
Introduction to Arduino
(programming, wiring, and more!)

James Flaten, MN Space Grant Consortium

with Ben Geadelmann, Austin Langford, et al.

University of MN – Twin Cities

Aerospace Engineering and Mechanics Department

Some references we used (there are many):

1. Beginning Arduino by Michael McRoberts, 2nd edition

2. http://www.arduinoclassroom.com/index.php/arduino-101

3. http://www.oomlout.com/a/products/ardx/

http://www.arduinoclassroom.com/index.php/arduino-101
http://www.arduinoclassroom.com/index.php/arduino-101
http://www.arduinoclassroom.com/index.php/arduino-101
http://www.oomlout.com/a/products/ardx/

Goals of this lesson
• Learn what microcontrollers are and things they can do.

• Learn how to use a (solderless) breadboard to wire up
sensors and other hardware to an Arduino Uno.

• Learn to open, understand, comment, upload/run, and edit
Arduino programs (AKA sketches).

• Learn the difference between input, output, and power pins
and also between analog and digital pins.

• Learn to control things like LEDs and write information to the
serial monitor (a text window on the computer).

• Learn to read sensor values and log data to an SD card for
later retrieval and analysis.

• Learn the basics of using motors

• Learn to expand Arduino functionality with “shields.”

• Put you in a position to implement an Arduino-based
computer system for your own projects.

What is a Microcontroller?

•“A microcontroller is a very small computer that
has digital electronic devices (peripherals) built
into it that helps it control things. These
peripherals allow it to sense the world around it
and drive the actions of external devices.” (Ref.
2)

•It is an “embedded computer system” that
continuously repeats software (programming)
commands

•Examples: Arduino Uno, Raspberry Pi, etc.

Arduino Uno

USB

Connector

Battery

Connector

Power

Pins

Analog

(Input)

Pins

Digital

(Input/Output)

Pins

Arduino Uno – more details (Ref. 2)

Arduino Mega – Larger, more pins

(we won’t be using this today)

USB

Connector

Battery

Connector

Power

Pins

Analog

Pins

Digital Pins Serial Pins

Arduino Mini – Smaller and lighter;

(more appropriate for some applications)

Digital Pins

Analog Pins

Serial Connectors

Power Pins

(Solderless) Breadboard (Ref. 2)

Breadboard Innards (Ref. 2)

Insert 22-gauge solid wire jumpers and component leads into breadboard clips to make

electrical connections without soldering. Use the edge “rails” for power (5V) and ground.

Introduction to Software
•Arduino microcontrollers are programmed using the
Arduino IDE (Integrated Development Environment)

–Can be downloaded for free from
http://arduino.cc/en/Main/Software

•Arduino programs, called “sketches”, are written in a
programming language similar to C and C++

•Every sketch must have a setup() function
(executed just once) followed by a loop() function
(potentially executed many times); add “comments” to
code to make it easier to read (technically optional, but
actually required (by me))

•Many sensors and other hardware devices come with
prewritten software – look on-line for sample code,
libraries (of functions), and tutorials

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

Parts of the IDE main screen

Text area for

writing/editing

sketches.

Error messages and other

feedback show up here.

Name of current sketch

Main menus

Action buttons/icons

Verify (AKA compile)

Upload (send to Arduino)

Start a new sketch

Open a sketch (from a file)

Save current sketch (to a file)

Open Serial Monitor window

BareMinimum – sketch organization

Activity 1 – making an on-board and external LED blink

• Place an LED on the breadboard (don’t put both legs into a single (connected)

column)

• Wire the LED’s negative (shorter) lead to a 560 Ohm “safety resistor” then wire

the other end of the resistor to ground (GND)

• Wire the LED’s positive (longer) lead to digital Pin 13 on the Arduino

• Plug in the Arduino with the USB cable and run the Arduino IDE software on the

computer

• Under Tools:Board make sure Arduino Uno is selected

• Under Tools:Serial Port select the correct COM port (e.g. COM3)

• Under File:Examples:01Basics select the Blink sketch

• Look at the code. Note delay(1000) waits 1000 millisec = 1 second

• Verify (AKA Compile) the code , then Upload it to the Uno – notice that it

runs immediately (and will re-run if you power cycle) – the sketch will stay in the

Uno memory until overwritten or erased

• Discuss how the sketch works (in general terms: setup(), loop(), liberal use of

comments); digital HIGH is 5V and LOW is 0V (ground)

• This is an example of “control (output) using digital pin 13”

About Motors

• There are several different types

– Standard DC motor - input current for full continuous
rotation. No special pins or wiring.

