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Abstract— A method is presented for synthesizing output
estimators for a class of continuous time, uncertain, linear
parameter-varying (LPV) systems. The uncertain system is
described as an interconnection of a nominal LPV system and
a block structured perturbation. The nominal LPV system is
“gridded” over the space of parameters, with the state matrices
being arbitrary functions of the parameters. The input/output
behavior of the perturbation is described by integral quadratic
constraints. The main contribution of this paper is the deriva-
tion of convex conditions for the synthesis of output estimators
for uncertain, grid-based LPV plants. Since LPV systems do
not have valid frequency response interpretations, the time
domain, dissipation inequality approach is followed. Robust
performance is measured using the upper-bound on the worst-
case induced-L2 gain of the closed loop. The effectiveness of the
proposed method is demonstrated using a numerical example.

I. INTRODUCTION

Estimation is an important topic of research both in signal
processing and feedback control. The well-known Kalman
filter is an optimal minimum-covariance estimator for linear
systems affected by Gaussian noise [1], [2]. The rise of
robust control techniques in the 1980s led to an interest in
alternative methods for synthesizing filters/estimators. The
most well-known among these are the H2 and H∞ filters
from robust control theory [3], [4], [5]. These methods
assume the signals are generated by a known dynamic model
of the plant and robustness to uncertainties is an important
consideration. The 1990s saw a rise in methods based on
the structured singular value, allowing for the incorporation
of linear time-invariant (LTI) model uncertainty in analysis
and synthesis problems. Since the 1990s, numerous papers
on robust filter design have appeared in the literature [6], [7],
[8], [9], [10]. Of these papers, some have presented methods
based on the µ-synthesis [6]. Others have cast the robust filter
design problem as an infinite dimensional optimization, that
can be solved by frequency gridding [11], [12], [13], [14].

This paper considers the problem of synthesizing output
estimators for uncertain, linear parameter-varying (LPV)
systems. The uncertain system is described as a feedback
interconnection of a nominal LPV system and a perturbation.
The nominal LPV system is modeled using a grid-based
approach, in which the parameter space is gridded and the
state-space matrices are defined at each grid point. While a
benefit of the grid-based approach is that the state matrices
can be arbitrary functions of the scheduling parameters, a
disadvantage is that any analysis is conducted over a finite
number of grid points [15], [16]. The other major class of
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LPV systems is based on the linear fractional transform
(LFT). While a benefit of the LFT-based approach is that
the LPV system can be described completely analytically, a
disadvantage is that the state matrices are restricted to depend
rationally on the scheduling parameters [17], [18], [19].

The input/output behavior of the perturbation is assumed
to satisfy several time-domain integral quadratic constraints
(IQCs). IQCs were originally introduced in [20] to analyze
the stability of the feedback interconnection between a linear
time-invariant (LTI) plant and a perturbation. The stabil-
ity theorem in [20] was presented using frequency-domain
inequalities. A related stability theorem was formulated in
the time-domain using dissipativity theory in [21]. This
result was extended to analyze the robustness of uncertain
LPV systems in [22], [23]. Robust filter design has been
considered with static IQC multipliers in [24], [25], [26]
and with dynamic IQC multipliers in [26], [27], [28]. In
particular, robust filter design using tall factorizations of
the frequency-domain IQC multipliers [27], [28] lead to
additional degrees of freedom in the optimization.

The estimator synthesis problem is a special case of
a more general controller synthesis problem. This general
controller synthesis problem leads to nonconvex conditions
when there is uncertainty in the system. For example, the
synthesis of output feedback controllers that are robust to
structured LTI uncertainty is a nonconvex problem that is
solved using DK-iterations [29]. When the uncertainty is
described using IQCs, robust output feedback controllers can
be synthesized using similar iterative algorithms. These are
commonly referred to in the literature as IQC-synthesis [30],
[31], [32]. However, the synthesis conditions can be made
convex when there are no uncertainties in the control channel
of the closed-loop [33], such as the output estimator problem.
A synthesis framework for robust gain-scheduled controllers
for uncertain LFT-based LPV systems was presented in [34].
The main contribution of this paper is the derivation of
convex conditions for the synthesis of output estimators for
grid-based LPV systems.

