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Transient energy growth suppression is a common control objective for feedback flow control aimed at delaying

transition to turbulence.Aprevailing control approach in this context is observer-based feedback, inwhich a full-state

feedback controller is applied to state estimates from an observer. The present study identifies a fundamental

performance limitation of observer-based feedback control: whenever the uncontrolled system exhibits transient

energy growth in response to optimal disturbances, control by observer-based feedback will necessarily lead to

transient energy growth in response to optimal disturbances for the closed-loop system as well. Indeed, this result

establishes that observer-based feedback can be a poor candidate for controller synthesis in the context of transient

energy growth suppression and transition delay; the performance objective of transient energy growth suppression

can never be achieved by means of observer-based feedback. Further, an illustrative example is used to show that

alternative formsof output feedbackare not necessarily subject to these sameperformance limitations and should also

be considered in the context of transient energy growth suppression and transition control.

Nomenclature

(A, B, C) = linear time-invariant state-space realization of plant
~A = closed-loop observer–plant operator
E = open-loop energy
~E = closed-loop observer–plant energy
G = open-loop plant maximum transient energy growth
~Gx = closed-loop plant maximum transient energy

growth
~Gx̂ = closed-loop observer maximum transient energy

growth
~G = closed-loop observer–plant maximum transient

energy growth
K = controller feedback gain
L = observer gain
u, x, y = plant input, state, and output vectors, respectively
x̂ = observer (estimated) state
~x = closed-loop observer–plant state, �x; x̂�

I. Introduction

A N ABILITY to delay or fully suppress transition to turbulence

has the potential to benefit a variety of technological systems,

including air and maritime transportation systems, by enabling

improvements to efficiency and performance. Transition to

turbulence inmany shear flows arises at a Reynolds numberRewell
below the critical Re predicted by a linear stability analysis

of the Navier–Stokes equations about a laminar solution [1]. The

onset of this so-called subcritical transition can often be explained

by a linear mechanism for transient energy growth: a nonmodal

stability analysis of the linearized dynamics reveals that, for linearly

stable flows, small disturbances will often grow before they decay

[2,3]. Indeed, this linear mechanism for transient energy growth can

cause the fluid state to depart from the basin of attraction for the

laminar solution, triggering transition and ultimately giving rise to
turbulence.
Numerous investigations have sought to delay transition by aiming

to reduce transient energy growth through various forms of linear
feedback control [4–14]. Many of these studies have relied upon the
well-established separation principle at some stage in the synthesis of
a dynamic output feedback compensator (i.e., observer-based
feedback) [10–14]. The separation principle is commonly invoked in
this design process because it considerably simplifies controller
synthesis when a dynamic output feedback law is desired; a
stabilizing full-state feedback controller can be synthesized
independently of a stable state estimator, then combined together to
yield a stabilizing dynamic output feedback compensator [15].
Despite guarantees on linear stability of the closed-loop system,
invoking the separation principle can dramatically degrade closed-
loop performance. Yet, the adverse consequences of controller
synthesis by means of the separation principle are not fully
appreciated in the context of transition delay and transient energy
growth control, in which closed-loop performance is paramount. For
instance, the separation principle is central to linear quadratic
Gaussian (LQG) control, which remains a common controller
synthesis approach for transient energy growth reduction and
transition delay [10–14]. Although degraded closed-loop perfor-
mance of observer-based feedback controllers has been reported in
the literature [5], no previous studies have explicitly identified the
separation principle as the source of these performance limitations.
The state estimation problem is sometimes identified as “the primary
pacing item” for realizing acceptable closed-loop performance [12];
however, as we will show here, observer peaking and associated
performance issues are more deeply rooted with the separation
principle itself.
In this Paper, we will show that any linear system that exhibits

transient energy growth to disturbances in open-loopwill also exhibit
transient energy growth to disturbances in closed-loop whenever the
separation principle is invoked for controller synthesis. Indeed, even
when a full-state feedback controller can fully suppress transient
energy growth, a dynamic output feedback compensator designed via
the separation principle will invariably lead to nontrivial transient
energy growth in response to some disturbances. Further, the
separation principle will guarantee that the estimator dynamics (and
estimation error) will exhibit peaking in closed-loop from some
initial conditions whenever the uncontrolled plant exhibits transient
energy growth. The results in this Paper highlight the inherent
performance limitations that arise by invoking the separation
principle for observer-based feedback control in the context of
transition control and transient energy growth suppression. As we
will showvia example, not all output feedback control approaches are
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restricted to the same performance limitations as observer-based
feedback; indeed, alternative output feedback approaches should be
considered as candidates for controller synthesis when closed-loop
performance is a primary design objective.

