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Abstract The unusual properties of Shape Memory Alloys (SMAs) result from a lattice level Marten-
sitic Transformation (MT) corresponding to an instability of the SMAs crystal structure. Currently,
there exists a shortage of material models that can capture the details of lattice level MTs occurring
in SMAs and that can be used for efficient computational investigations of the interaction between
MTs and larger-scale features found in typical materials. These larger-scale features could include
precipitates, dislocation networks, voids, and even cracks. In this paper, one such model is developed
for the SMA AuCd. The model is based on Effective Interaction Potentials (EIPs). That is, atomic
interaction potentials that are explicit functions of temperature. In particular, the Morse pair potential
is used and its adjustable coefficients are taken to be temperature dependent. A fitting procedure is
developed for the EIPs that matches, at a suitable reference temperature, the lattice parameters, in-
stantaneous bulk moduli, thermal expansion coefficients, and heat capacities of FCC Au, HCP Cd, and
the B2 cubic austenite phase of the Au-47.5at%Cd alloy. The resulting model is explored using branch-
following and bifurcation techniques. A hysteretic temperature-induced MT between the B2 cubic and
B19 orthorhombic crystal structures is predicted. The predicted MT is found to have characteristics
that compare quite well with the experimentally observed behavior of AuCd SMAs. Unfortunately, the
model exhibits an unphysical negative thermal expansion at high temperatures.

Keywords Shape Memory Alloys · Martensitic Transformations · Morse Potential · Material
stability · Effective Interaction Potentials · AuCd

PACS 81.30.Kf · 81.30.Hd · 64.60.Cn · 64.70.Kd

1 Introduction

Shape memory alloys (SMAs) are special alloys that exhibit the shape memory effect and pseudo-
elasticity. These peculiar properties are the result of solid-to-solid diffusionless phase transformations
that occur in the material. These transformations are called martensitic transformations (MTs) and
involve the coordinated motion of atoms in the crystal as the material’s structure transitions from
one lattice type to another. MTs can be temperature- or stress-induced. The high temperature phase
is usually of high symmetry and is called austenite and the low temperature phase is usually of low
symmetry and is called martensite.

The first SMA discovered was AuCd. Olander (1932) used electrochemical techniques to identify
the B2 cubic (austenite) phase and the B19 orthorhombic (martensite) phase of AuCd. Further, he was
the first to recognize its peculiar (i.e., SMA) behavior. Later, Bystrom and Almin (1947) performed an
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X-ray investigation and found the different phases of the AuCd alloy for different compositions. The
SMA properties of Au-47.5at%Cd were identified by Chang and Read (1951) using an X-ray analysis
of the orientation relationships, electrical resistivity measurements, and motion picture studies of the
movement of boundaries between the two phases during phase transformation. From the observations
of this experiment, it was concluded that Au-47.5at%Cd undergoes a diffusionless transformation from
a high symmetry B2 cubic structure to a low symmetry B19 orthorhombic structure when it is cooled
to about 60 ◦C. The reverse transformation occurs from the B19 structure to the B2 structure at 80 ◦C
as the alloy is heated (Chang and Read , 1951). The same researchers found the lattice parameters of
Au-47.5at%Cd to be: a = 3.3165 Å for the B2 cubic structure and a = 3.1476 Å, b = 4.7549 Å, and
c = 4.8546 Å for the B19 orthorhombic structure.

Various models have been presented in the literature to simulate the behavior of SMAs. These
models can be broadly categorized as continuum mechanics based models, quantum mechanics based
Density Functional Theory (DFT) models, and phenomenological atomistic models.

Continuum mechanics based models can be divided into phenomenological and micromechanical
type models. Phenomenological models usually consist of a mechanical law to govern the stress-strain
behavior and a kinetic law to govern the crystallographic transformation (Tanaka and Nagaki , 1982;
Liang and Rogers , 1990; Brinson, 1993; Ivshin and Pence, 1994). The mechanical part of the model
plays a less significant role and the particular kinetic law distinguishes these models (Brinson and
Huang, 1996). Micromechanics based models take account of varying amounts of the crystallographic
symmetry of SMAs and use the laws of thermodynamics to describe the transformation behavior
(Patoor et al., 1988, 1993; Sun and Hwang , 1993a,b; Goo and Lexcellent , 1997; Lu and Weng, 1997;
Huang and Brinson, 1998; Vivet and Lexcellent , 1998; Shaw , 2002; Guthikonda et al., 2008). These
models use the geometric properties of martensitic variants that make up a transforming inclusion
and apply micromechanics calculations to obtain the interaction energy of phase transformation in the
material. Stresses and strains are obtained as averages over a volume in which many inclusions may
exist. The major shortcoming of these continuum models are that á priori knowledge of the martensite
structure must be known. Most of the models rely on the availability of experimentally obtained phase
diagrams and other physical properties for both the austenite and martensite phases. In other words,
these models can not be used if the nature of the material’s MTs are not known. Thus, they are not
helpful in the search for new shape memory materials.

Quantum mechanics based first-principles DFT methods are valuable for investigating the energy
differences between many phases of a material, and for studying the stability (phonon criterion) of these
phases all at 0 K (Ye et al., 1997; Huang et al., 2002; Parlinski and Parlinska-Wojtan, 2002; Huang
et al., 2003; Parlinski et al., 2003). These methods are capable of calculating atomic-level information
regarding energies, forces, and stresses independent of any empirical fitting. DFT calculations such
as those of Huang et al. (2002, 2003) performed at 0 K show that the B2 cubic austenite crystal
structure of NiTi is mechanically unstable. This indicates that temperature effects are responsible for
the existence of a stable austenite phase in NiTi at high temperature. However, direct DFT based
studies of temperature effects on the microstructural behavior of MTs in NiTi and other SMAs are
prohibitive due to the computationally intensive nature of DFT calculations.

In contrast, atomistic models based on Molecular Dynamics (MD) or Monté Carlo (MC) simulations
are capable of capturing temperature effects and are invaluable for studying the behavior of homo-
geneous MTs. In particular, MD simulations based on different phenomenological atomic interaction
potentials have been useful for exploring the dependence of a MT on properties such as temperature,
composition, concentration of defects, etc. (Rubini and Ballone, 1995; Grujicic and Dang, 1995; Shao
et al., 1996; Meyer and Entel , 1998; Entel et al., 1999, 2000; Ozgen and Adiguzel , 2003; Wang et al.,
2006; Ishida and Hiwatari , 2007). However, the extension of MD and MC simulations to larger length-
and time-scales in order to study the formation and evolution of microstructures in SMAs is imprac-
tical except on the largest of currently available parallel-computing systems. Even on these systems,
the size of the simulations of interest would require considerable computation time. Thus, alternative
methods need to be developed.

The recent studies of Elliott et al. (2006a,b) and Guthikonda and Elliott (2008) provide a first
step in this direction. In these studies, Effective Interaction Potentials (EIPs) are used to model the
behavior of SMAs. That is, atomic interactions are modeled with empirical atomic potentials that are
explicit functions of temperature. The EIPs are computationally efficient and capable of capturing
a wide range of material behavior. Thus, the EIP methodology appears to be a promising tool for
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capturing the real atomic-scale behavior of materials that exhibit MTs while also allowing for the
efficient simulation of large-scale phenomena, for example, the formation of complex microstructures.
In Guthikonda and Elliott (2008) it is observed that an EIP model based on the Morse pair potential is
appropriate for capturing a transformation between the B2 cubic structure and the B19 orthorhombic
structure. Thus, in this work two EIP models are developed to study the B2 to B19 transformation
observed in Au-47.5at%Cd.

The remainder of this paper is organized as follows. Section 2 introduces the EIP model, Cauchy-
Born kinematics, the free energy density, equilibrium equations, and the stability criterion that will
be used in this work. Thermo-elastic crystal properties of interest are defined in Section 3. Section 4
gives a general description of the approach used to fit the EIP model parameters to experimental data
for a binary alloy. In Section 5 a simple model with temperature-dependent pair equilibrium spacing is
used to capture the behavior of AuCd. Section 6 discusses the behavior of the model developed in the
previous section. It is found that this model does not capture all the desired properties of AuCd. Thus,
Section 7 introduces a second EIP model which has temperature-dependent bond-stiffness and pair
equilibrium-spacing parameters. Section 8 discusses the behavior of this model, and finally, Section 9
summarizes the results of this work.

2 Effective Interaction Potential model

In this section a model of a perfect, infinite, bi-atomic crystal is presented. First, Section 2.1 discusses
the use of an effective pair potential to model the atomic interactions. Second, the kinematics used to
describe crystalline deformation are presented in Section 2.2. The focus of this work is to develop a
model for the SMA AuCd. This will involve fitting effective interaction potentials to experimentally
obtained values for not only the B2 cubic AuCd crystal, but also for pure face-centered cubic (FCC)
Au and pure hexagonal-close packed (HCP) Cd crystals. Thus, details of the kinematics for each of
these crystal structures are presented. Finally, Section 2.3 defines the crystal’s free energy density, its
equilibrium equations, and the appropriate stability criteria.