II. BACKGROUND
A. Integral Quadratic Constraints

Standard notation is used in this paper [35]. The para-
Hermitian conjugate of G ∈ RLm×n∞ is defined as G∼ (s) :=
G (−s)T . Symmetric matrix blocks are denoted by ?. Figure
1 shows a LFT interconnection of a nominal LPV system
G and a perturbation ∆, denoted Fu (G,∆). A state-space
representation of G is given in section II-B. ∆ has a block-
structure that is standard in robust control modeling [35],
and can include blocks that are hard nonlinearities (e.g.



G

∆

Ψ

v w

e d

z

Fig. 1. Interconnection of nominal plant G, perturbation ∆, & IQC Ψ.

saturations) as well as model uncertainties. The perturbation
∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) is a bounded, causal operator,
relating v and w as w = ∆ (v). ∆ is modeled by specifying
IQCs on its inputs and outputs. IQCs were introduced in
[20] and are defined using frequency-domain multipliers Π :
jR → C(nv+nw)×(nv+nw) that are measurable Hermitian-
valued functions. Any Π ∈ RL(nv+nw)×(nv+nw)

∞ can be
factorized as Π = Ψ∼MΨ, where M = MT ∈ Rnz×nz
and Ψ ∈ RHnz×(nv+nw)

∞ [21]. Such factorizations are not
unique, but can be computed with state-space methods [36].
Let the pair (Ψ,M) denote any factorization of Π. Two
signals v ∈ Lnv2e [0,∞) and w ∈ Lnw2e [0,∞) satisfy the IQC
defined by (Ψ,M) if:∫ ∞

0

z(t)TMz(t)dt ≥ 0. (1)

In (1), z = Ψ
[
vT , wT

]T ∈ Rnz is the output of the linear
system Ψ, described by the equations,[

ẋΨ

z

]
=

[
AΨ BΨv BΨw

CΨ DΨv DΨw

]xΨ

v
w

 , (2)

where xΨ ∈ RnΨ and xΨ (0) = 0. Notions of hard and soft
factorizations are obtained based on the time horizon in the
integral [20]. In particular, a hard factorization is one for
which inequality (1) holds for all finite time horizons. ∆
satisfies the IQC defined by (Ψ,M) if and only if the time
domain constraint (1) holds ∀v ∈ Lnv2e [0,∞) and w = ∆ (v).
This is denoted as ∆ ∈ IQC (Ψ,M). The set of all ∆ that
satisfy the IQC is defined as ∆ := {∆ : ∆ ∈ IQC (Ψ,M)}.
If the uncertainty ∆ satisfies a collection of IQCs {Πi}Ni=1

with corresponding factorizations {(Ψi,Mi)}Ni=1, then the
filters Ψi can be stacked as Ψ :=

[
ΨT

1 ,Ψ
T
2 , . . . ,Ψ

T
N

]T
.

Finally, a single IQC multiplier can be obtained that is
parameterized as Π (λ) = Ψ∼M (λ) Ψ. Section 4.2 in [32]
provides more details about parameterizing IQC multipliers.

B. Robustness Analysis of LPV Systems

In Figure 1, G is an LPV system whose state-space
matrices depend on a time-varying parameter ρ : R+ → Rnρ :ẋGv

e

 =

AG (ρ) B1G (ρ) B2G (ρ)
C1G (ρ) D11G (ρ) D12G (ρ)
C2G (ρ) D21G (ρ) D22G (ρ)

xGw
d

 , (3)

where xG ∈ RnG is the state, w ∈ Rnw and d ∈ Rnd are
the inputs, and v ∈ Rnv and e ∈ Rne are the outputs. The
state-space matrices of G have dimensions compatible with
these signals and are assumed to be continuous functions of

ρ (t). The parameter ρ (t) is assumed to be a continuously
differentiable function of time and admissible trajectories are
restricted to a known compact set P ⊂ Rnρ . In addition,
bounds on the rate of variation ρ̇ can be specified using a
hyper-rectangle. The mathematical definition of the set of
admissible trajectories is given in [15]. It is assumed that
the nominal LPV plant G is parametrically-dependent stable
[15]. In the remainder of the paper, the explicit dependence
of the state-space matrices on ρ is suppressed for brevity.