II. Observer-Based Feedback and Maximum Transient
Energy Growth

Consider the linear time-invariant system,

_x�t� � Ax�t� � Bu�t�
y�t� � Cx�t� (1)

where x ∈ Rn is the state vector,u ∈ Rm is the input vector, y ∈ Rp is
the output vector, and t ∈ R is time. In considering transient energy
growth in this study, we focus on the free response of the system to an
initial perturbation x�to� � xo away from an equilibrium solution
(e.g., a laminar base flow). The perturbation dynamics are given in
terms of the matrix exponential, x�t� � eA�t−to�xo and the associated
perturbation energy will have a response given by

E�t� � xT�t�Qx�t� (2)

whereQ � QT > 0.Without loss of generality, we takeQ � I, since
the state can always be transformed as �x � Q1∕2x to satisfy this
definition of energy. Further, define the maximum transient energy
growth G as

G � max
t≥to

max
E�to�≠0

E�t� − E�to�
E�to�

� max
t≥to

max
kxok�1

E�t� − 1 ≥ 0 (3)

When the system in Eq. (1) is unstable, E�t� will be unbounded,
andGwill be infinite; when the system inEq. (1) is stable,G is simply
the peak value in transient energy growth due to a so-called optimal
disturbance [16]. The lower-boundG � 0 corresponds to the case of
suppressed transient energy growth (i.e., monotonic stability [1]),
which is the ultimate aim of controllers designed for transient energy
growth suppression.
In light of these definitions, we introduce a Lemma [17] (herein

referred to as the MTEG Lemma), which will be central to the
analysis here.
MTEG Lemma: G � 0 if and only if AT � A ≤ 0.
Proof: To show sufficiency, consider that if _E�t� ≤ 0 for all

t ≥ to and all initial conditions then G � 0. Since _E�t� �
xT�t��AT � A�x�t�, it follows that AT � A ≤ 0 is a sufficient
condition for G � 0. Necessity can be shown by noting that

�AT � A�≰0 implies the existence of an initial perturbation x�to� � xo
that yields _E�to� > 0; thus,E�t� > E�to� for some time t > to, and so
G > 0. Therefore, �AT � A� ≤ 0 is a necessary condition for G � 0.
The maximum transient energy growth can be reduced or

suppressed by altering the system response characteristics via
appropriate actuation u�t�. In principle, a full-state feedback control
law u�t� � −Kx�t� can be used to achieve various control objectives,
including optimal regulation by means of a linear quadratic regulator
(LQR) [15]. Here, K ∈ Rm×n is the controller feedback gain. The
closed-loop dynamics of the associated stable full-state feedback
system will then be

_x�t� � �A − BK�x�t� (4)

However, in practice, the full-state x�t� is typically not directly
available for feedback. Instead, measurements of the system outputs
y�t� can be used to estimate the full state by means of a stable state
estimator of the form

_̂x�t� � Ax̂�t� � Bu�t� � L�y�t� − Cx̂�t�� (5)

where x̂�t� is the state estimate. The observer gain L ∈ Rn×p is
chosen to yield desirable estimator performance, including adequate

convergence rates and reliability in the face of both process and
measurement uncertainties, as in the case of the optimal state
estimator (i.e., the Kalman–Bucy filter).
The well-known separation principle establishes that a

stabilizing full-state feedback controller and a stable state estimator
can be designed independently of one another, then combined to
yield a stabilizing dynamic compensator by means of the observer-
based feedback law u�t� � −Kx̂�t�. To see this, consider the
dynamics of the closed-loop observer–plant system with state
~x�t� � �x�t�; x̂�t�� ∈ R2n,

d

dt

�
x�t�
x̂�t�

�
�

�
A −BK
LC A − BK − LC

�
|��������������������{z��������������������}

~A

�
x�t�
x̂�t�

�
(6)