2.1 Effective pair potentials

All materials are made up of atoms. These atoms are attracted to each other by inter-atomic forces.
Within the EIP model (Elliott et al., 2006b; Elliott , 2008; Guthikonda and Elliott , 2008), these forces
are derived from empirical potentials. Here, a pair potential φ(r; θ) is used, where φ is the free energy
associated with an interaction between two atoms, r is the distance between two atoms, and θ = T

Tref

is

the non-dimensional temperature with T the absolute temperature and Tref a suitable (but arbitrary)
reference temperature. To model a particular material, first a functional form for the pair potential
is chosen, such as the well known Lennard-Jones or Morse potential. Next, the interactions between
atoms are made temperature-dependent by letting the parameters of the potential be functions of
temperature. Finally, any adjustable potential parameters are determined by a fitting procedure in
order to match the experimental values of a material’s properties.

Multiple types of atoms in a material give rise to multiple types of atomic interactions. For example,
a binary alloy such as AuCd is made up of two types of atoms denoted here by “a” (Au) and “b” (Cd)
which results in the need for three types of atomic pair interactions a − a, b − b, and a − b. In this
case, each of these interactions is modeled with a separate free energy potential denoted by φaa(r; θ),
φbb(r; θ), and φab(r; θ) respectively.

2.2 Cauchy-Born kinematics

In order to describe a perfect infinite crystalline material, a representative translational unit cell is
chosen and its associated lattice vectors, G1,G2, and G3 are identified. The chosen unit cell will
contain some number of atoms, N , and the crystal structure is constructed by using the lattice vectors
to generate the infinite number of translationally periodic images of the representative unit cell. This
is called a “multilattice” description of the crystal structure (Pitteri and Zanzotto, 2002).



4 Venkata Suresh Guthikonda, Ryan S. Elliott

Deformations of the crystal are described using Cauchy-Born (CB) kinematics (Huang and Born,
1962; Elliott et al., 2006a,b). Each unit cell in the crystal is labeled by a set of three integers ℓ =
(ℓ1, ℓ2, ℓ3) and each atom in a given unit cell is labeled by an integer α. Thus, the reference position
of atom α in unit cell ℓ is given by

X
[

ℓ
α

]

= X[ℓ] + P[α],

X[ℓ] = ℓ1G1 + ℓ2G2 + ℓ3G3,
(1)

where X[ℓ] is the position vector locating unit cell ℓ in space and P[α] is the relative position vector
locating atom α within this unit cell.

As described in Elliott et al. (2006b), CB kinematics describe the crystal’s deformation in terms
of “internal atomic shift vectors” S[α] and a uniform deformation characterized by a 3× 3 symmetric
right-stretch tensor U. Thus, the current position of atom α in unit cell ℓ is1

x
[

ℓ
α

]

= U · (X
[

ℓ
α

]

+ S[α]). (2)

To eliminate rigid-body translations, S[0] is set to zero. Rigid-body rotations have already been elim-
inated by the use of the symmetric right-stretch tensor U, instead of the general 3 × 3 deformation
gradient tensor F.

2.2.1 CB kinematics of the face-centered cubic crystal structure

The face-centered cubic (FCC) crystal has an essential unit cell that contains one atom (α ∈ {0}) as
shown in Fig. 1. The lattice basis vectors of this unit cell are given by

G1 =
a0

2
(e2 + e3), G2 =

a0

2
(e3 + e1), G3 =

a0

2
(e1 + e2), (3)

where a0 is the lattice parameter of the conventional FCC unit cell and {e1, e2, e3} is a reference
orthonormal basis aligned with the FCC cubic axis. The relative reference position vector locating
atom α = 0 within the one atom unit cell of the FCC crystal structure is, trivially, taken to be

P[0] = 0. (4)

The FCC structure is a Bravais lattice for which the CB kinematics of Eq. (2) simplify to give the
current position of each atom in terms of its reference position as

x
[

ℓ
0

]

= U ·X
[

ℓ
0

]

. (5)

2.2.2 CB kinematics of the hexagonal close-packed crystal structure

The hexagonal close-packed (HCP) crystal structure has an essential unit cell that contains two atoms
(α ∈ {0, 1}) as shown in Fig. 2. The lattice basis vectors of this unit cell are given by

G1 =
a0

2
(−e2 +

√
3e1), G2 = a0e2, G3 = c0e3, (6)

where a0 and c0 are the lattice parameters of the HCP crystal and {e1, e2, e3} is a reference orthonormal
basis as indicated in Fig. 2. The relative reference position vectors locating atoms α ∈ {0, 1} within
the two atom unit cell of the HCP crystal structure are taken to be

P[0] = 0, P[1] =
1

3
G1 +

2

3
G2 +

1

2
G3. (7)

2.2.3 CB kinematics of the B2 cubic crystal structure

The B2 cubic crystal structure has an essential unit cell that contains two atoms as shown on the
left side of Fig. 3. In this work, a non-essential unit cell containing four atoms (4-lattice) as shown on
the right side of Fig. 3 is used in order to capture the crucial deformation modes that determine the
stability of the B2 cubic crystal (see Guthikonda and Elliott , 2008 for further details).

1 Here the “Lagrangian” form of CB kinematics is used. Alternative forms are available, however we find this
to be the most intuitive representation.
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Fig. 1 Conventional unit cell, with four atoms, and essential unit cell, with one atom, of the FCC crystal
structure.
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Fig. 2 Conventional unit cell, with six atoms, and essential unit cell, with two atoms, of the HCP crystal
structure.

The non-essential lattice vectors, Gx,Gy, and Gz are the three non-coplanar vectors for the 4-
lattice unit cell. These vectors are related to the essential cubic basis vectors G1 = a0e1,G2 = a0e2,
and G3 = a0e3 (defining the essential unit cell shown on the left side of Fig. 3) by

Gx = G1 + G2, Gy = G2 − G1, Gz = G3. (8)

The reference relative position vectors of the four atoms α ∈ {0, 1, 2, 3} for the B2 cubic crystal
structure are

P[0] = 0, P[1] =
1

2
Gx +

1

2
Gz ,

P[2] =
1

2
Gx +

1

2
Gy, P[3] =

1

2
Gy +

1

2
Gz ,

(9)

where α = 0 and α = 2 correspond to “a” (Au) atoms and α = 1 and α = 3 correspond to “b” (Cd)
atoms as shown in Fig. 3.

2.3 Free energy density, equilibrium equations, and stability criteria

The EIP model gives the crystal’s bulk free energy density as half the sum of all effective pair-
interactions between atoms in one unit cell, say ℓ = (0, 0, 0), and all other atoms in the crystal,
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S[0] = 0

z

x
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Fig. 3 Essential unit cell (left), with two atoms, and the 4-lattice unit cell used in this work (right), with four
atoms, of the B2 cubic crystal structure.

normalized by the reference unit cell volume. Thus, the free energy density per unit reference volume
of a crystal is given by

∼
W (u; θ) =

1

2V

∑

α

∑

h

ℓ
′

α
′

i

φη(α)η(α
′

)
(

r
[

0 ℓ
′

α α
′

]

; θ
)

, (10)

where u = (U;S[α]) represents the chosen set of independent degrees of freedom (DOFs) that describe
the deformation of the crystal, θ is the non-dimensional temperature, V is the reference unit cell

volume, η(α) represents the type of atom α (“a”, “b”, “c”, etc.), and r
[

0 ℓ
′

α α
′

]

≡ ||x
[

ℓ
′

α
′

]

− x
[

0
α

]

|| is

the current distance between atom α
′

in unit cell ℓ
′

and atom α in the unit cell located at the origin.
The factor of 1/2 in Eq. (10) arises from the fact that the summation involves each interaction twice.

Technically, the summation over
[

ℓ
′

α
′

]

in Eq. (10) extends to all atoms in the infinite crystal, but

such a summation is computationally impossible. Due to the rapid decay of most commonly used pair
potentials, it is acceptable to employ a cutoff distance rcut. Here rcut is taken as seven atomic distance
units, which is found to be sufficient to ensure that the lattice sum in Eq. (10) is converged. Thus, the
summation in Eq. (10) extends to all atoms in the Eulerian sphere of influence, that is, all atoms such

that r
[

0 ℓ
′

α α
′

]

≤ rcut.

The equilibrium equations for the infinite perfect multilattice crystal with zero-stress conditions at

infinity are given by the derivatives of
∼
W ,

∂
∼
W

∂u
= 0







∂
∼

W
∂U

= 0,

∂
∼

W
∂S[α] = 0, α = 1, 2, ..., N − 1.

(11)

As shown in Elliott et al. (2006a) the translational periodicity of the crystal structure and the use
of multilattice CB kinematics ensures that solutions of Eqs. (11) also correspond to true equilibrium
configurations for the crystal. That is, if Eqs. (11) are satisfied, then the sum of forces acting on each
atom in the crystal is zero.

