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Abstract. There are problems in linear elasticity theory whose corresponding defor-
mations, usually associated with singular stress fields, are open to question because they
are not one-to-one and predict self-intersection. Recently, a theory has been advanced to
handle such situations, which consists in minimizing the quadratic energy functional of
linear elasticity subject to the constraint of local injectivity. In particular, the Jacobian
of the deformation gradient is required to be not less than an arbitrarily small positive
quantity, and, thus, the local orientation is preserved. Here, this theory is applied to the
classical Lekhnitskii problem of an elastic aelotropic circular disk which is loaded on its
boundary by a uniform radial pressure. Without the injectivity constraint, this classical
linear problem has a unique solution. This example, with the injectivity constraint, al-
ready has been considered in previous works, but radial symmetry was assumed in order
to reduce the problem from 2D to 1D. Here, making use of an interior penalty formu-
lation, a numerical scheme is implemented that solves a full 2D problem. Remarkably,
it is shown that there are values of the material moduli for which the minimal potential
energy solution is no longer symmetric, producing a strong azimuthal shear and nomi-
nally a 180◦ rotation of an internal central core of the disk. Although the elastic strain
energy is quadratic and convex, the strongly nonlinear character of the constraint allows
for bifurcation instabilities.
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1 Introduction.

Many classical solutions from linear elasticity theory that are associated with singular stress
fields are commonly and widely employed in engineering applications. The stress singular-
ities produce singularities in the corresponding strain field, so that the major assumption
for the linear theory that the displacement gradient is infinitesimal is violated. However,
even a more insidious consequence is that there are cases for which the corresponding de-
formation field is not one-to-one no matter how small are the prescribed tractions and/or
displacements at the boundary, thus producing a seemingly paradoxical rejection of one of
the main pillars of continuum mechanics. Such spurious behavior has been underlined in [2]
for the situation of plane strain in the case of a bonded rigid punch which is pushed into a
isotropic linear elastic half space. The anomalous response was therein partially solved by
resorting to two special non-linear elasticity theories.

An alternative approach was advanced in [7], where it was proposed to minimize the
classical quadratic potential energy functional of linear elasticity subject to the constraint
of local injectivity. This requires that the determinant of the deformation gradient is not
less than an arbitrary small positive quantity ε, and implies that the orientation of the
deformation is locally preserved. As a paradigmatic example of the relevant theory, the
authors presented a classical problem, already discussed by Lekhnitskii [8], i.e., the problem
of an aelotropic circular disk in plane strain or generalized plane stress, radially compressed
along its external contour by a uniformly distributed normal force p per unit length. For
a cylindrically aelotropic material, which has one axis of orthotropic material symmetry
coinciding with the radial direction, it can be shown easily that the elastic solution may
become singular at the disk center. The elasticity tensor is not continuous at the disk center
because for such a material symmetry it has a different constant value on each radial line of
the disk. It can thus be shown that there are values of the elastic moduli for which material
overlapping may occur.

This problem represents an interesting example of an irregular solution of an elliptic
system of partial differential equations with bounded coefficients, of the kind evidenced
by De Giorgi in a famous counterexample [5]. De Giorgi’s work invalidated some overly
optimistic conjectures on the regularity of weak solutions of elliptic systems, conjectures
based upon the known result that a solution in the 1D case is a Hlder-continuous function if
the coefficients of the differential equation are bounded [10]. De Giorgi [5] showed that such
a result cannot be extended to the multi-dimensional case by inventing a counterexample
wherein he exhibited an unbounded and discontinuous extremal for a variational system
of elliptic equations with discontinuous, though bounded, coefficients. Later, De Giorgi’s
counterexample was interpreted in the framework of linear elastostatics by Podio-Guidugli
[13]. In Lekhnitskii’s problem the elastic coefficients are bounded, but discontinuous at the
center of the disk where there is a conflicting convergence of material symmetries. The
corresponding displacement field is continuous but the strain, and consequently the stress,
grows unboundedly at the disk center. Thus, there are regions where self-intersection and
material overlapping may occur.



