.60) yields the following relation:

E[V k] ≤ ρ2kV 0 +

 k−1∑
k0=0

ρ2k0

NJ∑
j=1

λjc
2
j

 ≤ ρ2kV 0 +

∑NJ
j=1 λjc

2
j

1− ρ2

This completes the proof.

Notice any quadratic constraint on (xk−x∗) and wk can be rewritten as a constraint

in the form of (6.55) by lifting the Mj matrix with extra zeros. Hence Lemma 22

can be used to construct (6.55) under various assumptions. The constraint (6.54) is

always required in the analysis since the noise level δ is embedded into the analysis by

this constraint. It is not straightforward to derive analytical bounds using the matrix

inequality (6.56). For a fixed α, the testing condition (6.56) is an LMI which can be

numerically checked. Hence the above lemma provides a computable condition which

quantifies the convergence properties of the noisy SG iterations.

Again, (6.56) is only linear in ρ2 and λj . However, it is not linear in α. The trick

in [12, Section 4.4] can be used to transform (6.56) into an equivalent LMI which is

linear in (ρ2, λj , α) at the same time.

6.4 A General Analysis Framework for Variants of SG

This section presents a general analysis condition for variants of the SG method. In

principle, every optimization method with the feedback interconnection form (2.51) has

a stochastic variant:

ξ̄k+1 = Aξ̄k +Bw̄k

v̄k = Cξ̄k +Dw̄k

w̄k = ∇fik(v̄k)

(6.61)
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where ik is uniformly sampled from N in an IID manner. For example, the stochastic

variant of Nesterov’s accelerated method uses the iteration:

xk+1 = ζk − α∇fik(ζk)

ζk = (1 + β)xk − βxk−1
(6.62)

This iteration can be cast in the form of (6.61) by setting A =
[

1+β −β
1 0

]
⊗ Ip, B =[−α

0

]
⊗ Ip, C = [ 1+β −β ]⊗ Ip, D = 0p, ξ̄

k =
[

xk

xk−1

]
, and v̄ = ζk.

Again, let x∗ be one point satisfying ∇g(x∗) = 0. Similar to the discussion in

Section 2.10, the equilibrium for v̄k is set to be x∗. The equilibrium of the state ξ̄k is

set as ξ∗ = enξ/p ⊗ x
∗. Hence Aξ∗ = ξ∗ and Cξ∗ = x∗. Then, (6.61) can be written as

ξ̄k+1 − ξ∗ = A(ξ̄k − ξ∗) +Bw̄k

v̄k − x∗ = C(ξ̄k − ξ∗) +Dw̄k

w̄k = ∇fik(v̄k)

(6.63)

Lemma 22 can be used to construct quadratic constraints on (v̄k − x∗) and w̄k. Then

we can extend Lemma 23 to the following general analysis condition.

Lemma 25. Suppose x∗ ∈ Rp satisfies ∇g(x∗) = 0. Suppose the stochastic optimization

method is described by the feedback model (6.61). Assume for each k, (v̄k − x∗) and w̄k

satisfy the quadratic constraints:

E

[v̄k − x∗
w̄k

]T
(Mj ⊗ Ip)

[
v̄k − x∗

w̄k

] ≥ −c2
j (6.64)

where Mj = MT
j and cj ∈ R for j = 1, . . . , NJ .

1. If there exists λj ≥ 0 for all j and 0 < ρ2 ≤ 1 such that[
ATPA− ρ2P ATPB

BTPA BTPB

]
+

NJ∑
j=1

λj

[
CT 0p

DT Ip

]
(Mj ⊗ Ip)

[
C D

0p Ip

]
≤ 0 (6.65)

Then

E[‖ξ̄k − ξ∗‖2] ≤ cond(P )ρ2k‖ξ̄0 − ξ∗‖2 +
1

cL(1− ρ2)

NJ∑
j=1

λjc
2
j (6.66)

where cL is the smallest eigenvalue of P .