Due to the “microscopic” nature of the CB shift DOFs, their direct control is difficult if not
impossible. Therefore, most available experimental data corresponds to a state of the material in which
the shifts are in equilibrium. That is, they satisfy Eq. (11)2 for any given value of the deformation
U. Thus, the form of the material’s free energy density that is most appropriate for comparison to
macroscopic experimental data is the “Homogenized Continuum (HC) free energy density” (Elliott
et al., 2006a). To obtain the HC free energy density, Eq. (11)2 is used to implicitly define the shifts
S[α] as functions of the uniform deformation U and temperature θ, i.e., S[α] = S[α](U; θ). The HC
free energy density is then defined by

≈
W (U; θ) ≡

∼
W (U;S[α](U; θ); θ). (12)
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It is especially important to use the HC free energy density when calculating properties associated
with non-centrosymmetric crystals, such as the HCP Bravais lattice and the αIrV and B19 orthorhom-
bic structures encountered in Sections 6 and 8. This is because for these crystals the shifts couple
directly to the uniform deformation of the crystal and ignoring this coupling will result in significant
errors in the computation of many thermo-elastic material properties. It should be noted that the HC
free energy as defined here may not be single valued. That is, for any given deformation U there may
be multiple solutions to Eq. (11)2. These will lead to a multi valued HC free energy. Which of these

multiple values
≈
W (U; θ) takes on at any given time will then depend on the deformation history.

The stability of an equilibrium configuration, i.e., a solution to Eqs. (11), is defined in terms of
the “material stability” criterion of Elliott et al. (2006b). This requires the crystal to satisfy both
the “Cauchy-Born (CB) stability criterion” and the “phonon stability criterion.” The CB stability
criterion evaluates stability with respect to perturbations of the CB kinematics. The phonon stability
criterion evaluates stability with respect to all other bounded perturbations of the equilibrium crystal
structure. Together these criteria provide a robust measure of the crystal’s stability under soft loading
conditions. It is important to note that this stability criterion provides a measure of the crystal’s
stability that is independent of the particular CB kinematics used to describe the equilibrium crystal
structure. Complete definitions and detailed discussions of the CB and phonon stability criteria are
given in Elliott et al. (2006a) and Elliott (2008).

3 Thermo-elastic properties of crystals

In this section, the thermal and elastic material properties that are used in this work for fitting to and
comparison with available experimental data are presented.

The cohesive energy Ec is the energy (per atom) released by the formation of the crystal from a
set of dissociated atoms that are initially infinitely far apart and is given by

Ec = −
(

≈
W (U0; θ0)

)

V

N
, (13)

where
≈
W (U0; θ0) is the HC free energy density, U0 is the CB deformation corresponding to the stress-

free configuration at the non-dimensional temperature θ0, V is the reference unit cell volume, and
N is the number of atoms in the unit cell. The minus sign is required to obtain the energy released
during the crystal’s formation, due to the choice of energy datum corresponding to the dissociated set
of atoms.

The entropy per mole S is given by

S = − 1

Tref

∂
≈
W

∂θ

∣

∣

∣

∣

(U0;θ0)

V NA

N
, (14)

where NA is Avogadro’s constant (6.023 × 1023).
The thermal expansion tensor α is obtained by taking a total temperature derivative of the stress-

free equilibrium equation ∂
≈

W
∂U

= 0, setting ∂U

∂θ
≡ αTref , and solving for α, which results in2

α = − 1

Tref











∂2
≈
W

∂U2





−1

:





∂2
≈
W

∂U∂θ











(U0;θ0)

. (15)

For cubic crystals (or isotropic materials), α is an isotropic second-order tensor and one may speak of
the “linear thermal expansion coefficient.” However, for non-cubic (non-isotropic) materials, the direc-
tional dependence of thermal expansion must be specified and, therefore, one speaks of the “thermal
expansion tensor.”

2 The double tensor contraction A : B is defined in Cartesian tensor component form by AijBijkl.
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The heat capacity per mole at constant volume Cv is defined as

Cv = −





θ

Tref

∂2
≈
W

∂θ2





(U0;θ0)

V NA

N
. (16)

The definition of heat capacity per mole at constant pressure is Cp = T
(

∂S
∂T

)

p
. An expression for

Cp may be obtained by taking the total derivative of Eq. (14) and multiplying by T (= θ Tref) to obtain

Cp = −





θ

Tref

∂2
≈
W

∂θ2
+ θ

∂2
≈
W

∂θ∂U
: α





(U0;θ0)

V NA

N
, (17)

where α is the thermal expansion tensor of Eq. (15).
The instantaneous second-order elastic moduli may be obtained by defining a new energy density

with reference configuration taken as the current configuration,
≈

W ∗(U∗; θ) ≡
≈
W (U∗ ·U0; θ)/det(U0).

The instantaneous moduli are,

Lijkl =
∂2

≈
W ∗

∂U∗
ij∂U∗

kl

=
1

4 det(U0)



U0iq

∂2
≈
W

∂Uqj∂Uks

U0sl + U0iq

∂2
≈
W

∂Uqj∂Uls

U0sk+

U0jq

∂2
≈
W

∂Uqi∂Uks

U0sl + U0jq

∂2
≈
W

∂Uqi∂Uls

U0sk



 .

(18)

The instantaneous bulk modulus K for the material relates a change in volume to an increment in an
applied hydrostatic pressure. In terms of the instantaneous moduli L, the instantaneous bulk modulus
is

K = 1
/

3
[

P : L
−1 : P

]

(U0;θ0)
, (19)

where P = 1√
3
I represents a “unit pressure.” It is worth noting that some authors define the instan-

taneous bulk modulus as the proportionality constant relating a change in the spherical part of the
stress to an increment of an applied pure dilatation. This results in an instantaneous bulk modulus
defined as

K =
1

3
[ǫ : L : ǫ](U0;θ0)

, (20)

where ǫ = 1√
3
I represents a “unit dilation.”

The two definitions, Eq. (19) and Eq. (20), are in general, different. In the special case of a cubic
crystal or an isotropic material they agree but otherwise significant discrepancies occur3. Therefore,
one must use special care to determine which definition has been used when experimental data is
reported in the literature. We feel that Eq. (19) more accurately represents the common interpretation
of the instantaneous bulk modulus. Therefore, Eq. (19) will be used exclusively in the remainder of
this work.

3 For example, the instantaneous bulk modulus of HCP Cd (Fast et al., 1995) is K = 58.13 GPa when
Eq. (20) is used. However, a value 16.77% smaller, K = 48.38 GPa, is found when Eq. (19) is used.
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4 General approach to fitting model parameters

Once a specific EIP model has been adopted (as discussed in Section 2.1), the adjustable potential
parameters of the model must be determined in order to implement the model, as described in Sec-
tions 2.2 and 2.3, and to study the material’s SMA properties. The approach used in this work to
determine these parameters starts by choosing a reference temperature for which significant experi-
mental data is available for the alloy of interest. Next, the properties of the individual bond types
are fit to their corresponding elemental material properties. For example, the properties of Au at the
reference temperature are used in order to determine the adjustable potential parameters associated
with interactions of two Au atoms. Finally, the unlike bond parameters are fit so that the B2 austenite
structure’s properties match the experimental data for the SMA at the reference temperature.

In this way, all of the model’s behavior is determined in terms of the pure elemental properties
and the properties of the alloy at high temperature in the austenite phase. Note that this procedure
does not use any information about the martensite phase of the material. Thus, the properties of,
and even the existence of, the martensite phase are determined by the physics of the particular EIP
model under consideration. In particular, the relative properties of the like bonds, which are fit to
independent experimental data, provide a realistic setting that will either favor or disfavor the existence
of a transformation. Thus, the success of any particular model will be evaluated based on the model’s
prediction of the correct MT and its associated properties. This includes the model’s ability to capture
the correct martensite crystal structure, the structure’s lattice parameters, and quantities like the
latent heat of transformation.

Many alternative fitting procedures are possible. For instance, one could fit all of the model’s pa-
rameters (for both like and unlike bonds) to an extensive set of experimental data for the alloy. This
would, undoubtedly, provide a model that matches the alloy’s observed mechanical and thermal be-
havior more closely than the ones developed in this work. Here, however, we prefer the above described
procedure because of its ability to explore the relationship between the constituent element’s behavior
and the alloy’s MT behavior.

5 Model 1: Morse EIPs with temperature-dependent pair equilibrium spacing

The EIP model of Elliott et al. (2006b) is adapted to study the binary alloy Au-47.5at%Cd. This
model uses temperature-dependent Morse pair potentials. The pair equilibrium spacing r̂(θ) of the
potential is taken to be a linear function of temperature and all other parameters are independent of
temperature. Thus, the three Morse potentials which account for the three types of interactions present
in the binary alloy take the general form

φ(r; θ) = A

{

exp

[

−2B

(

r

r̂(θ)
− 1

)]

− 2 exp

[

−B

(

r

r̂(θ)
− 1

)]}

,

r̂(θ) = rref + rθ(θ − 1).