The robust performance of Fu (G,∆) is measured using
the metric of the induced L2 gain. For a given ∆ ∈ ∆, the
induced L2 gain from d to e is defined as,

‖Fu (G,∆)‖ := sup
06=d∈Lnd2 [0,∞)

xG(0)=0

‖e‖
‖d‖

. (4)

The worst-case induced L2 gain from d to e over the set
of uncertainties ∆ is defined as sup∆∈∆ ‖Fu (G,∆)‖. The
system has robust asymptotic stability if limt→∞ xG (t)→ 0
for all xG (0) ∈ RnG , disturbances d ∈ L2, and uncertainties
∆ ∈ ∆. In order to assess the robust performance of
Fu (G,∆), the filter Ψ is appended to the v and w channels
of G, as shown in Figure 1. The extended system, formed
by the interconnection of G and Ψ, is:ẋez

e

 =

Ae B1e B2e

C1e D11e D12e

C2e D21e D22e

xew
d

 , (5)

where xe =
[
xTG, x

T
Ψ

]T ∈ RnG+nΨ . The robust performance
and stability of Fu (G,∆) can be assessed using dissipation
inequality conditions, as given in the next Theorem.

Theorem 1: Let G be a parametrically stable LPV system
defined by (3). In addition, let ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞)
be a bounded, causal operator such that Fu (G,∆) is well-
posed ∀∆ ∈ ∆. Let the IQC multipliers be parameterized
by λ. The interconnection of G and Ψ has a state-space
representation as given in (5). If

1) the combined multiplier, partitioned as Π (λ) =[
Π11 Π12

Π∼12 Π22

]
, satisfies Π11 (jω) ∈ Cnv×nv > 0 and

Π22 (jω) ∈ Cnw×nw < 0 ∀ω ∈ R ∪ {∞}, and
2) there exists a continuously differentiable function

P̄ : P → SnG+nΨ , a scalar γ > 0, and parameters
λ such that condition (6) holds for all admissible
parameter trajectories,

ATe P̄ + P̄Ae ? ?
BT1eP̄ 0 ?
BT2eP̄ 0 −γInd

+
1

γ

 CT2eDT
21e

DT
22e

 (?)

+

 CT1eDT
11e

DT
12e

M (λ) (?) < 0 (6)

then,
a) limT→∞ xe (T ) = 0 ∀xe (0) ∈ RnG+nΨ , ∀d ∈ L2, and
∀∆ ∈∆, and

b) sup∆∈∆ ‖Fu (G,∆)‖ ≤ γ.



Proof: The full proof involves arguments from game
theory and can be found as Theorem 2 in [23]. However,
in order to give some intuition to the reader, a version
of the proof is given under the technical assumptions that
P̄ ≥ 0 and (Ψ,M (λ)) is a hard factorization of Π (λ).
To show b), define a parameter-dependent storage function
V : RnG+nΨ × Rnρ → R+ by V (xe, ρ) = xTe P̄ (ρ)xe
and let d ∈ Lnd2 [0,∞) be any input signal and ρ be any
allowable parameter trajectory. From well-posedness, the
interconnection of Fu (G,∆) has a solution that satisfies the
dynamics in (5). Left and right multiply (6) by

[
xTe , w

T , dT
]

and
[
xTe , w

T , dT
]T

to show that V satisfies,

V̇ + z (t)
T
M (λ) z (t) ≤ γd (t)

T
d (t)− 1

γ
e (t)

T
e (t) . (7)

The dissipation inequality (7) is integrated from t = 0 to
t = T with the initial condition xe (0) = 0. Then, the
hard IQC condition is applied, along with V ≥ 0, to yield
1
γ

∫ T
0
e (t)

T
e (t) dt ≤ γ

∫ T
0
d (t)

T
d (t) dt.