Bifurcation instability with local injectivity 3

In order to overcome the difficulty of material overlapping, recently, in [15], it was
proposed to consider a compound circular disk with a homogenous isotropic linear elastic
inner core. No stress singularity occurs at the center in this case because the elastic moduli,
i.e., the coefficients of the corresponding elliptic system of equations, are continuous at
the center. Nevertheless, the author of [15] neglected to notice that material overlapping
indeed occurs for an inner isotropic core of non-zero radius (this point will be discussed in
detail in Section 2). Moreover, contrary to what is stated in [15], as the radius of the inner
core tends to zero the corresponding sequence of elastic solutions approaches Lekhnitskii’s
singular, self-intersecting solution and no advantage is gained with this approach.

The Lekhnitskii problem, with the local orientation preserving constraint of local injec-
tivity, was solved in closed form in [7] using the assumption of radial symmetry: when the
displacement is radially symmetric, the problem can be reduced to an ordinary differential
equation. In this solution, the constraint is active in a central core of the disk, forcing
the deformation field to respect the injectivity requirement. Moreover, the corresponding
Lagrange multiplier field was found to act as a Cauchy isotropic stress (pressure) in the
central core, remindful of the fact that the force between the atoms of a material becomes
strongly repelling when the separation distance between them is made sufficiently small.

The analytical solution of the constrained Lekhnitskii problem was confirmed by the nu-
merical solution of [6] wherein a Lagrange multiplier technique was used. However, consid-
erable difficulties were encountered in this work because of the strongly nonlinear character
of the constraint, which involves the determinant of the deformation gradient. A Newton-
Raphson method was used to iteratively solve the resulting system of equations, and it was
very likely that the initial approximate at each step of the iterative procedure violated the
injectivity constraint. On the other hand, the constraint acted as a ”barrier” in that it
required any successive approximate to return to the set of admissible deformations. In
other words, when an approach toward the solution was attempted from the exterior of the
domain of the constraint, serious numerical instabilities were stimulated. This problem was
by-passed by forcing “by hand” the numerical approximations to stay in the domain of the
constraint. However, this procedure would be difficult to apply if the actual solution is not
known in advance and the domain in the body in which the constraint is active is completely
unknown.

An alternative, more efficient numerical approach was considered in [1] by using a so-
called interior penalty formulation. This approach requires one to determine a displacement
field which minimizes an augmented potential energy functional, i.e., the potential energy
of linear elasticity plus a penalty functional [14] divided by a sufficiently large penalty
parameter. A sequence of minimizers, parameterized by the penalty parameter, is then
constructed which converges to the solution of the constrained minimization problem when
the parameter tends to infinity. This approach, at least in theory, has the advantage that
the Newton-Raphson method can be implemented at each step to minimize the penalized
functional, without having to control that each approximate remains in the class of locally
injective functions. However, in practice, one has to control that, at each iteration, the
step length is chosen small enough to remain inside the admissible set. In any case, this
control does not introduce additional numerical difficulties. Using again the assumption of
radial symmetry, and thus reducing the problem to one of one-dimension, the constrained
minimization problem was solved in [1], arriving at complete agreement with the analytical
analysis of [7].

In this paper the numerical solution of the constrained Lekhnitskii problem is again
considered using the interior penalty formulation of [1], but the main novelty is that now
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the full two-dimensional problem is considered, without applying the assumption of radial
symmetry. The well-known radially symmetric solution is in some cases recovered but, re-
markably, it is shown that there are values for the elastic moduli for which the corresponding
minimizing deformation is no longer radially symmetric. This is due to the fact that, al-
though the elastic strain energy is quadratic and convex, the strongly nonlinear character
of the constraint allows for the occurrence of bifurcation instabilities. Radially symmetric
and non-symmetric solutions are discussed in detail. Difficulties in the numerical solution
of the full 2D problem, which were not considered in [1], are revealed.