(21)

The parameters rref and rθ are constants that describe the linear variation of r̂ with θ. Thus, the model
has 12 parameters, four per bond type, that will be fit to the experimental data for pure Au, pure Cd,
and B2 AuCd. A reference temperature of Tref = 323 K is used. This is an arbitrary, but convenient
choice corresponding to the experimentally observed transformation temperature of Au-47.5at%Cd
(Zirinsky, 1956).

In Guthikonda (2007), an attempt to determine the potential parameters was made by fitting
experimental values of the lattice parameters and two elastic moduli for Au, Cd, and AuCd at the
reference temperature. For this temperature (θ = 1) the three parameters A, B, and rref must be
determined for each bond type. Note that the parameter rθ becomes insignificant at θ = 1. Lattice
parameters and elastic moduli were chosen for fitting due to their significant role in MTs. Fitting
the experimental values of lattice parameters is important due to the crucial role that geometric
compatibility is known to play in the formation of microstructure during MT (Bhattacharya, 2003).
Additionally, since MTs result from lattice instabilities it seemed sensible to regard the material’s
elastic moduli, which are the indicators of stability, as important quantities to match as well.

Unfortunately, it was determined that a fitting procedure for the effective Morse pair potentials
that matches the lattice parameters and two elastic moduli of the material of interest is not possible.
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See Guthikonda (2007) for a detailed discussion. Thus, a more generalized procedure is adapted to
determine the adjustable parameters by fitting the experimental values of lattice parameter, instanta-
neous bulk modulus, and cohesive energy. This procedure follows that of Girifalco and Weizer (1959)
who fit the Morse potential for a number of cubic pure elements. They did not, however, consider
alloys or temperature-dependent potentials as considered here. The fitting procedure first determines
the like-interaction potential parameters from the properties of the corresponding pure materials and
finally determines the unlike-interaction potential parameters from the properties of B2 AuCd at the
reference temperature.

5.1 Fitting of potential parameters for Au-Au interactions

The pure Au bond parameters Aaa, Baa, raa
ref , and raa

θ are determined by fitting the stress-free equilib-
rium FCC lattice spacing a, instantaneous bulk modulus K, cohesive energy Ec, and linear thermal
expansion coefficient α at the reference temperature. A simple trial and error approach was used to
match these parameters to the experimental values of FCC Au given in Table 1.

FCC Au at T=323 K

Property Value

Lattice parameter (a) 4.0812 Å
Bulk modulus (K) 172.2 GPa

Cohesive energy (Ec) 3.81 eV
atom

Linear thermal expansion coefficient (α) 14.24 × 10−6 K−1

Table 1 Experimental values of lattice parameter a, instantaneous bulk modulus K, cohesive energy Ec, and
linear thermal expansion coefficient α for FCC Au at 323 K (Villars et al., 1985; Neighbours and Alers, 1958;
Kittel , 2005).

The fitted parameters for the effective Morse potential for pure Au, φaa(r; θ), are given in Table 2.
Figure 4 shows the variation of lattice parameter and instantaneous bulk modulus of FCC Au with

Parameter Value

Aaa 0.4754131760 eV
Baa 4.7788992600

raa
ref 3.0284951200 Å

raa
θ 0.0139252220 Å

Table 2 Fitted parameters for the effective Morse potential for pure Au, φaa(r; θ).

respect to θ for the resulting potential. It is recognized that negative values of θ are not physical,
but the full diagrams are presented for consistency with the figures of Section 6 and so that the
model’s complete range of behavior is illustrated. The plus sign in each plot shows the corresponding
experimental value given in Table 1. At the reference temperature, the cohesive energy of the fitted
potential is equal to the experimental value given in Table 1. As θ varies, Ec changes negligibly due to
a weak dependence on temperature resulting from the small value of raa

θ . Finally, it can be shown that,
for the potential of Eq. (21), the linear thermal expansion coefficient of a Bravais lattice is constant. For
the potential defined by the parameters in Table 2, the linear thermal expansion coefficient matches
that of FCC Au given in Table 1.
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Fig. 4 Variation of lattice parameter a and instantaneous bulk modulus K of FCC Au with respect to the non-
dimensional temperature θ for the parameters in Table 2. Plus signs identify the corresponding experimental
values at the reference temperature θ = 1.

5.2 Fitting of potential parameters for Cd-Cd interactions

A similar procedure is used to match the experimental values of the HCP close-packed plane lattice
parameter, instantaneous bulk modulus, cohesive energy, and the in-plane linear thermal expansion
coefficient. The experimental values are given in Table 3. The resulting parameters of the Cd interaction
potential, φbb(r; θ), are given in Table 4.

HCP Cd at T=323 K

Property Value

Lattice parameter (a) 2.9751 Å
Bulk modulus (K) 48.38 GPa

Cohesive energy (Ec) 1.16 eV
atom

Thermal expansion coefficient (α) 22.1 × 10−6 K−1

Table 3 Experimental values of lattice parameter a, instantaneous bulk modulus K, cohesive energy Ec, and
in-plane linear thermal expansion coefficient α at 323 K (Garland and Silverman, 1960; Kittel , 2005; Villars
et al., 1985).

Parameter Value

Abb 0.1450200350 eV

Bbb 4.8068349900

rbb
ref 3.1179265800 Å

rbb
θ 0.0300213183 Å

Table 4 Fitted parameters for the effective Morse potential for pure Cd, φbb(r; θ).

Figure 5 shows the variation of the lattice parameter a and instantaneous bulk modulus K of
HCP Cd with respect to θ for the fitted parameters in Table 4. The plus sign in each plot shows the
experimental value given in Table 3. At the reference temperature, the cohesive energy of the fitted
potential is equal to the experimental value given in Table 4. As θ varies, Ec changes negligibly due
to a weak dependence on temperature resulting from the small value of rbb

θ . Similar to the case of Au,
the thermal expansion tensor is constant and equal to the value given in Table 4.
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Fig. 5 Variation of lattice parameter a and instantaneous bulk modulus K of HCP Cd with respect to the non-
dimensional temperature θ for the parameters in Table 4. Plus signs identify the corresponding experimental
values at the reference temperature θ = 1.

5.3 Fitting of potential parameters for Au-Cd interactions

The unlike bond parameters are fit with a procedure similar to that used for the like bond interactions.
The experimental values of lattice parameter, instantaneous bulk modulus, cohesive energy, and linear
thermal expansion coefficient of the B2 crystal structure of Au-47.5at%Cd at the reference temperature
are given in Table 5. Unfortunately, the potential parameters found by fitting to the values in Table 5
result in a model for which the B2 structure is always unstable within a reasonable temperature range.
To address this short coming, the fitting procedure is modified.

B2 AuCd at T=323 K

Property Value

Lattice parameter (a) 3.3165 Å
Bulk modulus (K) 95.78 GPa

Cohesive energy (Ec) 2.6936473 eV
atom

Thermal expansion coefficient (α) 20.9 × 10−6 K−1

Table 5 Experimental values of lattice parameter a, instantaneous bulk modulus K, cohesive energy Ec, and
linear thermal expansion coefficient α of B2 AuCd at 323 K (Chang and Read , 1951; Zirinsky , 1956; McGilip,
1987).

Since lattice parameter and elastic constant play an important role during MT, the fitting of
lattice parameter and bulk modulus are retained. The matching of cohesive energy for the unlike bond
interaction is replaced by requiring that the B2 alloy be at its stability transition point at the reference
temperature. This is appropriate because the reference temperature is chosen as the experimentally
observed transformation temperature of Au-47.5at%Cd. The like bond parameters remain as found in
Sections 5.1 and 5.2. The complete set of 12 parameters for the three Morse potentials of the EIP model
of Eq. (21) is given in Table 6. Figure 6 shows the variation of lattice parameter, instantaneous bulk
modulus, cohesive energy, and linear thermal expansion coefficient of B2 AuCd with non-dimensional
temperature θ. Plus signs show the corresponding experimental values from Table 5. Note that the
experimental cohesive energy Ec is not matched at the reference temperature.