The proof for a) is more subtle but follows arguments
similar to those given in [37]. First, note that (6) still holds
if the term ε·diag (InG+nΨ

, 0nw+nd) is added to the left hand
side with ε > 0 sufficiently small. Left and right multiply the
modified inequality (6) by

[
xTe , w

T , dT
]

and
[
xTe , w

T , dT
]T

to yield,

V̇ (t) + z (t)
T
M (λ) z (t) + ε · xe (t)

T
xe (t)

≤ γd (t)
T
d (t)− 1

γ
e (t)

T
e (t) . (8)

Consider now the response for any initial condition xe (0),
input d ∈ L2, and allowable trajectory ρ. Integrate (8) from
t = 0 to t = T , apply the hard IQC conditions, and V ≥ 0
to show that, as T → ∞, we obtain ε ‖xe‖22 ≤ γ ‖d‖22 −
1
γ ‖e‖

2
2 + V (xe (0) , ρ (0)) <∞. It follows that xe ∈ L2. A

similar perturbation argument can be used to show that v ∈
L2 and hence w = ∆ (v) ∈ L2 by the assumed boundedness
of ∆. The time derivative of xe is ẋe = Aexe+B1ew+B2ed.
Therefore ẋe ∈ L2 since (xe, w, d) ∈ L2 and Ae, B1e, and
B2e are bounded on P . Finally, (xe, ẋe) ∈ L2 implies that
limT→∞ xe (T ) = 0 (see Appendix B of [38]).

In Theorem 1, a) indicates robust asymptotic stability of
xe and b) indicates bounded worst-case gain. Theorem 1 is
a sufficient condition for the existence of an upper bound on
sup∆∈∆ ‖Fu (G,∆)‖. Theorem 1 is used to derive convex
synthesis conditions for the robust LPV estimator.

III. ROBUST LPV ESTIMATOR SYNTHESIS

A. Problem Formulation

The robust estimator synthesis problem is formulated
using the interconnection shown in Figure 2. The nominal
plant P is an LPV system whose state-space matrices depend
on ρ. Let xP ∈ RnP denote the states, y ∈ Rny denote the
measurable outputs, and q ∈ Rnq denote the outputs to be
estimated. The problem is to synthesize an estimator F that
uses the measurements y to generate an estimate of q. F has

PF
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v w

yq̂
e

d
q

+

−

Fig. 2. Interconnection of the nominal LPV system P , perturbation ∆,
and output estimator F .

the state-space representation,[
ẋF
q̂

]
=

[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

] [
xF
y

]
, (9)

where xF ∈ RnF are the filter states, q̂ ∈ Rnq are the
estimated outputs, and e = q̂ − q are the estimation errors.
As shown by the dashed box in Figure 2, the interconnection
of P and F can be condensed into G, with states xG =[
xTP , x

T
F

]T
. This fits into the notation used in section II-

B. Before presenting the main result, some interconnections
need to be defined. First, the interconnection of P and Ψ is
described by the system of equations,

ẋ
z
y
q

 =


A B1 B2

C1 D11 D12

C2 D21 D22

C3 D31 D32


xw
d

 , (10)

where x =
[
xTP , x

T
Ψ

]T ∈ Rn and n = nP + nΨ. Next, the
interconnection of P , Ψ, and F is described by the system
of equations (5), where xe =

[
xTP , x

T
Ψ, x

T
F

]T ∈ Rn+nF and
the state-space matrices are decomposed as,

Ae =

[
A 0

BFC2 AF

]
, B1e =

[
B1

BFD21

]
, (11)

B2e =

[
B2

BFD22

]
, C1e =

[
C1 0

]
, (12)

C2e =
[
(DFC2 − C3) CF

]
, (13)

D11e = D11, D12e = D12, (14)
D21e = DFD21 −D31, D22e = DFD22 −D32. (15)

