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We formulate a low-storage method for performing dynamic mode decomposition
that can be updated inexpensively as new data become available; this formulation
allows dynamical information to be extracted from large datasets and data streams. We
present two algorithms: the first is mathematically equivalent to a standard “batch-
processed” formulation; the second introduces a compression step that maintains
computational efficiency, while enhancing the ability to isolate pertinent dynamical
information from noisy measurements. Both algorithms reliably capture dominant
fluid dynamic behaviors, as demonstrated on cylinder wake data collected from both
direct numerical simulations and particle image velocimetry experiments. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901016]

Dynamic mode decomposition (DMD) is a data-driven computational technique capable of
extracting dynamical information from flowfields measured in physical experiments or generated
by direct numerical simulations.! DMD has been used in the analysis of numerous fluid mechanical
systems (e.g., bluff body flows,? jet flows,** and viscoelastic fluid flows’) and has gained increasing
popularity owing to its ability to reveal and quantify the dynamics of a flow, even when those
dynamics are nonlinear.°

DMD operates on snapshots of the flowfield (e.g., velocity, vorticity, pressure) and their time-
shifted counterparts—obtained either from experiments or numerical simulations—to compute the
eigenvalues (“DMD eigenvalues”) and eigenvectors (“DMD modes”) of a linear operator that best
fits the associated dynamics in a least-squares sense. The DMD modes represent spatial fields that
often highlight coherent structures in the flow, while the associated DMD eigenvalues dictate the
decay/growth rates and oscillation frequencies of these modes. As such, access to DMD modes
and eigenvalues enables a reconstruction of the dynamics associated with a given flowfield. Other
modal decomposition techniques, such as the commonly employed proper orthogonal decomposition
(POD), only compute spatial modes associated with the flow.” Although spatial modes can offer
valuable information regarding coherent structures and other flow qualities (e.g., in the case of
POD, they determine the most energetic modes), characterizing the underlying dynamics relies
upon projecting these spatial modes onto an assumed dynamical form. DMD offers an advantage
over these other modal decomposition techniques in that it computes both spatial modes and their
associated temporal behaviors, thus removing any guesswork associated with realizing a dynamical
representation of the system.

To date, researchers have viewed DMD as a post-processing tool; that is, a method that requires
the entire experimental or computational dataset to be available prior to commencing analysis. There
are, however, circumstances in which an online and incrementally updatable algorithm for DMD
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would be advantageous over current batch-processing approaches. Such a capability would allow
DMD to be applied to streams of data, a paradigm shift that can be taken advantage of in numerous
contexts, such as online flow analysis in conjunction with real-time particle image velocimetry
(PIV).® Moreover, a streaming DMD algorithm could be exploited for low-storage DMD analyses
as well, since it would provide a means of performing DMD on large datasets by successively
processing individual snapshots, one by one, without subsequently needing to store them all in
memory.

In this letter, we formulate a general framework that enables DMD computations to be updated
incrementally as new snapshots become available. We will introduce two algorithms: (1) a direct
algorithm for updating DMD computations incrementally, which can be shown to be mathematically
equivalent to “batch-processed” DMD, and (2) an extension of the direct algorithm that utilizes a
POD basis for compression, which is well-suited for practical scenarios in which the data are
corrupted by noise. Matlab implementations of both algorithms are provided in the supplementary
material.” Based on the same arguments presented in Rowley et al. (2009), connecting DMD with the
Koopman operator, both methods are applicable in the context of linear and nonlinear systems.>!°
We demonstrate both algorithms on a canonical problem of laminar flow past a cylinder: the direct
algorithm is used on data generated via direct numerical simulation (at Reynolds number Re = 100,
based on cylinder diameter), and the version with POD compression is applied to experimental PIV
data obtained from water channel experiments at Re = 413. In both instances, we verify that the
methods compute dominant spatial modes and their associated temporal dynamics consistently with
batch-processed DMD, but do so by working with the data incrementally.