– Standard servomotor (AKA servos) - Motor capable of
limited rotation (generally 180°) in precise degree
increments. Uses Servo library in Arduino. Have 3+
pins. Controlled by pulse-width modulation (“~” pins)

– Continuous rotation servo – can go all the way around
continuously. Interprets PWM value as speed & dir.

– Stepper Motors - Servo capable of full rotation in small
steps. Uses Stepper library in Arduino. Have 3+ pins

– We are using a standard servo in this lesson.

Activity 2: Using a Servo

• With the Arduino Uno unplugged, wire up the

servo according to the chart on the next slide

• Load the sketch Servo.ino

• Take a look at the code and note the

commands used to drive the servo. The

comments should help you understand what

each does.

• Be careful – Some servos use a lot of power

and may need an external power source.

Servo
Pin Description Attached To

Brown Ground GND

Red Power (5V) 5V

Orange Control Lead D3

Note that the servo has a plug attached to its ribbon cable. This is so that we

can more easily extend the cable using plugs and more ribbon cable. It also

allows it to plug into specific plugs built into some shields. Several companies

make a few different Motor Shields, which are shields specifically designed to

drive servos, motors, and stepper motors. These usually support 2 to 4 motors,

although Adafruit has one that will control 16. They generally have plugs built

into the shield for the motors and often drive them through some sort of a serial

connection (I2C or SPI is common).

Right: Adafruit Motor Shield
http://www.adafruit.com/products/1411

http://www.adafruit.com/products/1411
http://www.adafruit.com/images/1200x900/1411-01.jpg

To Sweep or Not to Sweep

• In many applications it might not be

necessary to use a “sweep” sketch,

where the servo sweeps between

angles in incremental small steps.

• Another way may be to set the servo to

just “open” (go to one angle) and “close”

(go to another angle). This might be

easier to code than “sweep.”

Notes about Libraries:
• Libraries take large amounts of code and refine it into a few
simple commands we can use. Ex: datalog.print will print
something to a file.

• This actually takes a lot of code, but by putting it in a library we
can ignore the basic code and focus on the useful commands and
functions

• Usually ends in a .h (header file)

• Used in our programs by the #include command: #include
"SD.h"

• Almost everything that is not analog (digital sensors, servos, etc)
use a library of some sorts (Many use the same library - i.e. Wire)

• You can install more libraries into your IDE. Look under
Sketch:Import Library to see which ones you have.

• Ex. SD.h, SoftwareSerial.h, Wire.h, OneWire.h,
RTClib.h

Proto shield & “tiny” breadboard

• We are not using the

proto shield today, but

they can be seen in

your kit.

• Notice that this “tiny”

solderless breadboard

(ours are white) has no

power rails and very

limited real-estate. Use

it wisely!

A few words on sensors
• The rest of the lesson will focus on how to use various sensors to make
measurements and how to “log” (record) those values to an SD card.

• Sensors can be broken into two major categories:

• Analog sensors

– Based on changing the voltage of the sensor

– Can only use analog inputs (Arduino pins A0, A1, etc)

– Generally easier to program and use

– Not as accurate & easily interfered with by other electronics (noise in voltage)

– Readings can be influenced by cable length – keep connection cables short!

• Digital Sensors:

– Usually use digital pins

– Can use more advanced forms of communication to let multiple sensors share
the same pins (sometimes even using analog pins)

– Generally more difficult to program and wire up; often need libraries and
significantly more code for each type of sensor used

– Most advanced sensors (GPS, IMU, etc) are digital – this is the best way to
pass more data between sensor and microcontroller quickly & efficiently

About Digital Sensors:

• Digital sensors used with Arduinos are powered using either 3.3

volts or 5 volts – both are available on the Arduino

• Always check to be sure you are providing the correct voltage. If

you send a 3.3V sensor 5V it is very easy to blow it out.

• Watching for pin conflicts and voltage discrepancies is par for the

course when using microcontrollers. If you aren’t careful you can

get bad data, fry components, or possibly even damage the

microcontroller itself.

