How to use a Balloonsat Easy flight computer

Contacts: Philip Hansen <hans3555@umn.edu> and Seth Frick <frick100@umn.edu>

A. Connecting a computer to the BalloonSat Easy:

1.) Connect the programming cable to the BalloonSat Easy programming header and to the serial port of a computer. The black wire of the cable goes on the side of the flight computer that has a G (for “ground”) near the pin. Note: If you don’t have a computer with a serial port you can use a serial-to-USB cable here.
2.) Open the Picaxe Programming Editor. This software can be downloaded for free from http://www.rev-ed.co.uk/picaxe/software.htm. The standard programming editor provided by Picaxe only works in Microsoft Windows. However, there are other programming environments that are available for download that will run in other operating systems such as Linux and Mac OS. These are not necessarily free, but they are available.

3.) Click Options (sometimes this opens automatically when the program starts) and select Picaxe Mode 18x (under the Mode tab).

4.) Under the Options window (under the serial port tab) click the com "#" that has a white circle next to it.

B: Pre-flight – Download a program to the BalloonSat Easy:

1.) Perform the steps in the "Connecting a computer to the BalloonSat Easy" above.

2.) Select File Open and find the program you want to load.
3.) Turn on the Balloonsat Easy Flight Computer (power LED should glow).
4.) When the program is in the active window, click Program (icon with headphone jack on it) to download the code to the flight computer. Now the computer will automatically run the code every time it is turned on.
C: At launch – Starting a BalloonSat Easy to take data

1.) Insert the commit pin then turn on the Balloonsat easy flight computer – the power indicator LED should glow.

2.) Look at the indicator LED to ensure that the flight computer is running the code. At this point it should be flashing once then a short pause which means the computer is running the program but is “idling” – waiting for the commit pin to be pulled.

3.) When ready to take data, perhaps about 5 minutes before releasing the balloon, pull out the commit pin. (Don’t lose it – you’ll need it to download data later!) This should change the flashing pattern to two flashes every time data is read, then a long pause between reads – the default program has this set of a 15 second delay between data reads, though you can edit that.

4.) If the computer has succeeded in taking data for the full flight, when you recover it the computer should either still be taking data (flashing pattern described above) or the pattern should be a long pause and a single flash (indicating that memory was filled up).

5.) If the computer fails to take data as expected, the computer will go to a 3 flashes and a long pause or else both LEDs will be off.
6.) Be sure to make note of the flashing pattern when you get the computer back, before turning it off. To be safe, it is best to also disconnect the battery power after the flight. Do NOT put the commit pin back in the flight computer, but maybe keep it nearby (in the payload box?) so it is available when you need it to download the data (instructions below).
D: Post-flight – Getting data off of the Balloonsat Easy:

1.) Perform the steps in the "Connecting a computer to the BalloonSat Easy" above.

2.) Press the function key F8 (this will open an output window for the flight computer). The baud rate must be 4800 – this is set in the interface window. Usually the baud rate defaults to this setting (controlled by the white circles at the top of this window).
3.) Important! Be sure the commit pin is STILL OUT of the flight computer BEFORE turning on the computer so the program knows you are downloading existing data rather than trying to run a new experiment (which will overwrite existing data in the memory).

4.) Turn on the flight computer. Nothing should happen right away since the commit pin is still out.
5.) Insert the commit pin then pull it back out again. This will start data downloading into the window (but the input buffer will get full before all the data has been downloaded, so this will only get part of your data back).

6.) When the flight computer stops reading back data in the dialogue window click Edit, then copy input buffer.

7.) Open a text editor of your choice and paste the data into the text editor. This will allow the transfer of approximately 400 lines of text at a time. The window will stop after 333 lines have been read. Copy the text to a text file. With the instructions given in step 5 – briefly reinstall the commit pin to get more data. Continue 3 or 4 more times to retrieve all the data from the flight computer.
7.) If planning to open the data file in Microsoft Excel, it is probably best to save this file as a text-only document.

8.) Analyze the data with Excel using the “BalloonSat Easy/Weather data analysis” file – see separate instruction sheet.

APPENDIX – Here is the flight code we used, which may be edited (carefully!) to do other things as well. In the comments note where the number of channels is set, where the wait-between-reads is set, and how many reads one can expect (i.e. how long the flight computer can run) before running out of memory.

************************ Flight code ************************

symbol record=w0 'This is the section where the variables are declared

symbol index=w1

symbol value=b4

BalloonSat:

 symbol Max_ADC = 2 ' maximum adc channel usedstarting with 0

 symbol Mission_Delay = 15000 ' length of pause in mission loop 15 seconds

Mission_Prep:

 i2cslave %10100000,i2cfast,i2cword ' set memory speed to 400 kHz

 if pin7 = 1 then Download_Data
 'and one word records

flashed:

'this section is the section that waits

high 3

'for commit pin to be pulled

pause 1000

'the flahser is also in this section

low 3

' it flashes at a specific rate

pause 1000

if pin7=0 then flashed

Mission:

' will change pattern of flashing when data is being taken

 gosub Analog ' collect analog voltages

 write 0,record ' store the number of records collected

 gosub On_Flash ' pause.....

 goto Mission 'before starting all over

Analog:

 for index = 0 to Max_ADC ' loop for number of analog voltages to record

 readadc index,value ' get next adc value

 gosub Record_Data ' go store the value

 next ' until last voltage is recorded

 return ' return to main mission loop

Record_Data:

 if record = 3000 then End_Mission ' check that aren't writing too many records to memory

 record = record + 1 ' increment record number

 low 0 ' unwrite protect memory

 writei2c record,(value) ' write the next record to memory

 pause 10 ' wait 10 ms for write

 high 0 ' write protect memory

 return ' return to the calling calling subroutine

On_Flash:

high 3

pause 1000

'flash twice than a long pause

low 3

pause 500

high 3

pause 1000

low 3

pause 12500

return

Download_Data:

 sertxd (Cr,lf)

sertxd ("Download Data",Cr,lf)

 for record = 1 to 1000

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record + 1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record +1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,Cr,lf) ' serial out the data record

 next

gosub flasher

sertxd (Cr,lf)

sertxd ("Download Data",Cr,lf)

 for record = 1000 to 2000

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record + 1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record +1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,Cr,lf) ' serial out the data record

 next

 gosub flasher

' waits to replace the commit pin

' than remove commit pin

sertxd (Cr,lf)

sertxd ("Download Data",Cr,lf)

 for record = 1999 to 3000

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record + 1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,",") ' serial out the data record

 record = record +1

 readi2c record,(value) ' read the recorded record

 sertxd (#value,Cr,lf) ' serial out the data record

 next

 gosub flasher

sertxd (Cr,lf)

sertxd ("Download Data",Cr,lf) ' until last data record read out

gosub LT_down

LT_down:

high 3

'flash 3 times than pause

Pause 1000

'signifies completed

low 3

' download data

pause 500

high 3

pause 1000

low 3

pause 500

high 3

pause 1000

low 3

pause 10000

 Goto LT_down

 flasher:

pause 1000

if pin7=1 then flasher

'waits the for commit pin

return

End_Mission:
'this is if data was recorded during the whole flight

low 3

' this shows that the memory is full

pause 10000

' and that the flight computer functioned properly for the flight

high 3

pause 1000

 goto End_Mission

'this program has a problem

' it writes the record location to internal memory not to the

' 16 bit 1 word memory chip on the balloonsat easy 2.0 flight computer board

'therefore the data should exist for any

 end ' end of mission