The observer–plant system in Eq. (6) can be brought into a form
that replaces the estimated state x̂�t� by the estimation error e�t� �
x�t� − x̂�t� via similarity transformation,

d

dt

�
x�t�
e�t�

�
�

�
A − BK BK

0 A − LC

��
x�t�
e�t�

�
(7)

Since the closed-loop operator in Eq. (7) appears in block-
triangular form, the eigenvalues of the observer-based feedback
system are simply the union of the eigenvalues of the full-state
feedback system (A − BK) and the estimator (A − LC); indeed, since
Eqs. (6) and (7) are related by similarity transformation, this
establishes the well-known separation principle. In the remainder of
the Paper, the term “observer-based feedback”will be used to refer to
a closed-loop system as in Eq. (6), formed bymeans of the separation
principle.
Although the separation principle provides guarantees on closed-

loop stability, it does not provide any guarantees on closed-loop
performance—an important point that is often overlooked in the
context of transition control and transient energy growth suppression.

Consider the closed-loop energy ~E�t� � ~xT�t� ~Q ~x�t�of the observer–
plant system, with maximum transient energy growth ~G. Here, the

first n × n subblock of ~Qwill beQ, to be consistent with the original
state energy defined in Eq. (2). However, as with Eq. (2) and without

loss of generality, we let ~Q � I in the remainder of the Paper. From

the MTEG Lemma, the closed-loop operator ~A will exhibit ~G � 0 if

and only if ~AT � ~A ≤ 0. Considering this more closely,

~AT � ~A�
�

AT � A �LC�T −BK
LC− �BK�T �A−BK −LC�T � �A−BK −LC�

�

(8)

reveals that ~G will depend on the plant (A, B, C) as well as the

compensator gains K and L. Further, since (AT � A) is a principal

submatrix of ( ~AT � ~A), it follows that AT � A ≤ 0 is a necessary

condition for ~AT � ~A ≤ 0 [18]; thus, again by the MTEG Lemma,

G � 0 is a necessary condition for ~G � 0. Hence, in the context of
transient energy growth suppression and transition control, for which
the open-loop dynamics exhibitG > 0, using the separation principle

will limit closed-loop performance by guaranteeing that ~G > 0 as

well. Note that G � 0 (or, equivalently, AT � A ≤ 0) is a necessary

condition for ~G � 0, but not a sufficient condition; all principal

submatrices must be considered to establish ~AT � ~A ≤ 0 [18]. As

such, even if G � 0, ~G will also depend on the particular system
(A, B, C) and the choices of K and L, in general.
Since the maximum transient energy growth ~G corresponds to the

cyber-physical state ~x � �x; x̂� of the observer–plant system, it
appears possible that only one of either x�t� or x̂�t� is contributing to
the transient energy growth. Thus, we now establish the influence of
the separation principle on the maximum transient energy growth ~Gx

of the physical plant and ~Gx̂ of the observer. The maximum transient
energy growth ~Gx for the physical plant under control via the

2120 HEMATI ANDYAO

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ju
ne

 4
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

68
77

 



separation principle can be determined by first considering a

modified energy ~Eϵ�t� � ~xTϵ �t� ~xϵ�t�, where ~xϵ � Wϵ ~x, Wϵ �
diag�In; ϵIn�, In is the n × n identity matrix, and ϵ > 0 is a scalar.

Then, noting that limϵ→0
~Eϵ�t� � E�t� and that ~A and Wϵ � WT

ϵ

commute, it follows from theMTEG Lemma that ~Gx � 0 if and only

if limϵ→0Wϵ� ~AT � ~A�Wϵ ≤ 0. As before, AT � A ≤ 0 is a necessary

condition forWϵ� ~AT � ~A�Wϵ ≤ 0, so we conclude that AT � A ≤ 0

(and thereforeG � 0) is a necessary condition for ~Gx � 0. That is, if

G > 0, then it is guaranteed that ~Gx > 0 aswell. The same can be said

about the maximum transient energy growth ~Gx̂ for the estimator,
which corresponds to a case of observer peaking. To show this,

consider the modified energy ~Eϵ�t� defined using the coordinate
transformation Wϵ � diag�ϵIn; In�; then, proceed as before.
In summary, AT � A ≤ 0 (and therefore G � 0) is a necessary