6 Temperature induced MTs associated with Model 1

In order to evaluate the EIP model for AuCd developed in the previous section, its stress-free bifurcation
diagram is generated with the non-dimensionalized temperature θ serving as loading parameter. The
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techniques of Elliott et al. (2002a,b, 2006a,b) are used to identify bifurcation points and emerging
bifurcated equilibrium paths. Figure 7 displays the results by plotting the maximum principal stretch
λ3 (largest eigenvalue of the right stretch tensor U) vs. the non-dimensional temperature θ. The B2
austenite phase (red line) changes stability at θ = 1 (by construction) and a set of equilibrium paths
emerge from this bifurcation point which correspond to B19 and αIrV type crystal structures (see U.S.
NRL Center for Computational Materials Science, 2008). In the bifurcation diagram, unstable path
segments are represented by dashed lines and stable (CB and phonon) path segments are represented
by solid lines. Bifurcation points are shown by open circles and turning points by solid circles on
the equilibrium paths. After emerging from the bifurcation point at θ = 1, the B19 equilibrium path
(green line) becomes stable as it crosses a turning point near θ = 32 and continues to be stable
until it encounters a bifurcation point near θ = −20. Ultimately, the B19 equilibrium path reconnects
with the B2 path at a bifurcation point near θ = −13. Similarly, the αIrV equilibrium path (purple
line) emerges from the B2 bifurcation point, traverses a turning point, and then becomes stable at
the bifurcation point near θ = −1. It continues to be stable until it reaches a turning point at a
temperature near θ = −65. Finally, the αIrV path reconnects with the B2 path at the same point as
the B19 path. The bifurcation points on the B19 and αIrV paths are connected by unstable monoclinic
paths that have space group symmetry P2/m (yellow line). The existence of a stable B19 phase at the
reference temperature (θ = 1) indicates the possibility of a MT between the B2 and B19 structures.
The associated transformation stretch tensor U∗ for the current model is found to be

U∗ =





1.05451615 0.02919474 0
0.02919474 1.05451615 0

0 0 0.89921453



 , (22)

where UB19 = U∗ ·UB2. Here, UB19 is the Right Stretch tensor for the stress-free configuration of the
B19 orthorhombic structure at the reference temperature (θ = 1), and UB2 is the Right Stretch tensor
of the stress-free B2 cubic structure at θ = 1. The components of U∗ are given in an ortho-normal
basis aligned with the reference B2 cubic axes. The corresponding experimental value (Ohba et al.,
1990) is

U∗
exp =





1.0260 0.0100 0
0.0100 1.0260 0

0 0 0.9501



 . (23)

There is reasonable agreement between the EIP model’s prediction and the experimentally observed
value of the transformation stretch tensor.

Model 1

Parameter Value

Aaa 0.4754131760 eV
Baa 4.7788992600

raa
ref 3.0284951200 Å

raa
θ 0.0139252220 Å

Abb 0.1450200350 eV

Bbb 4.8068349900

rbb
ref 3.1179265800 Å

rbb
θ 0.0300213183 Å

Aab 0.1426239530 eV

Bab 6.0000000000

rab
ref 3.0855868000 Å

rab
θ 0.0205887304 Å

Table 6 Fitted parameters for the Morse EIP Model 1 of Au-47.5at%Cd.
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Fig. 6 Variation of cohesive energy Ec, linear thermal expansion coefficient α, lattice parameter a, and in-
stantaneous bulk modulus K of B2 Au-47.5at%Cd with non-dimensional temperature θ for the parameters in
Table 6. Plus signs identify the corresponding experimental values at the reference temperature θ = 1.

The variation of the HC free energy density with θ is shown in Fig. 8. This plot reveals a couple of
problems with the current model for AuCd. First, the B19 phase is found to be stable for a wide range
of temperatures. This implies too large of a temperature hysteresis for the B2 ↔ B19 MT. Second,
these stress-free free energy vs. temperature curves should be interpreted as the Gibbs free-energy
density of the material (variation of energy with temperature under constant stress conditions). Under
this interpretation, one may immediately note that the model predicts negative values of both entropy
(corresponding to the negative of the slope of the curves in Fig. 8, and defined by Eq. (14)) and heat
capacity at constant pressure (proportional to the second derivative of the curves in Fig. 8, and defined
by Eq. (17)). This is further illustrated in Fig. 9 and Fig. 10, which plot the entropy per mole and heat
capacity per mole at constant pressure vs. θ respectively. The basic laws of equilibrium thermodynamics
dictate that these quantities must be positive for a stable material. It is therefore concluded that the
EIP model, characterized by Eq. (21), is not capable of accurately predicting both the mechanical and
thermal properties of the SMA Au-47.5at%Cd. The next section of this work introduces a more general
form of the Morse EIP model that is capable of more accurately capturing these properties.

7 Model 2: Morse EIPs with temperature-dependent bond stiffness and pair equilibrium

spacing

The effective Morse pair potential is now extended to include a linear temperature dependence of the
bond stiffness parameter B giving

φ(r; θ) = A

{

exp

[

−2B(θ)

(

r

r̂(θ)
− 1

)]

− 2 exp

[

−B(θ)

(

r

r̂(θ)
− 1

)]}

,

r̂(θ) = rref + rθ(θ − 1),

B(θ) = Bref + Bθ(θ − 1).

(24)
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Fig. 7 Variation of λ3 (largest eigenvalue of U) for the stress-free B2, B19, αIrV, and P2/m crystal structures
with respect to non-dimensional temperature θ.
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Fig. 8 Variation of Homogenized Continuum free energy density
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W for B2, B19, αIrV, and P2/m crystal
structures with respect to non-dimensional temperature θ.

The introduction of the temperature-dependent parameter B(θ) provides a mechanism by which the
model may reduce its free energy as the temperature increases at constant configuration. A negative
value of Bθ is needed to obtain positive entropies and heat capacities, and thus the effective potential
bonds are expected to soften with θ, i.e., B(θ) decreases with increasing temperature.

The fitting procedure of Section 5 remains unchanged, but in addition, the heat capacity Cp at
the reference temperature for Au, Cd, and the B2 AuCd alloy are matched by the choice of the new
parameters Baa

θ , Bbb
θ , and Bab

θ respectively. Table 7 gives the experimental values for the heat capacities
used for fitting. Note, due to the temperature dependence of B(θ), new values of raa

θ , rbb
θ , and rab

θ must
also be determined in order to ensure that the model matches the experimental thermal expansion
values.
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Fig. 9 Variation of entropy per mole S for B2, B19, αIrV, and P2/m crystal structures with respect to
non-dimensional temperature θ.
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Fig. 10 Variation of heat capacity per mole at constant pressure Cp for stable path segments of the B2, B19,
and αIrV crystal structures with respect to non-dimensional temperature θ.

Using the definition of Cp from Eq. (17), and a trial and error approach, the fitted parameters
given in Table 8 are obtained.

Thus, the potentials of Eq. (24) along with the parameters given in Table 8 fully define a new EIP
model for Au-47.5at%Cd. This model matches the B2 lattice parameter, instantaneous bulk modulus,
linear thermal expansion coefficient, and heat capacity of B2 AuCd at the experimental transformation
temperature (reference temperature, θ = 1). Additionally, the B2 structure is unstable for temperatures
below θ = 1 and stable (CB and phonon) for temperatures greater than θ = 1.

Figure 11 shows the variation of cohesive energy, linear thermal expansion coefficient, lattice param-
eter, entropy per mole, instantaneous bulk modulus, and heat capacity per mole at constant pressure
of FCC Au with respect to non-dimensional temperature θ. Again, it is recognized that negative values
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of θ are not physical, but the full diagrams are presented for consistency with figures of Section 8 and
so that the model’s complete range of behavior is illustrated. The plus signs show the experimental
values given in Table 1 and Table 7. The cohesive energy increases with θ. The linear thermal expansion
coefficient decreases with θ. This is in contradiction to general experimental observation (Villars et al.,
1985). The lattice parameter increases as θ is increased but starts decreasing for temperatures above
about θ = 1.8. Again, this is in contradiction with general experimental observation (Villars et al.,
1985). The instantaneous bulk modulus decreases as θ increases and the entropy per mole increases as
θ increases. The heat capacity per mole at constant pressure decreases as θ increases for negative values
of θ. However, for positive values of θ, it increases with θ which satisfies the general thermodynamic
principles.

Figure 12 shows values for HCP Cd of the cohesive energy, in-plane linear thermal expansion
coefficient, close-packed plane lattice parameter, entropy per mole, instantaneous bulk modulus, and
heat capacity per mole at constant pressure. The plus sign in each plot shows the experimental values
given in Table 3 and Table 7. In this case, the cohesive energy rapidly increases as θ increases for higher
temperatures. The in-plane linear thermal expansion coefficient decreases rapidly with increasing θ
at higher temperatures. The lattice parameter increases for low temperatures but starts decreasing
for temperatures above θ = 1.8. This is in contradiction with the experimental observation. The
instantaneous bulk modulus decreases as θ increases and the entropy per mole increases with θ. The
heat capacity per mole at constant pressure decreases as θ increases for negative values of θ, but
increases with θ for positive values of θ.

Figure 13 shows the variation of cohesive energy, linear thermal expansion coefficient, lattice param-
eter, entropy per mole, instantaneous bulk modulus, and heat capacity per mole at constant pressure

Material Heat capacity, Cp ( J
mol K )

Au 25.5117308
Cd 26.2962308
Au-47.5at%Cd 26.3181507

Table 7 Experimental values of heat capacity per mole at constant pressure (Cp) of pure Au, pure Cd, and
B2 Au-47.5at%Cd at 323 K (Wallace, 1998; McGilip, 1987).