109

2. Suppose D = 0. If there exists λj ≥ 0 for all j and 0 < ρ2 ≤ 1 such that[
ATCTCA− ρ2CTC ATCTCB

BTCTCA BTCTCB

]
+

NJ∑
j=1

λj

[
CT 0p

DT Ip

]
(Mj ⊗ Ip)

[
C D

0p Ip

]
≤ 0

(6.67)

Then

E[‖v̄k − x∗‖2] ≤ ρ2k‖v̄0 − x∗‖2 +
1

1− ρ2

NJ∑
j=1

λjc
2
j (6.68)

Proof. To prove Statement 1, define the Lyapunov function V k = (ξ̄k− ξ∗)TP (ξ̄k− ξ∗).
Left and right multiply (6.65) by [(ξ̄k− ξ∗)T , (w̄k)T ] and [(ξ̄k− ξ∗)T , (w̄k)T ]T , and take

full expectation to get

E[V k+1]− ρ2E[V k] +

NJ∑
j=1

λjE

[v̄k − x∗
w̄k

]T
(Mj ⊗ Ip)

[
v̄k − x∗

w̄k

] ≤ 0 (6.69)

Applying the constraint conditions (6.64) to the above inequality, we can get:

E[V k+1]− ρ2E[V k] ≤
NJ∑
j=1

λjc
2
j (6.70)

Hence, we have

E[V k] ≤ ρ2kV 0 +

 k−1∑
k0=0

ρ2k0

NJ∑
j=1

λjc
2
j

 ≤ ρ2kV 0 +

∑NJ
j=1 λjc

2
j

1− ρ2

Statement 1 follows as a direct consequence of the above inequality.

The proof of Statement 2 is very similar. We can define a Lyapunov function V k =

‖v̄k − x∗‖2 = (ξ̄k − ξ∗)TCTC(ξ̄k − ξ∗) and then construct a dissipation inequality. The

details are omitted here.

Statement 2 has the advantage that the error term does not depend on the matrix

P . The dimensions of the above analysis conditions can be reduced if A, B, C, and

D are Kronecker products of some small matrices and Ip. See Lemma 5, Remark 2

and [12, Section 4.2] for similar dimension reduction arguments.



Chapter 7

Conclusions and Future Work

In this dissertation, we tailor the integral quadratic constraint approach from the robust

control theory to formulate numerically tractable LMI conditions for linear rate analysis

of various deterministic and stochastic first-order optimization methods. Chapter 3

presents a J-spectral factorization approach for hard IQC constructions. We also apply

this J-spectral factorization to prove a modified dissipation inequality that requires

neither non-negative storage functions nor hard IQCs. The key result of Chapter 4 is a

GEVP formulation for analysis of deterministic optimization methods (gradient descent,

Nesterov’s accelerated method, etc). The GEVP is derived using a new soft Zames-Falb

IQC and the modified dissipation inequality. In Chapter 5, we combine IQCs with

jump system theory to formulate LMI conditions for linear rate analysis of the SAG

method and its variants (SAGA, etc) with uniform or non-uniform sampling strategies.

Finally, we develop averaged quadratic constraints and formulate LMI testing conditions

to analyze the SG method under different conditions (Chapter 6).

The key idea of this dissertation is that IQCs provide a unified framework to au-

tomate analysis of various optimization methods whose iterations rules may look quite

different. We briefly comment on several future directions along the path of this disser-

tation.

Sublinear rate analysis and non-quadratic Lyapunov functions: This dis-

sertation focuses on the case where the objective function is strongly-convex, and hence

only considers linear rate analysis. The IQC approach can be extended to formulate

110
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LMI conditions for sublinear rate analysis of optimization methods when the objective

function is not strongly convex. This extension requires including the objective function

as hidden energy in the IQCs. Using this type of constraints, the resultant Lyapunov

function in the dissipation inequality is a sum of two terms. The first term is quadratic,

and the second term is related to the objective function itself. A detailed treatment of

the IQC-based sublinear rate analysis will be presented in future work.

Averaged Zames-Falb multipliers: In Chapter 6, we extend the sector bound

constraints to stochastically averaged quadratic constraints which hold pointwise in

time. It is possible to extend the Zames-Falb IQCs in a similar manner. Such extensions

could be important for the analysis of the stochastic variant of Nesterov’s accelerated

method.

Control synthesis perspectives on stochastic optimization: SAG and SG

have similar iteration costs. However, SAG requires a large memory size while SG

converges linearly only up to a tolerance level. It is interesting to investigate how

to design optimization methods which require less memory than SAG and are more

accurate than the SG method. It is possible that the stochastic optimization design

problems can be cast as control synthesis problems.