2 The Lekhnitskii disk problem

2.1 The Lekhnitskii’s solution

A paradigmatic example in two dimensions where the injectivity requirement is violated
has been recorded by Lekhniskii [8]. This work considered the equilibrium of a cylindrically
aelotropic linear elastic disk of radius R0 with fixed center point which is radially compressed
along its external contour by a uniformly distributed normal force p per unit length. A
singularity of stress at the center point was recorded for certain elastic moduli, but self-
intersection in the neighborhood of the center was not noticed. In the following, we shall
use cylindrical coordinates (with origin at the fixed disk center). The notation is shown
in Figure 1: A point X = (R, Θ) in the reference configuration at which the orthonormal
cylindrical basis is (er(X), eθ(X)) is mapped to the point x = (r, θ) at which the orthonormal
basis is (er(x), eθ(x)).

In linear theory, the stress

T = σrrer(X)⊗ er(X) + σrθ(er(X)⊗ eθ(X) + eθ(X)⊗ er(X)) + σθθeθ(X)⊗ eθ(X) ,

and the strain

E = errer(X)⊗ er(X) + erθ(er(X)⊗ eθ(X) + eθ(X)⊗ er(X)) + eθθeθ(X)⊗ eθ(X) ,

are related by

σrr = c11err + c12eθθ ,

σθθ = c21err + c22eθθ , (2.1)
σrθ = 2c66erθ ,

where the elastic moduli c11,c22, c12 = c21 and c66 are constant. By simple inversion, one
obtains

err =
1

Er
σrr − νr

Er
σθθ ,

eθθ = − νθ

E
θ

σrr +
1

Eθ
σθθ , (2.2)

erθ =
1

2G
σrθ ,

where the technical (engineering) moduli Er, νr, Eθ, νθ, and G satisfy

c11 =
Er

1− νrνθ
, c22 =

Eθ

1− νrνθ
, c12 =

Eθνr

1− νrνθ
, c21 =

Erνθ

1− νrνθ
, c66 = G . (2.3)
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Figure 1: Displacement components according to the orthogonal and cylindrical base vectors.

The symmetry condition c12 = c21 implies

νr

Er
=

νθ

Eθ
,

and, in order to render the strain energy positive definite, the conditions

c11 > 0 , c22 > 0 , c66 > 0 , c11c22 − c21c12 > 0 , (2.4a)

Er > 0 , Eθ > 0 , G > 0 , 1− νrνθ > 0 , (2.4b)

must hold.
Under these hypotheses, the linear elliptic equations corresponding to the classical equi-

librium boundary-value problems of linear elasticity theory have a unique solution, modulo
an infinitesimal rotation and translation which depends continuously upon the boundary
data. The solution of the Lekhnitskii problem is rotationally symmetric with respect to the
center of the disk; the displacement field must be of the form u = u(R)er(X). Consequently,
the strain components are

err = u,R , eθθ =
u

R
, erθ = 0 . (2.5)

The one non-trivial equilibrium equation becomes

σrr,R +
σrr − σθθ

R
= 0 , (2.6)

which, because of the constitutive relations (2.1), reduces to the differential equation

c11u,RR +
1
R

c11u,R − c22
u

R2
= 0 . (2.7)
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By imposing the boundary condition σrr = −p and the condition that the origin is fixed,
i.e., u(0) = 0, Lekhniskii’s solution

u(R) =
−p

(
√

c11c22 + c12)Rk−1
0

Rk , (2.8)

is obtained, where the material parameter k is defined as

k ≡
√

c22

c11
=

√
Eθ

Er
> 0 . (2.9)

As a result, when k < 1 the radial and hoop stresses are singular for any value of the pressure
p because

σrr = −p

(
R

R 0

)k−1

, σθθ = −pk

(
R

R 0

)k−1

. (2.10)

An important, and physically unacceptable, response is described by Lekhnitskii’s solu-
tion when k < 1; its importance lies in the fact that it implies material overlapping in a
neighborhood of the center of the disk. The deformation of each reference point X = (R, Θ)
of the disk is given by x = f(X) = Rer(X) + u(X) and the determinant of the deformation
gradient ∇f has the form

det∇f =

[
1− p√

c11c22 + c12
k

(
R

R0

)k−1
][

1− p√
c11c22 + c12

(
R

R0

)k−1
]