Model 2

Potential parameter Value

Aaa 0.4754131760 eV
Baa

ref 4.7765863800
Baa

θ −0.3512000000

raa
ref 3.0284951200 Å

raa
θ 0.0602367679 Å

Abb 0.1450200350 eV

Bbb
ref 4.8068349900

Bbb
θ −0.6543000000

rbb
ref 3.1179265800 Å

rbb
θ 0.1066030280 Å

Aab 0.1426239530 eV

Bab
ref 6.0000000000

Bab
θ −0.9648000000

rab
ref 3.0855868000 Å

rab
θ 0.0979112472 Å

Table 8 Fitted parameters for the Au-47.5at%Cd Morse EIP model of Eq. (24).
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Fig. 11 Variation of cohesive energy Ec, linear thermal expansion coefficient α, lattice parameter a, entropy
per mole S, instantaneous bulk modulus K, and heat capacity per mole at constant pressure Cp of FCC
Au vs. non-dimensional temperature θ for the parameters in Table 8. Plus signs identify the corresponding
experimental values at the reference temperature θ = 1.

of B2 AuCd. The plus sign in each plot shows the corresponding experimental value given in Table 5
or Table 7. Note that it was not possible to match the experimental cohesive energy Ec at the refer-
ence temperature. The cohesive energy increases with θ for positive θ. The linear thermal expansion
coefficient decreases as θ increases which is in contradiction with experimental results. For low values
of θ, the lattice parameter increases with θ, but around θ = 1.8 it starts decreasing. This is also in
contradiction with experimental observations. The instantaneous bulk modulus decreases as θ increases
and entropy per mole increases as θ increases. The heat capacity per mole at constant pressure de-
creases as θ increases for negative values of θ but increases for positive values of θ, in agreement with
thermodynamic principles.

The unphysical negative thermal expansion coefficient found for this model is certainly undesirable.
We believe that this aspect of the model’s behavior could be rectified by the use of a more general



Toward an Effective Interaction Potential Model for the Shape Memory Alloy AuCd 19

θ

Ec

( eV
atom)

−7 −5 −3 −1 1 3

0.8

1

1.2

1.4

1.6

1.8

+

θ

α
(10−5 K−1)

−7 −5 −3 −1 1 3

−12.5

−7.5

−2.5

2.5

7.5

12.5

+

θ

a
(Å)
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Fig. 12 Variation of cohesive energy Ec, in-plane linear thermal expansion coefficient α, close-packed plane
lattice parameter a, entropy per mole S, instantaneous bulk modulus K, and heat capacity per mole at constant
pressure Cp of HCP Cd vs. non-dimensional temperature θ for the parameters in Table 8. Plus signs identify
the corresponding experimental values at the reference temperature θ = 1.

EIP model with more complicated temperature dependence of the potential parameters. However, the
development of such a model is not pursued in this work.

8 Temperature-induced MTs associated with Model 2

A stress-free bifurcation diagram is generated for Model 2 in order to evaluate its ability to correctly
predict the B2 to B19 phase transformation found in Au-47.5at%Cd. Figure 14 displays the results
by plotting the maximum principal stretch λ3 vs. non-dimensional temperature θ. The B2 austenite
phase (red line) is stable at higher temperatures and becomes unstable as the temperature is decreased
with bifurcation at θ = 1 (Tref=323 K). The B2 phase is predicted to re-stabilize for temperatures
below θ = −4.48. However, if one restricts attention to positive temperatures (which have physical
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Fig. 13 Variation of cohesive energy Ec, linear thermal expansion coefficient α, lattice parameter a, en-
tropy per mole S, instantaneous bulk modulus K, and heat capacity per mole at constant pressure Cp of
B2 Au-47.5at%Cd vs. non-dimensional temperature θ for the parameters in Table 8. Plus signs identify the
corresponding experimental values at the reference temperature θ = 1.

significance) a reasonable correspondence with experiments can be identified. A set of B19 and αIrV
orthorhombic equilibrium paths emerge from the bifurcation point at θ = 1. The B19 equilibrium
path (green line) is initially unstable as it emerges from the bifurcation point, but becomes stable at
a turning point near θ = 2.18. It continues to be stable until it encounters the bifurcation point at
θ = −3.96. Eventually, the B19 path reconnects with the original B2 path at a bifurcation point near
θ = −4.48. Similarly, the αIrV equilibrium path (purple line) is initially unstable but becomes stable
near θ = 2.18. It continues to be stable until θ = 1.24 where it encounters a bifurcation point. The
αIrV path becomes stable once again at the bifurcation point near θ = −2.24 and it remains stable
until it encounters a turning point at θ = −6.76. Finally, it reconnects with the B2 path at the same
bifurcation point as the B19 path. It is also observed that unstable paths of a monoclinic structure
with space group P2/m (yellow lines) connect the B19 path to the αIrV path through their respective
bifurcation points. On further exploration, it is observed that an unstable L10 path (blue line) emerges
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from a second bifurcation point on the B2 path at θ = 0.46. It becomes stable near θ = 2 and continues
to be stable until θ = −5.03. Two additional unstable paths of the B19 and αIrV phases are also found
that connect the two secondary bifurcation points on the L10 path at θ = 0.65 and θ = −4.19.
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Fig. 14 Variation of λ3 (largest eigenvalue of U) of B2, B19, αIrV, P2/m, and L10 crystal structures of
Au-47.5at%Cd with respect to non-dimensional temperature θ.
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Fig. 15 Variation of ||S|| of B2, B19, αIrV, P2/m, and L10 crystal structures of Au-47.5at%Cd with respect
to non-dimensional temperature θ.

Figure 15 plots the variation of the norm of the internal atomic shifts ||S|| with respect to the

non-dimensional temperature θ. Here the norm is defined as ||S|| = (||S[1]||2 + ||S[2]||2 + ||S[3]||2) 1

2 . In
this figure the L10 path (for which ||S|| = 0) falls directly over the B2 path.
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W of B2, B19, αIrV, P2/m, and L10 crystal structures of Au-
47.5at%Cd with respect to non-dimensional temperature θ.
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Fig. 17 Variation of free energy density
≈

W of stable path segments for the B2, B19, αIrV, P2/m, and L10

crystal structures of Au-47.5at%Cd with respect to non-dimensional temperature θ.

The variation of the HC free energy density
≈
W with respect to the non-dimensional temperature

θ is plotted in Fig. 16. For non-dimensional temperatures above θ = −3 the slope and curvature of all
stress-free equilibrium paths are found to be negative. This indicates that the entropy and heat capacity
at constant pressure are positive, as required by equilibrium thermodynamics. For temperatures below
θ = −3, this is not the case. However, this is not a problem since negative temperatures do not have
physical significance. At this point, we restrict our attention to a positive temperature range of θ = 0.5

to θ = 2.5 and consider the variation of the HC free energy density
≈
W , unit cell volume V , cohesive

energy Ec, instantaneous bulk modulus K, entropy per mole S, and heat capacity per mole at constant
pressure Cp of the stable path segments with respect to non-dimensional temperature θ.
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Fig. 18 Variation of unit cell volume of the B2, B19, αIrV, and L10 crystal structures for Au-47.5at%Cd with
respect to non-dimensional temperature θ.

θ

Ec

( eV
atom)

0.5 1 1.5 2 2.5
1.5

1.7

1.9

2.1

B2

αIrV
B19

L10

Fig. 19 Variation of cohesive energy Ec of the B2, B19, αIrV, and L10 crystal structures for Au-47.5at%Cd
with respect to non-dimensional temperature θ.

Figure 17 displays the variation of
≈
W of the B2, B19, αIrV, and L10 stable phases with respect to

θ. At high temperatures the B2 crystal is the only stable phase. Figure 18 displays the variation of unit
cell volume with respect to non-dimensional temperature θ. The unit cell volume of all stable phases are
nearly equal which shows that any MTs predicted by this model will result in a volume change of less
than 1%. At low temperatures, the volume increases as temperature is increased which is in coincidence
with general experimental observations, but it starts decreasing for temperatures above around θ = 1.4.
This is not the behavior that is observed experimentally. However, if one restricts consideration to
values of θ below 1.4, the model is in reasonable agreement with the general experimental observations.
Figure 19 displays the variation of cohesive energy with respect to the non-dimensional temperature
θ. The cohesive energy is found to increase with temperature for all phases. Figure 20 displays the
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Fig. 20 Variation of instantaneous bulk modulus K of the B2, B19, αIrV, and L10 crystal structures for
Au-47.5at%Cd with respect to non-dimensional temperature θ.
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Fig. 21 Variation of entropy S of the B2, B19, αIrV, and L10 crystal structures for Au-47.5at%Cd with
respect to non-dimensional temperature θ.

variation of instantaneous bulk modulus with respect to non-dimensional temperature θ. Figures 21
and 22 display the variation of entropy and heat capacity at constant pressure, respectively, with
respect to non-dimensional temperature θ. In general, entropy and heat capacity are found to increase
with temperature. This is in general agreement with thermodynamic theory. Note that both entropy
and heat capacity at constant pressure are positive which is not the case in Model 1.