condition for ~G � 0, ~Gx � 0, and ~Gx̂ � 0. Thus, if the uncontrolled
plant exhibits nontrivial maximum transient energy growth (i.e.,
G > 0), then it is guaranteed that the separation principle will result
in nontrivial maximum transient energy growth in closed-loop for

the physical plant (i.e., ~Gx > 0), the estimator (i.e., ~Gx̂ > 0), and the

cyber-physical observer–plant system (i.e., ~G > 0). The performance
limitations identified here apply only to dynamic output feedback
laws synthesized using the separation principle, i.e., observer-based
feedback as in Eq. (6). Not all output feedback control laws are
necessarily subject to these same limitations. As we will see in the
illustrative example that follows, even when a static output feedback
law can be determined to achieve zero maximum transient energy
growth a necessary condition for guaranteeing the existence of a
dynamic output feedback compensator that can achieve the same
[17], the separation principle will not (and cannot) yield a closed-loop
system that achieves the same if the uncontrolled plant exhibitsG > 0.

III. Illustrative Example: Simple Nonnormal System

Consider the system

_x�t� �
�−1∕R 0

1 −2∕R

�
x�t� �

�
1

0

�
u�t�

y�t� � � 0 1 �x�t� (9)

where R > 0 is a scalar parameter. Variants of this system are often
used to demonstrate the role of nonnormality in giving rise to
transient energy growth [1,2,17,19]. The origin is asymptotically
stable, but the system exhibits G > 0 for R > R� � 2

���
2

p
. In Fig. 1,

we compare the worst-case transient energy response E�t� with
R � 2 < R� and R � 3 > R� for the uncontrolled plant with the
corresponding worst-case closed-loop system response from each of

three different controller synthesis techniques: LQR, LQG, and static

output feedback (SOF). In all cases, the optimal disturbance for the

worst-case response is computed bymeans of the iterative Algorithm

3.1 of Whidborne and Amar [20]. In the case of LQG control, the

worst-case response corresponds to an optimal disturbance on

the full observer–plant state ~x � �x; x̂�. In instances for which the

maximum transient energy growth is zero, there is no optimal

disturbance, and so the initial condition is set to either x�to� � �1; 0�
or ~x�to� � �1; 0; 0; 0�. All energy responses in Fig. 1 correspond to

the energy of the physical plant E�t� normalized by the initial

energy E�to� � Eo.
The LQR design here yields a full-state feedback law that

minimizes the performance index,

J �
Z

∞

0

xT�t�x�t� � uT�t�u�t� dt (10)

subject to the linear dynamic constraint _x�t� � Ax�t� � Bu�t�. In
the present study, the LQR control gain is computed directly via the

MATLAB® command lqr. The response under the LQR full-state

feedback control yieldsG � 0 for both R � 2 and R � 3, as seen in
Fig. 1. Note that LQR control is not guaranteed to yield zero transient

energy growth in general; rather, for this example, the objective

function in Eq. (10) was specifically selected after tuning to

achieve zero maximum transient energy growth for the closed-loop

response for both R � 2 and R � 3.
The separation principle is invoked for LQG optimal controller

synthesis. The same LQR control gains determined by Eq. (10) are

used in an observer-based feedback capacity [i.e., u�t� � −Kx̂�t�].
The observer gain L is computed via the MATLAB® command lqe,

which computes a solution to the optimal estimation problem, which

is dual to the optimal control problem. Here, the observer gain Lwas

selected by tuning the estimator objective function to reduce ~Gx

associatedwith the closed-loop energy response. Recall, that ~Gx—and

the associated optimal disturbance—can be computed by considering

limϵ→0
~Eϵ�t� � E�t�. As expected, in the case of R � 3 > R�, the

LQG controller yields ~Gx > 0, whereas the same LQG controller

synthesis approach applied to the case of R � 2 < R� yields ~Gx � 0.