. (2.11)

Observe that when 0 < k < 1 we have det∇f < 0 for

kp√
c11c22 + c12

<

(
R

R0

)k−1

<
p√

c11c22 + c12
. (2.12)

Moreover, according to (2.8) there is a core region identified by

0 <

(
R

R0

)k−1

<
p√

c11c22 + c12
, (2.13)

where −u(R) > R. All points belonging to this region are mapped toward and, in fact,
through the center of the disk, thus resulting in material interpenetration. Interestingly,
although material overlapping occurs in a whole region in the neighborhood of the disk
center, the determinant of the deformation gradient is negative only in the annular portion
defined in (2.12). The determinant is positive for all points in a central core bounded by
this annulus because there is a double overlapping predicted in this region; notice, also, that
both the radial and the hoop infinitesimal strains are less that −1 in this region, as readily
can be seen from (2.5) and (2.8).

2.2 Lekhnistkii’s problem with the constraint of local injectivity

The solution of Lekhnistkii’s problem, modified by the constraint of local injectivity, was
studied in [7] as an example of a problem of minimum potential energy in linear elasticity
theory, where the set of admissible displacement fields is restricted to be locally injective,
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i.e., det(I +∇u) ≥ ε > 0. Relying mainly on Ball’s results [3], a general existence theorem
for this minimization problem was proved in [7] for the case of two space dimensions.¶

To recall the main results in [7], let B ⊂ R2 denote the undistorted natural configuration
of the body under consideration. The boundary ∂B of B is partitioned into two non-
intersecting parts, ∂1B and ∂2B, ∂B ≡ ∂1B ∪ ∂2B, ∂1B ∩ ∂2B = ∅, such that u(X) = ū(X)
for X ∈ ∂1B, where ū is a given function, and a dead load traction field t̄(X) is prescribed
for X ∈ ∂2B. In addition, a body force b(X) per unit volume of B acts at points X ∈ B.
The minimization problem

min
u∈Aε

E [u] (2.14)

is considered, where E [u] denotes the classical potential energy functional of linear elasticity
theory, i.e.,

E [u] ≡ 1
2

∫

B
C[E] ·E dA−

∫

B
b · u dA−

∫

∂B2

t̄ · u dS , (2.15)

and where the class of admissible displacement fields is defined as

Aε ≡
{
u ∈ W 1,2 (B) → R2| det (1 +∇u) ≥ ε > 0, u = ū (X) on ∂1B

}
. (2.16)

Here, C = C(X) denotes the positive definite totally symmetric linear transformation of
Sym → Sym, which characterizes the elastic moduli of classical linear elasticity theory, and
E is the infinitesimal strain tensor field

E ≡ 1
2

(∇u + (∇u)T
)

. (2.17)

The parameter ε > 0 is to be assigned sufficiently small. If the injectivity constraint in Aε

was eliminated, and, consequently, the class of admissible deformations was enlarged, then
classical linear elasticity theory would prevail.

Suppose u∗(X) denotes the displacement field of a solution to the constrained minimiza-
tion problem defined in (2.14), (2.15) and (2.16), with associated strain field E∗(X). In
general, the minimizing deformation divides B into two non-intersecting open subregions:

B> ≡ int[{X ∈ B : det(1 + det∇u) > ε}] , (2.18a)

B= ≡ int[{X ∈ B : det(1 + det∇u) = ε}] , (2.18b)

such that B ≡ B>∪B=∪Σ, B>∩B= = ∅, where Σ ≡ B>∩B= denotes the dividing interfacial
region which separates B> and B=. If we let

T∗(X) ≡ C[E∗(X)] , (2.19)

denote the relevant stress field, it was shown in [7] that the Euler-Lagrange equations for
the constrained minimization problem are of the form