Returning to Fig. 17, it is observed that upon decreasing temperature the B2 phase becomes
metastable at θ = 2.069 (with the B19 phase having lower free energy for higher temperatures) and
finally loses stability at θ = 1. At this temperature the only stable phases are B19 and L10. However,
B19 is the stable phase with minimum free energy. Thus, a transformation from B2 to B19 can be
expected. For lower temperatures the B19 phase continues to be the stable phase with minimum



Toward an Effective Interaction Potential Model for the Shape Memory Alloy AuCd 25

θ

Cp

( J
mol K)

0.5 1 1.5 2 2.5
0

50

100

150
B2

αIrV

B19

L10

Fig. 22 Variation of heat capacity at constant pressure Cp of the B2, B19, αIrV, and L10 crystal structures
for Au-47.5at%Cd with respect to non-dimensional temperature θ.

free energy. In the case of increasing temperature, the orthorhombic B19 structure has the global
minimum free energy until θ = 2.069 where it becomes metastable with respect to the B2 phase. It
loses stability soon afterward at θ = 2.19 where it ceases to exist for higher temperatures. Thus, a
hysteretic martensitic transformation between the B2 and B19 structures is predicted. Ideally, one
should verify that no other equilibrium crystal structures exist with lower energy. This would ensure
that the minimum energy phases shown in Fig. 17 capture the model’s ground state phase at any given
temperature. However, this theoretically infinite investigation is not pursued in this work.

At the transformation temperature, 323 K (Zirinsky, 1956), the transformation stretch is

U∗ =





1.05451615 0.02919474 0
0.02919474 1.05451615 0

0 0 0.899214532



 , (25)

which is same as that found in Section 6. This is because the models of Section 5 (Model 1) and

Section 7 (Model 2) coincide when θ = 1. The latent heat (∆
≈
W + T∆S) associated with the B2

to B19 transformation at θ = 1 is calculated as −557.41 − 218.14 = −775.55 cal
mol (negative values

correspond to exothermic transition) which is within a factor of 10 of the experimental value for the
latent heat of transformation from B2 to B19 which is −88 cal

mol (Nakanishi et al., 1973). In contrast to
Model 1, Model 2 is more accurate in two important ways. First, the current model has positive entropy
and heat capacity (at least for positive temperatures), as required by equilibrium thermodynamics.
Second, the temperature range over which the B19 phase is stable is more in line with what is observed
experimentally.

Thus, it is found that the current Morse EIP model for Au-47.5at%Cd is able to match the lattice
parameter, instantaneous bulk modulus, and stability range of the B2 austenite phase as well as the
austenite’s linear thermal expansion coefficient and its heat capacity at constant pressure at θ = 1.
Further, the model predicts the existence of a temperature-induced hysteretic B2 to B19 martensitic
phase transformation, and the transformation stretch tensor is predicted with reasonable accuracy.
Finally, the latent heat of transformation and the size of the temperature hysteresis are predicted to
be within an order of magnitude.
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9 Discussion

An Effective Interaction Potential (EIP) model is developed to study the properties of crystalline
materials. In this model, effective pair potentials are used for the material’s atomic interactions and
the deformations of the crystal are described by Cauchy-Born (CB) kinematics. The crystal’s free
energy density and equilibrium equations are formulated and stability criteria (both CB and phonon)
are used to evaluate the material’s stability at any equilibrium configuration. This general model is
then applied to study the properties of the Shape Memory Alloy (SMA) Au-47.5at%Cd.

A first model uses temperature-dependent Morse pair potentials with the pair equilibrium spacing
taken as a linear function of temperature and all other parameters independent of temperature. The
adjustable parameters in each potential are fit by matching the Au-47.5at%Cd experimental values of
lattice parameter, instantaneous bulk modulus, cohesive energy, and linear thermal expansion coeffi-
cient at the transformation temperature. The model is evaluated by calculating its stress-free equilib-
rium bifurcation diagram. This diagram identifies the existence of stable B2 cubic, B19 orthorhombic,
and αIrV orthorhombic phases. From the plot of maximum principal stretch vs. non-dimensional tem-
perature it is observed that the B19 phase is the only stable phase that exists below the transformation
temperature (θ = 1) where the B2 phase become unstable. This indicates the possibility of a Marten-
sitic Transformation (MT) between the B2 and B19 structures. The associated transformation stretch
tensor is calculated and found to be in reasonable agreement with the corresponding experimental
value. However, a plot of the stress-free Homogenized Continuum (HC) free energy density with re-
spect to temperature reveals a couple of problems with this model. First, the B19 phase is found to
be stable for a wide range of temperatures which implies too large of a temperature hysteresis for
the B2 ↔ B19 MT. Second, the model predicts negative values of both entropy and heat capacity at
constant pressure which violate the basic laws of equilibrium thermodynamics for a stable material.

Therefore, a second model is developed using a more general form of the Morse EIP model that
is capable of addressing these short comings. In this model the temperature dependence is extended
to include a linear temperature dependence of the bond stiffness parameter. The fitting procedure of
the first model is used again, and in addition, the heat capacity at constant pressure of Au, Cd, and
B2 AuCd are matched at the reference temperature. A stress-free bifurcation diagram is generated
to evaluate the new model’s ability to correctly predict the MT between the B2 and B19 structures.
From the plot of the maximum principal stretch vs. non-dimensional temperature it is observed that a
B2 ↔ B19 MT occurs with a reasonable temperature hysteresis. The transformation stretch is found
to be in reasonable agreement with the experimental value. Further, it is found that the current model
is able to capture the (approximately) volume preserving nature of the martensitic transformation in
AuCd. However, the model predicts a decrease in unit cell volume as temperature increases which is in
contradiction to experimental observations. It is also found that the model predicts the latent heat of
transformation and size of temperature hysteresis to within an order of magnitude. We believe that a
more general EIP model would be capable of correcting the negative thermal expansion and improving
the prediction of latent heat and thermal hysteresis. However, the development of this model is left to
future work.

Thus, the final Morse EIP model (Model 2) is capable of matching lattice parameter, instantaneous
bulk modulus, cohesive energy, linear thermal expansion coefficient, and heat capacity at the reference
temperature. Further, the model predicts the existence of a B2 to B19 martensitic phase transformation
with properties that are in agreement with experimental observations. It should be noted that the
fitting procedure used in the model’s development did not include any data associated with the B19
martensite phase of the material.

Based on the above positive results, it is believed that EIP models have the potential for accurately
capturing the entire range of SMA behavior. These EIP models are computationally inexpensive when
compared to Molecular Dynamics, Monté Carlo, and Density Functional Theory models. Thus, EIP
models are an appealing accurate and computationally efficient alternative to more traditional simula-
tion methodologies when one is interested in performing large scale simulations (such as the formation
of complicated microstructures, or the interaction of a crack tip with the phase transformation) for
materials that exhibit MTs including SMAs.



Toward an Effective Interaction Potential Model for the Shape Memory Alloy AuCd 27

Acknowledgements
The authors would like to thank Ellad B. Tadmor and Traian Dumitrica for helpful comments and suggestions.

This work has been supported by the National Science Foundation CAREER Grant CMMI-0746628 (Dr.
Shih-Chi Liu, Program Director); by The University of Minnesota Grant-In-Aid of Research, Artistry and
Scholarship Program (GIA); and by The University of Minnesota Supercomputing Institute.

References

K. Bhattacharya. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-
Memory Effect. Oxford University Press, 2003.

L. C. Brinson. One dimensional constitutive behavior of shape memory alloys: thermomechanical
derivation with non-constant material functions. Journal of Intelligent Material Systems and Struc-
tures, 4(2):229–242, 1993.

L. C. Brinson and M. S. Huang. Simplifications and comparisons of shape memory alloy constitutive
models. Journal of Intelligent Material Systems and Structures, 7:108–114, 1996.

A. Bystrom and K. E. Almin. X-ray investigation of AuCd alloys rich in Au. Acta Chemica Scandi-
navica, 1(1):76–89, 1947.

L. C. Chang and T. A. Read. Plastic deformation and diffusionless phase changes in metals - the AuCd
β-phase. Transactions of the American Institute of Mining and Metallurgical Engineers, 191(1):47–
52, 1951.

R. S. Elliott. Multiscale bifurcation and stability of multilattices. Journal of Computer-aided Materials
Design, 2008. doi:10.1007/s10820-007-9075-8.

R. S. Elliott, J. A. Shaw, and N. Triantafyllidis. Stability of pressure-dependent, thermally-induced
displacive transformations in bi-atomic crystals. International Journal of Solids and Structures,
39(13-14):3845–3856, 2002a.