Further, despite tuning to reduce ~Gx, the physical energyE�t� grows to
approximately 30 times its initial value. In fact, ~Gx ≈ 30G, meaning

the LQG controller degrades the transient energy growth performance

relative to the uncontrolled (open-loop) response.
Lastly, we consider the SOF control law u�t� � −y�t�. By the

MTEG Lemma, the resulting closed-loop operator (A − BC) is

guaranteed to exhibit zero maximum transient energy growth for all

values of R > 0. Note that the SOF controller considered here is one
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Fig. 1 Comparison of worst-case responses for the controlled system in Eq. (9), for which R� � 2
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of a family of SOF controllers that can achieve zero transient energy
growth [17].
The results of this simple example illustrate the limitations of the

separation principle that were proven in Sec. II. These results further
suggest that controllers synthesized by the separation principle
(LQG or otherwise) can be unreliable for transient energy growth
suppression and transition control. Although the separation principle
can greatly simplify controller synthesis in many instances, the
performance consequences of the separation principle must also
be taken into consideration. As shown in this example, alternative
output feedback approaches are not necessarily subject to the same
performance limitations and should be considered as well as if not
instead of observer-based feedback.

IV. Conclusions

This Paper has proven that if themaximum transient energygrowth
for an uncontrolled plant is nontrivial (i.e., G > 0), then controller
synthesis by the separation principle will necessarily result in
nontrivial maximum transient energy growth in closed-loop (i.e.,
~G > 0, ~Gx > 0, and ~Gx̂ > 0). These results were established by
invoking the MTEG Lemma and properties of negative semidefinite

operators to show that AT � A ≤ 0 (and thus G � 0) is a necessary

condition for ~G � 0, ~Gx � 0, and ~Gx̂ � 0. This result highlights a
fundamental performance limitation of observer-based feedback
control in the context of transient energy growth suppression and
transition control. As illustrated in the example of Sec. III,
performance under full-state feedback is not necessarily a reliable
indicator for closed-loop performance under observer-based
feedback. Indeed, no amount of controller and estimator tuning can
overcome the performance limitations of observer-based feedback. If
closed-loop transient energy growth is of primary importance, then
alternative approaches for output feedback control may yield better
performance in this regard and should also be considered as candidate

control approaches. Further, the result for ~Gx̂ establishes that the
separation principle will lead to observer peaking from some initial

conditions in closed-loop whenever AT � A≰0 for the open-loop
system.Thus, although observer peaking is commonly rooted out as a
limiting factor on performance in observer-based feedback control,
this result shows that observer peaking and the associated transient
energy growth of the physical plant can actually be seen as direct
consequences of using the separation principle to control a system for

which G > 0, or equivalently AT � A≰0.
The results presented here can be generalized further. Note that all

stabilizing controllers can be constructed by means of a Q
parameterization, in which a separation-principle-based controller/
observer structure is combinedwith a free parameterQ�s� [21]. Then,
since the separation principle yields a dynamic compensator that is
strictly proper, it follows that when Q�s� is strictly proper the
resulting parameterized dynamic compensator will also be strictly
proper; in contrast, when Q�s� is semiproper, the resulting
parameterized dynamic compensator will also be semiproper. With
this in mind, performing an analysis similar to that of Sec. II shows
that all strictly proper stabilizing controllers will result in nontrivial
maximum transient energy growth whenever G > 0. In contrast, it
may be possible to achieve zeromaximum transient energy growth in
closed-loop when the dynamic compensator is semiproper; indeed,
this corresponds to the analogous necessary condition for the
generalized result. For example, static output feedback control
constitutes a semiproper control structure, which was seen to fully
suppress transient energy growth in the illustrative example of this
Paper. Interestingly, the existence of a static output feedback
controller that achieves zero maximum transient energy growth is a
necessary condition for the existence of a dynamic compensator that
can achieve the same [17]. Further, as shown in [17], a Q
parameterization can be used to design controllers that minimize the
maximum transient energy growth.
Retrospectively, the performance limitations of observer-based

feedback for transient energy growth suppression are not entirely
surprising. Consider that the closed-loop operator in Eq. (7) is
nonnormal. That nonnormality is a necessary condition for transient

energy growth is well established in the flow control community; it is
the high degree of nonnormality of the linearized Navier–Stokes
operator that is commonly attributed to transient energy growth in the
context of subcritical transition in shear flows [1]. And, yet, the
nonnormality of the closed-loop operator in Eq. (7) seems to have
evaded attention in many flow control studies. An important
ramification of this nonnormality is that, even if a full-state feedback
law can fully remove nonnormality of the physical plant (as in [19]),
invoking the separation principle to synthesize an observer-based
feedback law will inevitably yield a nonnormal cyber-physical
observer–plant system. In this case, although the modes of the
physical system (A − BK) will still be orthogonal, the modes of the
coupled observer–plant system will be oblique, since the associated
operator is nonnormal. Further, the degree of nonnormality will
depend on the specific plant (A, B, C) and the particular choice of
feedback and observer gains, K and L, respectively. Thus, K and L
can be tuned to improve performance for a given flow control