Div T∗ + b = 0 in B> , (2.20a)

Div
(
T∗ − ε λ∗(1 +∇u∗)−T

)
+ b = 0 , λ∗ ≥ 0 in B= , (2.20b)

¶The three dimensional case remains unresolved and is particularly troublesome because of the “cubic”
nature of the injectivity constraint.
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and the natural boundary conditions are

T∗n + b = t̄ on ∂B> ∩ ∂2B , (2.21a)
(
T∗ − ε λ∗(1 +∇u∗)−T

)
n = t̄ on ∂B= ∩ ∂2B . (2.21b)

In addition, the jump condition
(
T∗ − ε λ∗(1 +∇u∗)−T

)
Σ∩B̄=

n = (T∗)Σ∩B̄>
n (2.22)

must hold across Σ = B̄> ∩ B̄=. Here, n is a unit normal to Σ, and the evaluations Σ ∩ B̄=

and Σ ∩ B̄> are to be understood as limits to the dividing interface Σ from within B= and
B>, respectively.

The field λ∗(X) ≥ 0 represents the Lagrange multiplier field associated with the con-
straint det(1 +∇u∗)) ≥ ε > 0. The fact that the Lagrange multiplier field is non-negative
is in agreement with the Kuhn-Tucker conditions consequent to the inequality constraint.
In the following, we shall consider this problem numerically.

3 Numerical procedure

The constrained minimization problem just discussed presents some computational diffi-
culties. Apart from the intrinsic nonlinearity associated with the unilateral nature of the
constraint, the determinant itself is a strongly nonlinear function of the deformation gra-
dient. Consequently, the minimization problem becomes strongly nonlinear and requires a
careful numerical strategy. Referring to the numerical experiments recorded in [1] for the
one-dimensional case, we shall employ the same solution technique here, i.e., the interior
penalty method. However, since now the simulations will be fully two-dimensional and
not restricted to be radially symmetric, a few numerical aspects are analyzed in order to
optimize the computational costs and to improve convergence.

3.1 Interior penalty formulation

The basic scheme for the interior-penalty (or barrier) method is the following: We must
consider the non-convex optimization problem

min E [u], u ∈ Aε , (3.1)

for a convex functional E on a non-convex manifold Aε, and construct an appropriate barrier
function F (u), defined on the interior of Aε and tending to infinity as u approaches the
boundary of Aε, i.e.,

F : F [u] →∞ for u → ∂Aε . (3.2)

Based upon this barrier function, the constrained minimization problem (3.1) is then con-
verted to a sequence of unconstrained optimization problems of the form

min E [u, δ], u ∈ Aε , (3.3a)

where
E [u, δ] ≡ E [u] +

1
δ
F [u] , (3.3b)

and where δ > 0 is the barrier parameter, which is to be sequenced through larger and
larger values.
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If u∗(δ) denotes a minimizer of E [u, δ] then, under appropriate conditions, it can be
shown that as δ → ∞ any limit point u∗ of the sequence {u∗ (δ)} is a solution of (3.1).
Moreover, the penalty formulation furnishes an approximation of the Lagrange multiplier
field associated with the original constrained problem (3.1). The quality of the approxima-
tion improves as the parameter δ is made larger.

As an interior penalty functional appropriate for controlling the constraint of local in-
jectivity, we take the functional

F [u] ≡
∫

B

1
det(1 +∇u)− ε

dA ∀u ∈ Aε . (3.4)

As noted in [1], the main advantage of the proposed strategy consists in the fact that each
of the approximating sequence of problems defined in (3.3) can be solved using well known
algorithms in unconstrained nonlinear theory.

Referring to [1] for the detailed optimization discussion, here we simply recall that a
possible approximation λδ of the Lagrange multiplier field λ∗ defined in (2.20), (2.21) and
(2.22) is

λδ =
1

δ (det∇(1 +∇u)− ε)2
. (3.5)

It can be verified [1] that λδ → 0 in B> and, clearly we have λδ ≥ 0 in B= as δ →∞. This
is in agreement with the necessary condition in the second of (2.20).