R. S. Elliott, J. A. Shaw, and N. Triantafyllidis. Stability of thermally-induced martensitic transfor-
mations in bi-atomic crystals. Journal of the Mechanics and Physics of Solids, 50(11):2463–2493,
2002b.

R. S. Elliott, N. Triantafyllidis, and J. A. Shaw. Stability of crystalline solids–I: Continuum and
atomic-lattice considerations. Journal of the Mechanics and Physics of Solids, 54(1):161–192, 2006a.

R. S. Elliott, N. Triantafyllidis, and J. A. Shaw. Stability of crystalline solids–II: Application to
temperature-induced martensitic phase transformations in a bi-atomic crystal. Journal of the Me-
chanics and Physics of Solids, 54(1):193–232, 2006b.

P. Entel, K. Kadau, R. Meyer, H. C. Herper, M. Schroter, and E. Hoffmann. Large-scale molecular-
dynamics simulations of martensitic nucleation and shape-memory effects in transition metal alloys.
Phase Transitions, 65:79–108, 1999.

P. Entel, R. Meyer, and K. Kadau. Molecular dynamics simulations of martensitic transitions. Philo-
sophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Mag-
netic Properties, 80(2):183–194, 2000.

L. Fast, J. M. Wills, B. Johansson, and O. Eriksson. Elastic-constants of hexagonal transition-metals
- theory. Physics Review B, 51(24):17431–17438, 1995.

C. W. Garland and J. Silverman. Elastic constants of Cadmium from 4.2 K to 300 K. Physical Review,
119(4):1218–1222, 1960.

L. A. Girifalco and V. G. Weizer. Application of the Morse potential function to cubic metals. Physical
Review, 114(3):687–690, 1959.

B. C. Goo and C. Lexcellent. Micromechanics based modeling of two-way memory effect of a single
crystalline shape memory alloy. Acta Metallurgica, 45:727–737, 1997.

M. Grujicic and P. Dang. Computer simulation of martensitic transformation in Fe-Ni face-centered
cubic alloys. Materials Science & Engineering A, 201:194–204, 1995.

V. S. Guthikonda. Effective Morse interaction potentials for modeling lattice-level instabilities in shape
memory alloys. MS thesis, Univeristy of Minnesota, Minneapolis, MN 55455, 2007.

V. S. Guthikonda and R. S. Elliott. Stability and elastic properties of the stress-free B2 (CsCl-type)
crystal for the Morse pair potential model. Journal of Elasticity, 2008. In press.



28 Venkata Suresh Guthikonda, Ryan S. Elliott

V. S. R. Guthikonda, M. K. Kiran, S. M. Sivakumar, and A. R. Srinivasa. On smeared and microme-
chanical approaches to modeling martensitic transformations in SMA. Nonlinear Analysis: Real
World Applications, 9:990–1011, 2008.

K. Huang and M. Born. Dynamical Theory of Crystal Lattices. Oxford University Press, 1962.
M. S. Huang and L. C. Brinson. A multivariant model for single crystal shape memory alloys. Journal

of the Mechanics and Physics of Solids, 46:1379–1409, 1998.
X. Huang, C. Bungarao, V. Godlevsky, and K. M. Rabe. Lattice instabilities of cubic NiTi from first

principles. Physical Review B-Condensed Matter, 65(1):1–5, 2002.
X. Huang, K. M. Rabe, and G. J. Ackland. Crystal structures and shape-memory behavior of NiTi.

Nature Materials, 2(5):307–311, 2003.
H. Ishida and Y. Hiwatari. MD simulation of martensitc transformations in TiNi alloys with MEAM.

Molecular Simulation, 33:459–461, 2007.
Y. Ivshin and T. J. Pence. A constitutive model for hysteretic phase transition behavior. International

Journal of Engineering Science, 32:681–704, 1994.
C. Kittel. Introduction to Solid State Physics. Wiley, 2005.
C. Liang and A. Rogers. One-dimensional thermomechanical constitutive relations for shape memory

materials. Journal of Intelligent Material Systems and Structures, 1(2):207–234, 1990.
Z. K. Lu and G. J. Weng. Martensitic transformations and stress-strain relations of shape-memory

alloys. Journal of the Mechanics of Physics of Solids, 45:1905–1928, 1997.
J. F. McGilip. Alloying and entropy effects in predicting metal/compound-semiconductor interface

reactivity. J. Mater. Res., 2(4):516–523, 1987.
R. Meyer and P. Entel. Martensite-austenite transition and phonon dispersion curves of Fe1−xNix

studied by molecular-dynamics simulations. Physical Review B, 57(9):5140–5147, 1998.
N. Nakanishi, T. Mori, S. Miura, Y. Murakami, and S. Kachi. Pseudoelasticity in Au-Cd thermoelastic

martensite. Philosophical Magazine, 28:277–292, 1973.
J. R. Neighbours and G. A. Alers. Elastic constants of Silver and Gold. Physical Review, 111(3):707–

712, 1958.
T. Ohba, Y. Emura, S. Miyazaki, and K. Otsuka. Crystal structure of γ

′

2 martensite in Au-47.5%Cd
alloy. Materials Transactions JIM, 31(1):12–17, 1990.

A. Olander. The crystal structure of AuCd. Zeitschrift Fur Kristallographie, 83(1/2):145–148, 1932.
S. Ozgen and O. Adiguzel. Molecular dynamics simulations of diffusionless phase transformation in

quenched NiAl alloy model. Journal of Physics and Chemistry of Solids, 64(3):459–464, 2003.
K. Parlinski, M. Parlinska, and R. Gotthardt. Phonons in austenite and martensite NiTi crystals.

Journal De Physique IV, 112:635–638, 2003.
K. Parlinski and M. Parlinska-Wojtan. Lattice dynamics of NiTi austenite, martensite, and R phase.

Physical Review B, 67(064307):1–8, 2002.
E. Patoor, A. Eberhardt, and M. Berveiller. Thermomechanical behavior of shape memory alloys.

Archives of Mechanics, 40(5-6):775–794, 1988.
E. Patoor, A. Eberhardt, and M. Berveiller. Micromechanical modelling of the shape memory alloys.

Pitman Research Notes in Mathematics Series, 296:38–54, 1993.
M. Pitteri and G. Zanzotto. Continuum Models for Phase Transitions and Twinning in Crystals,

volume 19 of Applied Mathematics. CRC Press, 2002.
S. Rubini and P. Ballone. Martensitic transformations and phonon localization in Ni-Al alloys by

atomistic simulations. Meccanica, 30:439–448, 1995.
Y. Shao, P. C. Clapp, and J. A. Rifkin. Molecular dynamics simulation of martensitic transformations

in NiAl. Metallurgical and Materials Transactions A, 27A:1477–1489, 1996.
J. A. Shaw. A thermomechanical model for a 1-D shape memory alloy wire with propagating instabil-

ities. International Journal of Solids and Structures, 39(5):1275–1305, 2002.
Q. P. Sun and K. C. Hwang. Micromechanics modelling for the constitutive behavior of polycrystalline

shape memory alloys–I. Derivation of general relations. Journal of the Mechanics and Physics of
Solids, 41(1):1–17, 1993a.

Q. P. Sun and K. C. Hwang. Micromechanics modelling for the constitutive behavior of polycrystalline
shape memory alloys–II. Study of the individual phenomena. Journal of the Mechanics and Physics
of Solids, 41(1):19–33, 1993b.

K. Tanaka and S. Nagaki. A thermomechanical description of materials with internal variables in the
process of phase-transitions. Ingenieur Archiv, 51(5):287–299, 1982.



Toward an Effective Interaction Potential Model for the Shape Memory Alloy AuCd 29

U.S. NRL Center for Computational Materials Science. Crystal lattice structures web page. http://cst-
www.nrl.navy.mil/lattice/, 2008.

P. Villars, L. D. Calvert, and W. B. Pearson. Pearson’s handbook of crystallographic data for inter-
metallic phases. Metals Park, 1985.

A. Vivet and C. Lexcellent. Micromechanical modelling for tension-compression pseudoelastic behavior
of AuCd single crystals. The European Journal Applied Physics, 4(2):125–132, 1998.

D. C. Wallace. Thermodynamics of Crystals. Courier Dover Publications, 1998.
J. Wang, Y. Wang, R. Schaublin, C. Abromeit, and R. Gotthardt. The effect of point defects on

the martensitic phase transformation. Material Science and Engineering A - Structural Material
Properties Microstructure and Processing, 438:102–108, 2006.

Y. Y. Ye, C. T. Chan, and K. M. Ho. Structural and electronic properties of the martensitic alloys
TiNi, TiPd, and TiPt. Physical Review B, 56(7):3678–3689, 1997.

S. Zirinsky. The temperature dependence of the elastic constants of Gold-Cadmium alloys. Acta
Metallurgica, 4(2):164–171, 1956.