B. Main Result

The general robust synthesis problem has two main
sources of conservatism. First, the analysis result in The-
orem 1 is only a sufficient condition for the existence
of an upper bound on the worst-case gain. Second, when
Theorem 1 is applied to the general robust synthesis problem,
the resulting synthesis conditions are nonconvex and require
the use of IQC-synthesis to solve for the controller [30],
[31], [32]. However, the synthesis conditions can be made
convex for the output estimator synthesis problem [33]. The
main contribution of this paper is the derivation of convex
conditions for the synthesis of output estimators for grid-
based LPV plants. Hence, the second source of conservatism
is removed. Given that the starting analysis condition in The-
orem 1 is only sufficient, the main result provides a sufficient



condition for the existence of an LPV estimator F such that
the uncertain closed-loop system Fu (G,∆) achieves robust
asymptotic stability and bounded worst-case gain. Hence,
the main result introduces no additional conservatism with
respect to Theorem 1. In general, the state dimension of the
estimator F will be at most as large as nP + nΨ. However,
full-order estimators (nP + nΨ = nF = n) are synthesized
in this paper.

Theorem 2: Let P be a parametrically stable LPV system.
In addition, let ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) be a bounded,
causal operator such that Fu (P,∆) is well-posed ∀∆ ∈
∆. Let the IQC multipliers be parameterized by λ. The
interconnection of P and Ψ has a state-space representation
as given in (10). If

1) the combined multiplier, partitioned as Π (λ) =[
Π11 Π12

Π∼12 Π22

]
, satisfies Π11 (jω) ∈ Cnv×nv > 0 and

Π22 (jω) ∈ Cnw×nw < 0 ∀ω ∈ R ∪ {∞}, and
2) there exist continuously differentiable functions X :
P → Sn, Y : P → Sn, continuous functions Ā :
P → Rn×n, B̄ : P → Rn×ny , C̄ : P → Rnq×n,
D̄ : P → Rnq×ny , a scalar γ > 0, and parameters λ
such that conditions (16) and (17) hold for all admissible
parameter trajectories,

then, there exists an estimator F such that the interconnection
of P , F , and ∆, shown in Figure 2, satisfies,
a) limT→∞ xe (T ) = 0 ∀xe (0) ∈ R2n, ∀d ∈ L2, and ∀∆ ∈

∆, and
b) sup∆∈∆ ‖Fu (G,∆)‖ ≤ γ.

Proof: First, the closed-loop Lyapunov matrix is par-
titioned compatibly with xe =

[
xT , xTF

]T ∈ Rn+n as

P̄ :=

[
X X2

XT
2 X3

]
. Then, the following change of variables

is applied to (16),

Y := X −X2X
−1
3 XT

2 , (18)

Ā := X2

(
BFC2 −AFX−1

3 XT
2

)
, (19)

B̄ := X2BF , (20)

C̄ := −CFX−1
3 XT

2 , (21)
D̄ := DF , (22)

where AF , BF , CF , and DF are the state-space matrices
of the filter to be synthesized. Following the change of
variables, a congruence transformation is applied by mul-
tiplying on the right by T−1 and the left by T−T , where

T = diag
(
T̃ , I

)
and T̃ :=

[
I I

−X−1
3 XT

2 0

]
. Next, using

the expressions in (11) to (15), the following inequality is
obtained.
ATe P̄ + ? ? ? ?
BT1eP̄ 0 ? ?
BT2eP̄ 0 −γI ?
C2e D21e D22e −γI

+


CT1e
DT

11e

DT
12e

0

M (λ) (?) < 0

(23)

Applying the Schur complement lemma to (23), the condition
in (6) is recovered. Finally, Theorem 1 is applied to conclude
that statements a) and b) are true.

The condition X − Y > 0 ensures that a stable estimator
is synthesized. To show this, consider the (1,1) block of (23),

ATe P̄ + P̄Ae + CT1eM (λ)C1e < 0. (24)

Expressing Ae and C1e using the decompositions listed in
(11) to (15), (24) can be rewritten as,[

A 0
BFC2 AF

]T [
X X2

XT
2 X3

]
+

[
X X2

XT
2 X3

] [
A 0

BFC2 AF

]
+

[
CT1 MC1 0

0 0

]
< 0. (25)

X is the storage matrix for x ∈ Rn and X3 is the storage
matrix for xF ∈ Rn. The (2,2) block of (25) is ATFX3 +
X3AF < 0. Hence, X3 > 0 (equivalent to X−Y > 0) is an
LMI condition to ensure that F is a parametrically stable
LPV system. The state-space matrices of F are obtained
using the following transformation,[
AF BF
CF DF