In formulating a means of updating DMD computations incrementally as new snapshots become
available, we begin with the usual definition of the DMD operator.!:!® That is, given pairs of
snapshots x; € R" and y; € R” of the system states, spaced a fixed time-interval apart and stored in
the snapshot matrices X := [x, x2, ..., X,] € R and Y := [y}, y2, ..., Y] € R, one first
computes a matrix Qx € R"*"* whose columns form an orthonormal basis for the image of X (which
has dimension ry); the DMD operator is then given by

K = 0xR O, (1)

where K is an ry x ry matrix defined by

% — T
K | := Qx Y Xt Qx |, 2)
rx XTX rX XN —_————
N—— mxn ——
nxm nXrx

where X denotes the Moore-Penrose pseudoinverse of X. The DMD eigenvalues and modes are
then eigenvalues and eigenvectors of K, and these may be computed from the eigenvalues and
eigenvectors of the much smaller matrix K. Note that, as the number m of snapshot pairs grows, the
number of columns of ¥ (and rows of X*) increases, so large numbers of snapshots require large
amounts of storage in order to compute K.

In this letter, we are interested in situations in which we have access to only a single pair of
snapshots (x;, y;) at any given time, either due to computer memory limitations in storing large
numbers of snapshots, or based on implementations on real-time data streams for which future
snapshots are not yet available. Our main contribution is to provide an alternative way of computing
K, such that it can be updated incrementally as new snapshots become available, without storing
previous snapshots. To do this, we first determine orthonormal bases for the images of X and Y, and
stack these as columns of matrices Qy € R"* and Qy € R™" (where ry and ry denote the re-
spective ranks of X and Y). We then project the data vectors onto these coordinates, writing
X:=0%X and YV:=0QTY, and define new matrices A:=YVX' e R"x and
Gy := XXT e R™*"™_ Then using the identity X* = X'(XX")*, the matrix K from (2)
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(a) DMD Mode (A = 0.998 + 0.05314) (b) DMD Mode (A = 0.994 + 0.1067)

FIG. 1. Incrementally computed and batch-processed DMD modes are identical. Here, we plot the real components of
the first two dominant oscillatory DMD modes corresponding to the incrementally updated computations (plotted as gray
contours of modal level sets) and the batch-processed results (plotted as filled contours between modal level sets) (a) DMD
Mode (A = 0.998 + 0.0531i). (b) DMD Mode (A = 0.994 + 0.106i).

may be rewritten as

— Q% Qy Gx |- 3)

——"
TXXTX X Xn TY XTXx TXXTX

nXry

There are two main advantages of (3) over the standard formulation (2): first, much less storage
is required, in the typical case that rx, ry < m; second, the required matrices may be updated
incrementally as new snapshots become available, as we describe below.

Based on the definition in (3), we formulate a method to update Qx, Qy, and K (and thus
K) with the introduction of every new snapshot pair. The first task is to determine whether the
bases contained in Qx and Qy should be expanded. To do so, the residuals ex = x; — (Qx Q}T()xi
and ey = y; — (Qy Q§)y,~ are computed, and if |lex| or |ley|l is greater than some pre-specified
tolerance, then we expand Qx by appending ex/||ex|| to the last column of the matrix, and if needed,
use an equivalent procedure to expand Qy. The resulting orthonormal bases are identical to the
ones that would be produced using the Gram-Schmidt process if X and Y were available in their
entirety. Next, we compute ¥, = Q%x; and 7 = Q7 y;, which are the low-dimensional equivalent
of the large snapshot pair. The matrices that comprise K are then defined as A = Z;:I y J-XJ.T and

Gx = Z;zl X j)ZjT, which contain sums of outer products between the mode amplitudes from all
previous observations. To update A and Gy given a new snapshot pair (x;, y;), we set A < A + §; %1
and Gy < Gy + %!, which incorporates the last pair of outer products associated with the ith
snapshot pair. We note that in order to account for the new basis element that was not present in the
previous iterates, both A and Gy must be “padded” with zeros whenever the size of Qx or Qy increases.
If r = max (rx, ry), the computational cost of each iterate is dominated by the orthogonalization step
with a computational cost of O(nr) when the DMD modes and eigenvalues are not required, and a
cost of O(nr?) when they are. Therefore, this algorithm is particularly effective when n and m are
large, but the ranks of X and Y are small.