• Aside: Also watch out for components that look similar (e.g. the

analog temp sensor and the digital temp sensor). And remember

that most components require a specific orientations (i.e. it matters

which leg gets attached to which pin); resistors and some types of

capacitors are an exception and can get plugged in either way

Activity 3 – Wiring and logging

sensor data

Shields and sensors involved:

• Micro-SD or full-size-SD card shield

• Data LED indicator (tells whether the

SD card is logging data (steady flash) or

not (multi-flash (indicating an error))

• Analog temperature sensor

• Digital 3-axis magnetometer sensor

Micro-SD or SD Shield and

Data LED Indicator
• Plug the micro-SD or SD shield directly onto an

unpowered Arduino Uno. All the legs must go straight

into the header – don’t bend any.

• Wire an LED using the tiny breadboard:

 - Positive (long) leg wired to a safety resistor. Other end

of resistor connects to digital pin 5.

 - Negative (short) leg wired to ground (GND).

(Aside – This has the resistor on the opposite leg from

last time. It is important to get the orientation of the LED

itself right, but not the resistor and it doesn’t matter

which leg the safety resistor goes on as long as it is in

series with the LED to limit current flow through the LED.

Analog Temperature Sensor

• With the Arduino Uno unpowered, wire the TMP 36 sensor using

the table below

Pin Function Attached To

1 5V (Power) 5V pin

2 Analog Output Pin A2

3 Ground GND pin

 This 3-pin sensor has TMP

written on it. This is called a
T0-92 package.

 Make sure the flat side of the

sensor has “TMP” written on it!

 Check the orientation!

Note: The photo

shows flat side

facing you.

Digital 3-Axis Magnetometer
• With the Arduino unplugged, add the Digital 3-Axis Magnetometer

MAG 3110 to your breadboard using the table below:

• Aside: a magnetometer can be combined with an accelerometer

(and maybe gyros) to make an IMU (Inertial Measurement Unit)

– Not perfect - a magnetometer can be interfered with by

magnets, metals, and other electronic devices (good IMUs can

account for such interference, to some degree)

Pin Function Attached To

VCC Power Input (3.3V) 3.3V

GND Ground GND

SDA Serial Data Line (I2C

Bus)

A4

SCL Serial Clock Line (I2C

Bus)

A5

INT Interrupt Pin Not Connected

Logging the Data

• Open the sketch Temp_Mag_Log.ino

• As you can see in the code setup, data logging can be a bit

complex.

– Most of the time you can directly copy the code from the

setup loop used for the SD card

• A few details to keep in mind:

– Must do all reading/writing of data in the main loop.

– We included a special piece of code to write a new file each

time the Arduino is powered. Without this, it would overwrite

our old data

– Pins can change depending on the SD card reader you use.

The Sparkfun Micro-SD Shield uses D8 and D10-13. The

Adafruit full-size-SD-card shield uses D10, not D8, for “chip

select.”

Datalogging (To SD Card)
• Load the sketch Temp_Mag_Log.ino onto the Arduino

• Open the Serial Monitor window

 - Important note! The serial monitor normally operates at
9600 baud but this sketch runs it at 115200 baud so you will

need to open the serial monitor and change the baud rate using

the drop-down menu at the bottom right hand corner.

• What is shown in the serial window? How can you verify the

data recorded is being saved onto the SD card?

• After you have run the Arduino for a bit, unplug it, disconnect

the SD card, and read the SD card on your computer. How

does the data look?

What is always useful…

• How can you analyze raw data off the SD card? You

may not remember when/where it was taken so it is

useful to add a “time stamp” and/or a “GPS (location)

stamp” to data as it is saved.

• A RTC (real time clock) comes in certain SD shields or

breakout boards – use to put a time stamp on data.

• GPS can also come as a separate shield or a breakout

board on its own – use to put a location stamp on data.

• Again, when logging sensor data, it’s useful to tag the

data to help remember exactly where it came from.

Notes on writing to the “Serial Monitor”
• Before setup, the variable being recorded in a serial monitor or SD

card is declared

• In setup, the serial communications need to be started, with the

baud rate (char per second) given in parentheses like this:
Serial.begin(9600). When you open the serial monitor window

make sure the baud rate (in the lower right hand corner) matches the
baud rate called for in the sketch – pull-down to change it if need be.