configuration; yet, if AT � A≰ 0, then ~G � 0, ~Gx � 0, and ~Gx̂ � 0
will never be achieved. Further, the performance limitations of the
separation principle presented here hold true regardless of the system
terms (B, C). Thus, although efforts at optimal actuator/sensor
placement and selection can be useful at reducing the maximum

transient energy growth, such efforts will never yield ~G � 0, ~Gx � 0,

nor ~Gx̂ � 0 when AT � A≰0, if observer-based feedback is used for
controller synthesis. Thus, to overcome these performance limitations,
alternatives to observer-based feedback control structures need to be
considered as candidates for control.

Acknowledgments

Thismaterial is based uponwork supported by theAir ForceOffice
of Scientific Research under award number FA9550-17-1-0252,
monitored by Douglas R. Smith.

References

[1] Schmid, P. J., and Henningson, D. S., Stability and Transition in Shear
Flows, Springer–Verlag, New York, 2001.

[2] Trefethen, L. N., Trefethen, A. E., Reddy, S. C., and Driscoll, T. A.,
“Hydrodynamic Stability Without Eigenvalues,” Science, Vol. 261,
No. 5121, 1993, pp. 578–584.
doi:10.1126/science.261.5121.578

[3] Schmid, P. J., “Nonmodal Stability Theory,” Annual Review of Fluid

Mechanics, Vol. 39, No. 1, 2007, pp. 129–162.
doi:10.1146/annurev.fluid.38.050304.092139

[4] Joshi, S. S., Speyer, J. L., and Kim, J., “A Systems Theory Approach to
the Feedback Stabilization of Infinitesimal and Finite-Amplitude
Disturbances in Plane Poiseuille Flow,” Journal of Fluid Mechanics,
Vol. 332, 1997, pp. 157–184.
doi:10.1017/S0022112096003746

[5] Bewley, T. R., and Liu, S., “Optimal and Robust Control and Estimation
of Linear Paths to Transition,” Journal of Fluid Mechanics, Vol. 365,
1998, pp. 305–349.
doi:10.1017/S0022112098001281

[6] McKernan, J., Whidborne, J. F., and Papadakis, G., “Linear
Quadratic Control of Plane Poiseuille Flow—The Transient
Behaviour,” International Journal of Control, Vol. 80, No. 12,
2007, pp. 1912–1930.
doi:10.1080/00207170701477764

[7] Monokrousos, A., Lundell, F., and Brandt, L., “Feedback Control
of Boundary-Layer Bypass Transition: Comparison of Simulations
with Experiments,” AIAA Journal, Vol. 48, No. 8, 2010,
pp. 1848–1851.
doi:10.2514/1.J050150

[8] Martinelli, F., Quadrio,M.,McKernan, J., andWhidborne, J. F., “Linear
FeedbackControl of Transient EnergyGrowth andControl Performance
Limitations in Subcritical Plane Poiseuille Flow,” Physics of Fluids,
Vol. 23, No. 1, 2011, Paper 014103.
doi:10.1063/1.3540672

[9] Dadfar, R., Semeraro, O., Hanifi, A., and Henningson, D. S., “Output
Feedback Control of Blasius Flow with Leading Edge Using Plasma
Actuator,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2192–2207.
doi:10.2514/1.J052141

2122 HEMATI ANDYAO

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ju
ne

 4
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

68
77

 

http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1126/science.261.5121.578
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1017/S0022112096003746
http://dx.doi.org/10.1017/S0022112096003746
http://dx.doi.org/10.1017/S0022112098001281
http://dx.doi.org/10.1017/S0022112098001281
http://dx.doi.org/10.1080/00207170701477764
http://dx.doi.org/10.1080/00207170701477764
http://dx.doi.org/10.2514/1.J050150
http://dx.doi.org/10.2514/1.J050150
http://dx.doi.org/10.2514/1.J050150
http://dx.doi.org/10.1063/1.3540672
http://dx.doi.org/10.1063/1.3540672
http://dx.doi.org/10.1063/1.3540672
http://dx.doi.org/10.2514/1.J052141
http://dx.doi.org/10.2514/1.J052141
http://dx.doi.org/10.2514/1.J052141