]
=

[
X−1

2

(
B̄C2 − Ā

)
X−T2 X3 X−1

2 B̄

−C̄X−T2 X3 D̄

]
(26)

A suitable reconstruction for the estimator is obtained using
X3 = I and X2X

T
2 = X − Y , where X2 is the lower-

triangular Cholesky factor of X − Y . Inequalities (16) and
(17) are LMIs in X , Y , Ā, B̄, C̄, D̄, λ, and γ. Theorem 2 can
be formulated as a semidefinite program with γ as the cost
function that is to be minimized, subject to LMI constraints.

Theorem 2 provides guarantees on the worst-case gain for
all admissible parameter trajectories, wherein the parameters
are restricted to a known compact set and their rates of
variation are restricted to a known hyper-rectangle. In im-
plementation, the parameter space is discretized into a finite
number of grid points and the LMI constraints are enforced at
each grid point. The LMIs at each grid point share a common
parameter-dependent closed-loop Lyapunov matrix, making
this approach significantly different from a pointwise design.
Theorem 2 is different from the existing results because it
allows for grid-based LPV plants whose state matrices are
arbitrary functions of the scheduling parameter. In contrast,
the results in [34] are applicable to LFT-LPV plants.

IV. NUMERICAL EXAMPLE

Figure 3 shows a spring-mass-damper system, consisting
of two masses, two springs, and two dampers. The masses
are m1 = 1kg and m2 = 0.5kg. Both springs have the
same spring constant k = 1N m−1. The damping coefficient
c1 is certain, but depends on a time-varying scheduling
parameter ρ (t) as c1 = |sin (ρ (t))|. Admissible trajectories
are restricted to the interval ρ ∈ P :=

[
0, π3

]
, with infinite

bounds on the rate of variation ρ̇. Since c1 is a transcendental
function of ρ, this problem is not directly solvable by the
LFT-LPV approach [34]. Following the grid-based LPV
approach, the parameter space is gridded into three points{

0, π6 ,
π
3

}
. These three points are chosen for demonstration

purposes and the grid may be made as dense as needed [15].
The damping coefficient c2 is time-invariant, but uncertain

within the interval [0.5, 3.5] N s m−1. The uncertainty in the
real parameter c2 is normalized to unity and represented as




ATY + Y A ? ? ? ?

ATY +XA+ Ā ATX + B̄C2 + ? ? ? ?
BT1 Y BT1 X +DT

21B̄
T 0 ? ?

BT2 Y BT2 X +DT
22B̄

T 0 −γInd ?
−C3 + D̄C2 + C̄ −C3 + D̄C2 −D31 + D̄D21 −D32 + D̄D22 −γInq

+


CT1
CT1
DT

11

DT
12

0

M (λ) (?) < 0 (16)

X − Y > 0 (17)

m1 m2

k

c2

d1

k

c1

xP1 xP2

Fig. 3. Spring-mass-damper system, where c1 is parameter-varying and
c2 is uncertain.

∆ = δcI2, where |δc| ≤ 1. Mass m1 is disturbed by an
external force d1. The positions of m1 and m2 relative to
their respective equilibrium positions are denoted by xP1 and
xP2. The objective is to estimate xP2 using a measurement
of xP1 that is corrupted by measurement noise d2. The LPV
plant model P can be expressed in state-space as:

ẋP1

ẋP2

ẋP3

ẋP4

 =


0 0 1 0
0 0 0 1
−2k
m1

k
m1

−(c2+c1(ρ))
m1

c2
m1

k
m2

−k
m2

c2
m2

−c2
m2



xP1

xP2

xP3

xP4



+


0 0 0 0
0 0 0 0
−1.5 1.5 1

m1
0

3 −3 0 0



w1

w2

d1

d2

. (27)

The output equations are: v =
[
xTP3, x

T
P4

]T
, y = xP1 + d2,

and q = xP2.
Since δc is a constant real parametric uncertainty, ∆

satisfies all IQCs defined by multipliers of the form,

Π (jω) =

[
X (jω) Y (jω)
Y (jω)