• At the end of the loop, the command Serial.print(); is used

to print the data to the serial monitor.

• Every time the serial monitor is reopened, it is “refreshed” and starts

data over (e.g. if you were counting, it would always start at “1” when

you open it)

Notes

• Flashing LEDs and/or writing information to the serial monitor

(window) lets the sketch tell observers what it is up to – the latter only

works when you are attached to a computer with a screen, so the

former method might be more useful for field/flight implementation

• Digital pins can be set to OUTPUT mode, after which you can send

them digital values (just HIGH or LOW) with digitalWrite or else

more-continuous analog values (from 0 to 255) with analogWrite –

the latter still sets them just HIGH or LOW, but does so only some

fraction of the time which makes some devices think the output
voltage is somewhere between HIGH (5 Volts) and LOW (0 Volts)

• “fritzing” software (free download) for drawing circuits: “breadboard

view” (fairly realistic) vs “circuit diagram” view (AKA “schematic”)

A “breadboard view” looks fairly realistic

A circuit diagram (AKA schematic)

Typical wiring of a powered analog sensor

Note the utility of having both 0V (AKA GND) and

5V “rails” (but “tiny” breadboards don’t have rails)

Next Steps
•This has only been a brief intro, things can get
a lot more complicated!

•Look online for help with advanced projects,
weird things (pin conflicts, voltage issues,
software bugs, etc) can happen pretty easily

•Also keep in mind how much power you are
drawing- you can drain individual 9V batteries
quickly- use more in parallel to provide enough
current for a long run time

•Research and think through projects before
building. A good plan can solve many problems
before they occur

Good further resources
•https://learn.adafruit.com

–Adafruit makes many shields and sensors, and they
have tutorials for almost everything they carry

•http://www.arduinoclassroom.com/index.php/arduin
o-101

–Arduino Classroom is currently doing an intro series on
Arduinos. Check it for updates and more topics in the
future

•http://playground.arduino.cc/
–Arduino playground is the wiki run by the Arduino
company for its products. There is a lot of helpful
information on almost everything imaginable here.

https://learn.adafruit.com/
http://www.arduinoclassroom.com/index.php/arduino-101
http://www.arduinoclassroom.com/index.php/arduino-101
http://www.arduinoclassroom.com/index.php/arduino-101
http://www.arduinoclassroom.com/index.php/arduino-101
http://playground.arduino.cc/

Activity 4 – analog (air-)pressure sensor
• With the Arduino Uno unpowered, wire the 0-15 psi pressure sensor using

the table below (you can leave the TMP 36 sensor in place)

• Load the sketch Analog_Pressure; study code; run; test; discuss

 This 4-pin pressure sensor is the Honeywell

SSCSANN015PAAA5 and is called a SIP-

AN package.

Pin Function Attached To

1 Nothing Not connected

2 5V (Power) 5V pin

3 Analog Output Pin A0

4 Ground GND pin

Activity 5 – analog relative humidity sensor

• With the Arduino Uno unpowered, wire the HIH4030 relative humidity

sensor using the table below (leave other sensors in place)

• Load the sketch Analog_Humidity; study code; run; test; discuss

 This 3-pin relative humidity sensor is pre-

mounted on a “breakout board”

 Notice that we soldered on a 3-pin male

header so the breakout board can plug

into a (solderless) breadboard

Pin Function Attached To

GND Ground GND pin

OUT Analog Data Output Pin A1

5V 5V (Power) 5V pin

Activity 6 – using a 3-axis accelerometer

• The digital 3-axis accelerometer (breakout board ADXL345) is

powered with 3.3 volts, not 5 volts, and makes use of analog

pins D10-D13 for communication. All 3 outputs (the x, y, and z

values) are sent through the serial data line, D11, clocked (i.e.

timed) by line D13.