[10] Bewley, T. R., “FlowControl: NewChallenges for a NewRenaissance,”
Progress in Aerospace Sciences, Vol. 37, No. 1, 2001, pp. 21–58.
doi:10.1016/S0376-0421(00)00016-6

[11] Kim, J., “Control of Turbulent Boundary Layers,” Physics of Fluids,
Vol. 15, No. 5, 2003, pp. 1093–1105.
doi:10.1063/1.1564095

[12] Kim, J., and Bewley, T. R., “A Linear Systems Approach to Flow
Control,” Annual Review of Fluid Mechanics, Vol. 39, No. 1, 2007,
pp. 383–417.
doi:10.1146/annurev.fluid.39.050905.110153

[13] Bagheri, S., Henningson, D. S., Hœpffner, J., and Schmid, P. J., “Input-
Output Analysis and Control Design Applied to a Linear Model of
Spatially Developing Flows,” Applied Mechanics Reviews, Vol. 62,
No. 2, 2009, Paper 020803.
doi:10.1115/1.3077635

[14] Bagheri, S., and Henningson, D. S., “Transition Delay Using Control
Theory,” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, Vol. 369, No. 1940,
2011, pp. 1365–1381.
doi:10.1098/rsta.2010.0358

[15] Brogan, W. L., Modern Control Theory, 3rd ed., Prentice–Hall, Upper
Saddle River, NJ, 1991, pp. 515–526.

[16] Butler, K., and Farrell, B., “Three-Dimensional Optimal Perturbations
in Viscous Shear Flow,” Physics of Fluids A: Fluid Dynamics, Vol. 4,

No. 8, 1992, pp. 1637–1650.
doi:10.1063/1.858386

[17] Whidborne, J. F., andMcKernan, J., “On theMinimization ofMaximum
Transient Energy Growth,” IEEE Transactions on Automatic Control,
Vol. 52, No. 9, 2007, pp. 1762–1767.
doi:10.1109/TAC.2007.900854

[18] Prussing, J. E., “The Principle Minor Test for Semidefinite Matrices,”
Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, 1986,
pp. 121–122.
doi:10.2514/3.20077

[19] Hemati, M. S., and Yao, H., “Dynamic Mode Shaping for Fluid Flow
Control: New Strategies for Transient Growth Suppression,” 8th AIAA

Theoretical Fluid Mechanics Conference, AIAA Paper 2017-3160,
2017.

[20] Whidborne, J. F., and Amar, N., “Computing the Maximum Transient
Energy Growth,” BIT Numerical Mathematics, Vol. 51, No. 2, 2011,
pp. 447–457.
doi:10.1007/s10543-011-0326-4

[21] Boyd, S. P., and Barratt, C. H., Linear Controller Design: Limits

of Performance, Prentice–Hall, Upper Saddle River, NJ, 1991,
pp. 162–165.

P. Givi
Associate Editor

HEMATI ANDYAO 2123

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ju
ne

 4
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

68
77

 

http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1063/1.1564095
http://dx.doi.org/10.1063/1.1564095
http://dx.doi.org/10.1063/1.1564095
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110153
http://dx.doi.org/10.1115/1.3077635
http://dx.doi.org/10.1115/1.3077635
http://dx.doi.org/10.1115/1.3077635
http://dx.doi.org/10.1098/rsta.2010.0358
http://dx.doi.org/10.1098/rsta.2010.0358
http://dx.doi.org/10.1098/rsta.2010.0358
http://dx.doi.org/10.1098/rsta.2010.0358
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1109/TAC.2007.900854
http://dx.doi.org/10.1109/TAC.2007.900854
http://dx.doi.org/10.1109/TAC.2007.900854
http://dx.doi.org/10.1109/TAC.2007.900854
http://dx.doi.org/10.2514/3.20077
http://dx.doi.org/10.2514/3.20077
http://dx.doi.org/10.2514/3.20077
http://dx.doi.org/10.1007/s10543-011-0326-4
http://dx.doi.org/10.1007/s10543-011-0326-4