∼ −X (jω)

]
, (28)

where X (jω) = X (jω)
∼ ≥ 0 and Y (jω) = −Y (jω)

∼ are
bounded and measurable matrix functions [20]. Π can be
factorized as Π (jω) = Ψ (jω)

∼
MΨ (jω) with Ψ (jω) =

diag (ψ (jω) , ψ (jω)) and M =

[
PM RM
RTM −PM

]
. Moreover,

ψ∼Pψ > 0 on C0, R = −RT and ψ is taken as:

ψ (jω) =

[
I2,

(
jω − α
jω + α

)
I2, . . . ,

(
jω − α
jω + α

)nψ
I2

]T
.

Robust estimator synthesis is performed for two cases: the
LTI plant defined at the frozen parameter value ρ = 0 and the
LPV plant defined on the grid

{
0, π6 ,

π
3

}
. The upper bounds

on sup∆∈∆ ‖Fu (G,∆)‖ for various values of α and nψ

TABLE I
UPPER BOUND ON THE WORST-CASE GAIN OF ‖Fu (G,∆)‖.

Plant LTI LPV
nψ 0 1 2 0 1 2

α = 0.1 4.53 3.07 2.64 4.56 3.25 2.97
α = 1 4.53 3.37 2.64 4.56 3.48 2.97
α = 10 4.53 3.63 2.64 4.56 3.73 2.98
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Fig. 4. LPV closed-loop simulation with α = 1 and nψ = 1.

are listed in Table I. For the LTI case, the results presented
in section 5 of [28] are recovered. Conservatism due to
the choice of the multiplier can be reduced by increasing
nψ . However, in this particular example, the upper bounds
obtained for nψ > 2 are no lower than those obtained
for nψ = 2. In addition, selecting faster poles for ψ (jω)
increases the conservatism of the upper bounds.

For the LPV case, the infinite rate bounds require the
use of a common, parameter-independent, Lyapunov matrix
P̄ across all grid points. The result is a parameter-varying
estimator. In order to ensure that the estimators across the
grid points share the same state coordinates, Ā, B̄, C̄, and
D̄ are expressed using common parameter-dependent basis
functions. Second, the upper bounds obtained for the LPV
case are greater than those for the LTI case because of the
consideration of all admissible parameter trajectories. As an
example, consider the trajectory ρ (t) = |sin (0.4πt)|. In
order to illustrate the performance of the estimator, a closed-
loop simulation is performed with this trajectory and the
initial condition xP1 (0) = 1. Figure 4 shows the estimation
error asymptotically converging to zero.

In addition, the above example has two copies of the real
parametric uncertainty δc. This can be reduced to a single
copy, since the first two columns of the B matrix in (27)
are not linearly independent. However, two copies of δc are
retained in order to provide more degrees of freedom in
M (λ), resulting in lesser conservatism. This also allows for
comparison with the results presented in [28].



Finally, the results presented in this paper can be general-
ized to include parameter-dependent IQCs, wherein Ψ and/or
M depend on the scheduling parameter ρ. The parameter
dependence of Ψ and M get captured through the LMI con-
ditions that are enforced at each grid point. More details on
parameter-varying IQCs can be found in section III.B of [22].
Robust synthesis for the LTI case of the example presented
above can be solved by several existing methods [7], [14],
[28]. The main purpose of this example is to demonstrate the
usefulness of the dissipation inequality approach in solving
synthesis problems that involve grid-based LPV plants.

V. CONCLUSION
This paper derived convex conditions for the synthesis of

output estimators for uncertain, grid-based linear parameter-
varying (LPV) plants. In particular, the general robust syn-
thesis problem yields nonconvex conditions, and is addressed
using ad-hoc procedures. However, the main result presented
a convex solution for the robust output estimation problem
using a suitable congruence transformation and change of
variables. The proof of the main result used dissipativity the-
ory and time-domain integral quadratic constraints (IQCs).
The effectiveness of the proposed method was demonstrated
on an uncertain, grid-based LPV plant whose state matrices
were transcendental functions of the scheduling parameter.
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