• The digital accelerometer makes use of the SPI library which

should already be in your Arduino program.
• Plug in the Arduino Uno and load Digital_Accelerometer

• Study the code (it might be long!); run it (open serial monitor);

test all 3 axes, discuss

Digital 3-Axis Accelerometer

(breakout board ADXL345)

Pin Description Attached To

GND Ground GND

VCC Power input (3.3V) 3.3V

CS Chip Select D10

INT 1 Interrupt 1 Output N/A

INT 2 Interrupt 2 Output N/A

SDO Serial Data Output (SC0) D12

SDA Serial Data (SDA) D11

SCL Serial Communications Clock (SCL) D13

Activity 7 – digital pressure/temp sensor

 With the Arduino Uno unplugged, add the pressure (altitude) / temperature
(MPL3115A2) breakout board to your tiny breadboard and wire it as follows.
This is a 3.3 volt I2C device.

 Look for pin conflicts. Hopefully there won’t be any (but always look).

 Plug in the Arduino Uno and Altitude_Pressure_plusTemp_Sensor

 Study the code (it might be long!); run it (open serial monitor); test, discuss

Pin Description Attached To

INT2 Pressure interrupt 2 Not connected

INT1 Pressure interrupt 1 Not connected

SDA Serial Data A4

SCL Serial Communications (Clock) A5

VCC Power input (3.3V) 3.3V

GND Ground GND

Activity 8 – 2 digital temp sensors, SD card

 With the Arduino Uno unplugged, add one “Dallas one-wire” digital temperature sensor
on the breadboard and a second one at the end of a 3-wire cable (if not provided then
just make your own with jumper wires), as shown on the following slide. Notice that both
sensors need ground and power (5 volts) and that they are polled through a single digital
pin (D2). Also notice that a 4.7 kΩ “pull-up” resistor is required between pin D2 and the 5
volt line so that it stays HIGH when not in use.

 Place OneWire and DallasTemperature into your Arduino library. This activity also
uses Wire and SD (already in your library).

 Put an SD card into your SD card shield. Note – if you are using a SparkFun shield with
a microSD card reader it may not have a RTC (the code will still run – it just won’t have
real time clock data) and be sure the code uses the SparkFun value of “8” rather than the
Adafruit value of “10” for the “chip select” variable.

 Plug in the Arduino Uno and load the sketch SD_RTC_2_Digital_Temp which will
determine the sensor names, poll them, write the results to both the screen and to the
SD card (after opening a file), then repeat.

 Study the code (it might be long!); run it (open the serial monitor – confirm baud rate);
test it (including touching the sensors one at a time to change their temperature - also try
removing the SD card and reading the data directly on your computer). Discuss the
utility of saving data this way; discuss the utility of having “off-board” sensors. Note:
cable length can impact analog sensor data readings so always minimize cable lengths
and use digital sensors when off-board (if possible).

Wiring for 2 digital temperature sensors
(Not shown – the tiny breadboard may actually be mounted on a protoshield on

top of the Arduino Uno; optional: if the shield doesn’t have a RTC you could add

your own (perhaps put that on the upper left side of the breadboard).)

Use this wiring color convention: red for power, black for ground, green for data.

Activity 9 – GPS, external power

• With the Arduino unplugged, add the GPS module (to the upper right hand
corner of your breadboard) using the table on the next slide.

• Place TinyGPS into your Arduino library. This activity also uses SD, SPI, and
SoftwareSerial (already in your library).

• Plug in the USB cable and load the sketch GPS_on_SD. Upload the sketch to
the Arduino Uno (watch out for chip select). Open the serial monitor (confirm
baud rate) and watch it run. The GPS probably won’t get a lock so the data will
probably be uninteresting.

• Unplug the USB cable (AKA the programming cable). Power the Arduino Uno
using a 9-volt battery through the power jack instead. You can now run
sketches independently from the laptop (but no more serial monitoring!). This
mode of operating is critical for applications like quadcopters, ballooning, and
rocketry.

• The LED on the GPS gives its lock status. Fast blink means “not locked”; slow
blink means locked. You are unlikely to get it to lock indoors so take the
package outside until it gets a lock then walk around a bit to collect some
interesting data. Come back in and look at the GPS data that was logged to the
micro-SD card.

Adafruit Ultimate GPS Breakout

Pin Function Attached To

3.3V Provides a 3.3V Output Not connected

EN Enables Sleep Mode Not connected

VBAT Allows battery input for RTC Not connected

FIX Output at same time as fix LED Not connected (May want to

connect depending on your project)

TX Transmit D5

RX Receive D6

GND Ground GND

VIN 5V Power 5V

PPS Pulse per second output Not connected