Other nonlinear control tools for machine learning applications: This dis-

sertation adapts tools from robust control theory. However, there exist many other

nonlinear control tools (adaptive control [90, 91], sliding mode control [92–94], model

predictive control [95, 96], etc), which may be tailored for machine learning problems.

Notice there are several types of loss functions which have been frequently used in ma-

chine learning problems. It can be beneficial to exploit the detailed information of these

loss functions [97]. Nonlinear control tools may be suitable for this task.

ADMM with multiple blocks: The alternating direction method of multipliers

(ADMM) [98] is an important distributed optimization algorithm. There are some

initial convergence results on ADMM with multiple blocks [99–101]. The quantification

of the convergence rates of ADMM with multiple blocks remains an open topic. IQCs

have been successfully applied to analyze ADMM with two blocks [18]. The extension

of IQC analysis for ADMM with multiple blocks is an important future task. It is
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also interesting to investigate how to adapt IQC analysis for block ordinate descent

methods [102,103].

Analytic proofs: One drawback of the LMI method in this dissertation is that

there is numerical error embedded in the results if the LMIs are checked numerically.

It will be useful if one can provide mathematical proofs for the convergence rates by

constructing analytical solutions to the semidefinite programs in this dissertation. We

present such proofs in the analysis of the SG method. However, it remains an open

question how to systematically construct mathematical proofs for more complicated

optimization schemes.

Other stepsize rules: Only constant stepsize is considered in this dissertation.

Tailoring IQCs for other stepsize (backtracking line search [104], etc) is an interesting

future task.

Proximal gradient: Non-smooth regularizers have been widely used in machine

learning problems. To address the non-smoothness issue, proximal gradient methods

have been proposed in both deterministic [97, 105] and stochastic [106] cases. In the

deterministic setup, the proximal operator has been successfully included in the IQC

analysis [12]. It will be interesting to modify the IQC analysis for proximal variants of

stochastic optimization methods.

Analysis for SDCA and SVRG: It will be interesting to generalize the IQC anal-

ysis for the stochastic dual coordinate ascent (SDCA) method [107] and the stochastic

variance reduced gradient (SVRG) method [108]. Such generalizations may require more

advanced system theory other than the jump system theory.

Non-convex objective functions: The IQC approach may be used to analyze

the convergence properties of optimization methods when the objective function is non-

convex. One particular interesting direction is the IQC analysis of the SG method

when applied to deep learning problems [109] The constructions of IQCs for non-convex

functions can be case dependent. One may need to develop a new IQC library for the

gradients of various non-convex functions used in practice.

Asynchronous settings: In distributed optimization, the algorithm performance

will typically be impacted by the communication delay and memory contention. In this
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case, it is necessary to assess the robustness of the optimization methods with respect

to the time-varying delays in the gradient update. As reviewed in Section 2.11.5, there

exist many IQCs for time-varying delays in the controls literature [42,43,45,46]. These

IQCs can be potentially used to analyze asynchronous optimization schemes [110,111].

Derivative Free Method: It is interesting to investigate how to apply IQCs for

analysis of zero-order or derivative free methods [112].

Expected Risk Minimization: In this dissertation, we mainly focus on the em-

pirical risk minimization problems. An important class of problems that we have not

considered is the expected risk minimization. For such type of problems, each data block

can only be accessed once, and the optimization objective is to minimize the expected

risk under further statistical assumptions on how the empirical data is sampled. It is

interesting to investigate the applicability of dynamic system theory for such problems.

Connection between Continuous-time Systems and Optimization Schemes:

A continuous-time viewpoint may also be valuable for optimization research, although

it is natural to study optimization schemes as discrete-time systems. Recently there

is an interesting paper which studies the acceleration of optimization methods using

the discretization theory of continuous-time systems [113]. It is also possible that one

can tailor the existing results from the optimization field to obtain new solutions for

research problems related to nonlinear continuous-time systems.



References

[1] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge University Press, 2014.

[2] A. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics, 12(1):55–67, 1970.

[3] B. Schölkopf and C. Burges. Advances in kernel methods: support vector learning.

MIT press, 1999.

[4] A. Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance.

In Proceedings of the twenty-first international conference on Machine learning,

page 78. ACM, 2004.

[5] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[6] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foun-

dations of Computational mathematics, 9(6):717–772, 2009.

[7] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and

Trends R© in Machine Learning, 8(3-4):231–357, 2015.

[8] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press,

2004.