Now we demonstrate this incrementally updated DMD computation procedure and compare
with results from a batch-processed approach by working with direct numerical fluids simulation
data associated with two-dimensional laminar flow past a cylinder (Re = 100 based on cylinder
diameter, n = 59 501, and m = 116). We find that the DMD modes resulting from the incremental
algorithm match those computed from a standard DMD implementation: Figure 1 presents the first
two dominant DMD modes, with the incrementally computed modes overlaid on top of the batch-
processed modes. Numerical considerations aside, even the less-dominant DMD eigenvalues and
modes (not reported here) are also in close agreement.

Although this direct algorithm is beneficial, unlike the demonstration on numerically generated
data above, the snapshot data are often corrupted by noise in other practical settings; that is, in
many cases, X and Y can be decomposed into a low-rank component that contains the signal and
a high-rank component that contains the noise, which results in ryx, ry ~ n when m > n. This is
problematic because the performance of the direct updating procedure is heavily dependent on the
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rank of the data. As such, a modification of the algorithm that allows the basis Qx and Qy to be
compressed is now presented. In this modified updating scheme, we make use of the same four
matrices as in the direct updating procedure—A, Gy, Qx, and Qy—and introduce a new matrix,
Gy = le=1 Vi ij, to enable incremental POD compressions of the snapshots comprising Y. As
before, Gy can be updated easily from the previous iterate because Gy < Gy + J; y,T. The Gy
and Gy matrices are important for compression because XX = QxGy Q% and YYT = 0y Gy 07,
which are the matrices whose eigenvectors and eigenvalues give the POD modes and mode energies
of Xand Y, respectively.7 Furthermore, if v; is the ith eigenvector of Gy, then Qyv; is the ith POD
mode of X, which eliminates the need to form either XX” or YY? explicitly. As a result, if the rank of
either Gy or Gy exceeds some pre-specified value, then we modify Gy, Gy, A, Qx, and Qy using the
leading eigenvectors of Gx and Gy. Specifically, if Vx and Vy have columns containing the leading
eigenvectors of Gy and Gy, then Gx < V! GxVx,Gy < V/ GyVy, A < V] AVy, Ox < QOxVx,
and Qy < Qy Vy, which are the equivalent matrices as before, but now represented in a POD basis.

If X and Y have many small singular values, which is often the case when X and Y are generated
by a low-rank process with a small noise component, then this truncation step can greatly reduce the
dimensionality of the system with a minimal loss of accuracy; such a truncation is also critical to
preserving the low-storage nature of our algorithm when X and Y are no longer low-rank, on account
of any noise. In some instances, low-energy modes may play a crucial role in the dynamics; in such
instances, additional care must be taken to determine the number of retained modes, or an alternative
truncation strategy may need to be devised. Because of the matrix multiplications needed to update
Qx and Qy, the computational cost of this step is O(nr?), where r, is a pre-specified maximum
allowable matrix rank at which the truncation step occurs. Due to the sequence of projections onto
different POD bases, this algorithm is no longer equivalent to the standard DMD algorithm; however,
as we will demonstrate, this method produces dynamically relevant results, which are comparable
to those computed from DMD directly.

A single iteration of the algorithm can be summarized as follows:

1. For each new pair of data points x; and y;, compute the residuals ex = x; — Q X(Q)T(xi) and
ey = yi — Qy(Q}y;). Rather than forming the projections Qx 0% € R"*"and Qy 0} € R™"
explicitly, make direct use of Qx € R, Q% x; € R, Oy € R™" and Q}y; € R™.
Additionally, make use of an iterative Gram-Schmidt reorthogonalization procedure to ensure
orthogonality of the projection to full working precision.'!

2. [If |lex|| > € or |ley|| > €, increase the dimension of the corresponding basis, Qx or Qy, by
appending an additional column ex/||ex|| or ey/| ey/||, respectively, while zero-padding Gy, Gy,
and A to maintain dimensional consistency.

3. Ifeither basis, Qx or Qy, becomes too large (i.e., ry, ry > r,), compute the leading eigenvectors
of Gx and Gy (i.e., Vx and Vy, respectively), then set Gx <« V;GXVX, Gy < VYTGY Vy,
A <« V}Z-AVX, QX <~ vax, and Qy < QyVy.

4. Set % = Q%x; and 3 = Q}y;, and let Gy < Gx + %%/, Gy < Gy + 5!, and
A« A+ sl

5. If the DMD modes and eigenvalues are required, compute the eigenvalues and eigenvectors of
K = (Qg; QY)AG; If v; is the jth eigenvector of K, then QOxvj is the jth DMD mode.