[9] C. Teo, A. Smola, S. Vishwanathan, and Q. Le. A scalable modular convex

solver for regularized risk minimization. In Proceedings of the 13th ACM SIGKDD

114



115

international conference on Knowledge discovery and data mining, pages 727–736,

2007.

[10] Y. Lee and O. Mangasarian. Ssvm: A smooth support vector machine for classi-

fication. Computational optimization and Applications, 20(1):5–22, 2001.

[11] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.

Kluwer Academic Publishers, 2003.

[12] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization

algorithms via integral quadratic constraints. SIAM Journal on Optimization,

26(1):57–95, 2016.

[13] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. 2010.

[14] N. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an ex-

ponential convergence rate for strongly-convex optimization with finite training

sets. In Advances in Neural Information Processing Systems, 2012.

[15] M. Schmidt, N. Roux, and F. Bach. Minimizing finite sums with the stochastic

average gradient. ArXiv preprint, 2013.

[16] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. In Advances

in Neural Information Processing Systems, 2014.

[17] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex

minimization: a novel approach. Mathematical Programming, 145(1-2):451–482,

2014.

[18] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan. A general analysis

of the convergence of ADMM. In Proceedings of the 32nd International Conference

on Machine Learning, pages 343–352, 2015.

[19] A. Megretski and A. Rantzer. System analysis via integral quadratic constraints.

IEEE Transactions on Automatic Control, 42:819–830, 1997.



116

[20] J. Carrasco, M.C. Turner, and W.P. Heath. Zames-falb multipliers for absolute

stability: from osheas contribution to convex searches. In European Control Con-

ference, pages 1261–178, 2015.

[21] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,

1996.

[22] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John Wiley

and Sons, Chichester, 2005.

[23] G. Zames and P.L. Falb. Stability conditions for systems with monotone and

slope-restricted nonlinearities. SIAM Journal of Control, 6(1):89–108, 1968.

[24] U. Jönsson. A nonlinear Popov criterion. In IEEE Conf. on Decision and Control,

pages 3523–3527, 1997.

[25] J. Veenman and C. Scherer. Stability analysis with integral quadratic constraints:

A dissipativity based proof. In IEEE Conf. on Decision and Control, pages 3770–

3775, 2013.

[26] P. Seiler. Stability analysis with dissipation inequalities and integral quadratic

constraints. IEEE Transactions on Automatic Control, 60(6):1704–1709, 2015.

[27] J.C. Willems. Dissipative dynamical systems part i: General theory. Archive for

Rational Mech. and Analysis, 45(5):321–351, 1972.

[28] J.C. Willems. Dissipative dynamical systems part ii: Linear systems with

quadratic supply rates. Archive for Rational Mech. and Analysis, 45(5):352–393,

1972.

[29] R. Boczar, L. Lessard, and B. Recht. Exponential convergence bounds using

integral quadratic constraints. In IEEE Conf. on Decision and Control, pages

7516–7521, 2015.

[30] M. Corless and G. Leitmann. Bounded controllers for robust exponential conver-

gence. Journal of Optimization Theory and Applications, 76(1):1–12, 1993.



117
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Appendix A

IQC Multipliers and DARE

Stabilizing Solutions

This appendix presents one key lemma stating that if Π satisfies the Strict-PN con-

dition then there exists a stabilizing solution to a related DARE. The multiplier Π is

assumed to be bounded on the unit circle but can, in general, be non-proper. Moreover,

the feedthrough matrix can be singular. Hence the proof requires descriptor system

notation and matrix pencil techniques to resolve both these issues. Some background

on descriptor form and matrix pencil techniques can be found in [34, 114–116]. The

proof in this appendix also relies on the connection between the invariant subspace of a

Hamiltonian matrix and its related Riccati equation. A summary of the developments

on this connection can be found in [115, Section III].

A few basic facts regarding descriptor form are provided before stating and proving

the lemma. Consider a discrete-time system H in descriptor form:

Eξk+1 = Aξk +Buk

yk = Cξk +Duk
(A.1)

This system has the transfer function H(z) := C(zE−A)−1B+D. The matrix inversion

lemma can be used to show H∼(z) = −zBT (zAT −ET )−1CT +DT . Thus H∼ has the
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following descriptor representation:

AT ξk+1 = ET ξk − CTuk

yk = BT ξk+1 +DTuk
(A.2)

Next, a descriptor realization for H−1(z) is[
E 0

0 0

]
ξk+1
in =

[
A B

C D

]
ξkin +

[
0

−I

]
yk

uk =
[
0 I

]
ξkin

(A.3)

where ξin := [ξT uT ]T is the state of the inverse system H−1.

These facts are used to construct the required descriptor representations for the

multiplier Π and its inverse Π−1. Let Π = Ψ∼MΨ be any factorization with Ψ statble.

Define Q := CTψMCψ, S := CTψMDψ and R := DT
ψMDψ where (Aψ, Bψ, Cψ, Dψ) are

the state matrices of Ψ. A descriptor representation for Π is given by:

Eπξ
k+1
π = Aπξ

k
π +Bπu

k

yk = Cπξ
k
π +Dπu

k
(A.4)

where ξπ ∈ R2nψ is the state of Π and the descriptor matrices are defined as:

Eπ :=

[
I 0

0 ATψ

]
,

[
Aπ Bπ

Cπ Dπ

]
:=


Aψ 0 Bψ

−Q I −S
ST zBT

ψ R

 (A.5)

Notice Cπ = [ ST zBTψ ] and hence yk in (A.4) partially depends on ξk+1
π . This is similar

to Equation (A.2).

A descriptor representation for Π−1 is given by:

Einξ
k+1
in = Ainξ

k
in +Biny

k

uk = Cinξ
k
in +Diny

k
(A.6)

where ξin := [ξTπ , u
T ]T ∈ R2nψ+(nv+nw) is the state of Π−1 and the matrices are defined

as:

Ein :=


I 0 0

0 ATψ 0

0 −BT
ψ 0

 ,
[
Ain Bin

Cin Din

]
:=


Aψ 0 Bψ 0

−Q I −S 0

ST 0 R −I
0 0 I 0

 (A.7)
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It is emphasized that the filter Ψ is proper but the descriptor notation is required

because Aψ and/or R may be singular. In particular, if Aψ is singular then Ψ∼ (and

hence Π) is non-proper. In addition, if R is singular then Π−1 is non-proper. The lemma

is now stated.

Lemma 26. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈

RHnr×(nv+nw)
∞ and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and

R := DT
ψMDψ where (Aψ, Bψ, Cψ, Dψ) are the state matrices of the filter Ψ. If Π is

a Strict-PN multiplier then there exists a unique, real, stabilizing solution X = XT to

DARE(Aψ, Bψ, Q,R, S). In addition, R+BT
ψXBψ is nonsingular.

Proof. The multiplier Π has 2nψ zeros (possibly at z = ∞) where nψ is the state

dimension of Ψ. These zeros are symmetric about the unit disk because Π = Π∼. The

block-determinant formula yields

det
(
Π
(
ejω
))

= det
(
Π22

(
ejω
))

det
(
Π11

(
ejω
)
−Π12

(
ejω
)

Π−1
22

(
ejω
)

Π∗12

(
ejω
))
.

Then the Strict-PN conditions imply that Π is nonsingular, i.e. contains no zeros, on

the unit circle. Therefore Π has nψ zeros strictly inside the unit circle. The poles of Π−1

are the zeros of Π and thus the matrix pencil λEin−Ain has nψ generalized eigenvalues

inside the unit disk. The generalized stable eigenspace of (Ein, Ain) is spanned by the

columns of some matrix Xs ∈ R(2nψ+nv+nw)×nψ . Hence there exists a Schur stable

matrix Λ ∈ Rnψ×nψ such that

AinXs = EinXsΛ. (A.8)

Partition Xs =
[
XT

1 , X
T
2 , X

T
3

]T
compatibly with the blocks of Ain so that X1, X2 ∈

Rnψ×nψ and X3 ∈ R(nv+nw)×nψ .