In total, if the DMD modes and eigenvalues are desired after every iterate, the computational
cost of this algorithm is O(nr?) per iterate, where r is on the order of the effective rank of X and
Y. In terms of storage, the algorithm requires matrices with O(nr) entries; as a result, it will be
computationally and memory efficient when rx, ry <« n. More importantly, this is a “single pass”
algorithm that does not require previous snapshots to be stored, thus making it useful for applications
with large datasets or data streams for which m — oco.

To highlight the benefits of the additional POD compression step in the face of noisy measure-
ments, we apply the algorithm to the PIV data presented in Tu ez al. (2014) for flow over a cylinder
at Re = 413. The experiments, conducted in a water channel with precautions taken to minimize
three-dimensional effects and surface wave interactions, sampled the velocity field at 20 Hz and
with a final resolution of 135 x 80 px.'? A total of 8000 PIV snapshots were recorded with 8000 sis
delay between exposures.
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FIG. 2. Updating DMD incrementally with POD compression yields approximately the same dominant frequencies and
modes as batch-processed DMD. In (a), we present the frequency spectrum of batch-processed DMD (hollow gray circles)
with that corresponding to incrementally updated DMD with POD compression and r, = 25 (solid red circles). Tiles (b)—(d)
present the real components of the dominant mode shapes computed from batch-processed DMD which can be compared
with tiles (e)—(g) directly below, which present the real components of dominant modes computed via incremental updates
and POD compression. (a) Frequency Spectrum, (b) Batch-Processed fi = 0.888 Hz, (c) Batch-Processed f> = 1.774 Hz,
(d) Batch-Processed f3 = 2.732Hz, (e) Incrementally Updated f; = 0.887 Hz, (f) Incrementally Updated /> = 1.737 Hz,
(g) Incrementally Updated f3 = 2.664 Hz.

We applied our algorithm with POD compression to the PIV dataset on a personal com-
puter and successfully identified the dominant DMD modes and their temporal characteristics. In
Figure 2, we overlay the incrementally computed frequency spectrum (with r, = 25) on top of the
batch-processed DMD results of Tu er al. (2014), which required a parallel implementation of DMD
on three computational cores to obtain.'> '3 We note that although the POD compression step makes
our algorithm “different” from DMD, it still yields relevant information about the dominant dynam-
ics of a flow in an efficient manner. Additionally, by comparing the results in Figure 2, it is clear that
the updating procedure with POD compression succeeds in extracting smoother mode shapes than
the batch-processed algorithm, since it is able to sift through and filter out the contributions from
noise during the truncation stage.
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In this letter, we have presented two algorithms for performing DMD analysis in an incremental
fashion as new data become available. The first algorithm approached this problem directly, with
the assumption that the snapshot matrices were low-rank, and yielded DMD modes and eigenvalues
that matched those computed from a post-processing implementation of DMD for the flow past a
cylinder (Re = 100) generated by direct numerical fluids simulations. Indeed, it can be shown that
the two algorithms are mathematically equivalent. The second (more practical) algorithm relaxed the
low-rank assumption imposed on the data matrices, instead relying upon a POD compression step
to maintain a computationally efficient low-storage algorithm, even in the presence of noise. The
incrementally updated DMD algorithm with POD compression successfully extracted the dominant
frequencies and associated modes for flow past a cylinder (Re = 413) based on experimentally
acquired PIV data. Not only were the resulting mode shapes smoother than the batch-processed
DMD calculations, but the incremental algorithm was implemented on a personal computer with little
effort, while the batch-processed results required a parallel implementation with three computational
cores. The advantages of the incrementally updated DMD algorithm, both in terms of low-storage
and potential for real-time implementation, will make DMD available in numerous contexts where
it would have been infeasible previously. For example, incremental updating will prove useful for
online DMD analysis of real-time PIV; it will also enable DMD analysis of massive datasets that
cannot completely reside in memory.

We gratefully acknowledge Jessica Shang for providing access to the experimental PIV data for
flow over a cylinder, as well as Scott T. M. Dawson and Jonathan H. Tu for sharing their insights on
performing DMD analysis on such flows. M.O.W. acknowledges support from NSF DMS-1204783.
C.W.R. and M.S.H. acknowledge support from AFOSR.
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