Next it is shown by contradiction that X1 is nonsingular. Assume that X1 is singular

and let ψ0 ∈ Rnψ denote a non-trivial vector in the null space of X1. This vector cannot

lie in the null space of
[
X2
X3

]
otherwise Xs would not span an nψ-dimensional space.
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Define the signals u, y, ξπ as follows:

uk =

{
0 for k < 0

X3Λkψ0 for k ≥ 0
(A.9)

yk =

{
BT
ψ (ATψ)−k−1X2ψ

0 for k < 0

0 for k ≥ 0
(A.10)

ξkπ =


[

0
(ATψ)−kX2ψ0

]
for k < 0[

X1
X2

]
Λkψ0 for k ≥ 0

(A.11)

The signals u, y, and ξπ are all in `2, 1 since Aψ and Λ are Schur stable matrices. In

addition, u, ξπ, and y are input, state, and output solutions for Π (Equation (A.4)) with

boundary condition ξ0
π =

[
0

X2ψ0

]
. This can be directly verified for k < 0. For k ≥ 0,

define ξkin := XsΛ
kψ0. Use Equation (A.8) to show that ξkin is a forward solution of Π−1

(Equation (A.6)) with initial condition ξ0
in = Xsψ

0 and input yk = 0. This verifies that

the signals u, y, and ξπ defined above are also a solution to Π for k ≥ 0. Therefore, the

Fourier transforms of u and y, denoted as U and Y , satisfy

Y (ejω) = Π(ejω)U(ejω) ∀ω ∈ [0, 2π]

Partition the signals as u = [ uT1 uT2 ]T and y = [ yT1 yT2 ]T such that u1, y1 ∈ `nv2 and

u2, y2 ∈ `nw2 . By construction, the inner products satisfy 〈u1, y1〉 = 〈u2, y2〉 = 0. Use

Parseval’s theorem and the Strict-PN sign-definiteness conditions to show2 :

0 = 〈u1, y1〉 = 〈u1,Π11u1 + Π12u2〉 ≥ 〈u1,Π12u2〉

0 = 〈u2, y2〉 = 〈u2,Π21u1 + Π22u2〉 ≤ 〈u2,Π21u1〉

This immediately implies 〈u1,Π11u1〉 = 〈u2,Π22u2〉 = 0 because 〈u1,Π12u2〉 = 〈u2,Π21u1〉.
The Strict-PN conditions then yield u1 = u2 = 0 and hence u = y = 0. As a conse-

quence 0 = u0 := X3ψ
0 and it must be that X2ψ

0 is non-trivial. In addition, u = 0

implies that ξkπ for k ≥ 0 satisfies

Eπξ
k+1
π = Aπξ

k
π +Bπu

k = Aπξ
k
π

1 A slight abuse of notation is used here as these are two-sided signals.
2 The inner product 〈u1,Π11u1〉 can be interpreted, via Parseval’s theorem, in the frequency domain.

For example, 〈u1,Π11u1〉 = 1
2π

∫ 2π

0
U1(ejω)∗Π11(ejω)U1(ejω)dω.
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This is impossible since the nontrivial initial condition ξ0
π =

[
0

X2ψ0

]
is in the antistable

eigenspace of the pair (Eπ, Aπ) and this initial condition cannot yield a forward `2

solution ξkπ =
[
X1
X2

]
Λkψ0 for k ≥ 0.

By contradiction, X1 is nonsingular. Define X := X2X
−1
1 . It follows from [116,

Section 4] that R + BT
ψXBψ is nonsingular and X is the unique stabilizing solution

to DARE(Aψ, Bψ, Q,R, S). This is a standard result and the remainder of the proof

is only sketched. Define K := −X3X
−1
1 and X̃s := [ I XT −KT ]T . Equation (A.8) is

equivalent to

AinX̃s = EinX̃sΛ̃ (A.12)

where Λ̃ := X1ΛX−1
1 is a Schur stable matrix. This leads to the following three equa-

tions:

Aψ −BψK = Λ̃ (A.13)

−Q+X + SK = ATψXΛ̃ (A.14)

ST −RK = −BT
ψXΛ̃ (A.15)

Substituting the expression for Λ̃ (Equation (A.13)) into Equation (A.15) yields K =

(R+BT
ψXBψ)−1

(
ATψXBψ + S

)T
. This expression along with (A.13) and (A.14) can be

used to show, via standard manipulations, that X satisfies the DARE(Aψ, Bψ, Q,R, S).

Based on (A.13), Aψ−BψK is a Schur stable matrix. Therefore, X is a stabilizing solu-

tion to the DARE. The above steps require a few additional facts to be demonstrated,

e.g. X is symmetric and R + BT
ψXBψ is nonsingular. These details can be found

in [116].

As mentioned before, an alternative proof of the above lemma can be constructed

using operator-theoretic arguments. Specifically, one can justify the applicability of [64,

Theorem 4.12.8] using the Strict-PN condition and then prove the above lemma as a

consequence.