3.2 Finite Element approximation

For numerical implementation, the minimization of (3.3) is replaced by the search for a
solution of a finite number of algebraic nonlinear equations with a finite number of unknowns.
In the finite element method framework, these equations are a result of replacing the function
space where the problem is set by a finite dimensional approximating subspace, i.e., a
subspace Vh spanned by a set of basis functions {ψi} defined on a grid work whose size is
characterized by h. The discrete version of the penalized potential given by (3.1) and (3.3)
may be written in the form

Eh [u, δ] = Eh [u] +
1
δ
Fh [u] , (3.6)

where the significance of Eh [u] and Fh [u] is that integrals (2.15) and (3.4) are evaluated by
considering the approximation of the displacement field u in Vh and, consequently, depend
upon the adopted discretization of the domain. Using a standard procedure, minimizers of
Eh [u, δ] in Vh are then characterized by using the weak form of the Euler-Lagrange equations
for Eh [u, δ], i.e., test functions are considered in Vh, so that the problem is finally reduced
to a nonlinear system of algebraic equations.

In the present work, we shall use a well-known Q2 approximation, i.e., the elemental
displacement field u, as well as the geometry, is approximated by a polynomial of order
two and a quadrilateral mesh is adopted. Recall that, as a triangulation is refined, a Qp

mapping approximates the boundary to within an order hp+1, where p is the order of the
polynomial and h is the mesh width. The constrained Lehknitski problem has a circular
external boundary and in this case the convergence is quite accurate, being of the order
of hp+2.‖ In particular, as shown in Figure 2, as a first choice of mesh size the external

‖This order is easily demonstrated by expanding in series the analytical expression of a circle. The cubic
term in this expression vanishes, so that the truncation error, which should be cubic for a quadratic mapping
(p = 2), is instead of the fourth order. Consequently, the convergence order is raised to 4, instead of 3.
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boundary is divided into 128 segments (Figure 2a), and a very fine mesh is adopted at the
central core of the disk (Figure 2b), where the characteristic size h of the smallest element is
of the order of 10−7. However, as we will show later in Section 4.2, there is a special range of
choices of the elastic moduli for which the numerical solution becomes particularly difficult
and requires a much finer mesh. The importance of the choice of the mesh for problems of
this kind has been clearly outlined in [1] and [6].

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

-5E-05 0 5E-05 0.0001

-5E-05

0

5E-05

Figure 2: A first choice of FEM mesh used to model the disk: a. The complete mesh; b. A
magnification at the disk center.
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3.3 Nonlinear solution scheme

The discrete minimization problem is solved iteratively by using a well-known procedure
adopted in the (unconstrained) optimization method of [9], here briefly summarized.

Starting from an initial choice of displacement field u0 that respects the injectivity
constraint, a sequence of approximations is generated. At each iteration step k ≥ 0, the
method requires the computation of a search direction pk and then it decides how far to
perturb uk in that direction. The iteration is given by

uk+1 = uk + αkpk , (3.7)

where the positive scalar αk ∈ R is called the step length. The success of a line search
method depends upon an effective choice of both the direction pk, which need not be a unit
vector, and the step length αk. In general, α = αk corresponds to the scalar that minimizes
(3.6) in the affine set uk + αpk for all α ∈ R.

Most of the line search algorithms require that pk be a “descendent” direction, i.e., one
for which

DEh[uk, δ] · pk =
d

dλ
Eh[uk + λpk, δ]|λ=0 < 0 .

Of course, this property guarantees that the function Eh[u, δ] becomes smaller by advancing
away from u = uk in this direction. In particular, the search direction can be chosen as

pk = −B−1
k DEh[uk, δ] , (3.8)

where Bk is a symmetric and nonsingular matrix. In the steepest descend method Bk is
simply the identity matrix I, while in Newton’s method Bk is the exact Hessian DDEh[uk, δ].
In quasi-Newton methods, Bk is an approximation of the Hessian that is updated at each
step by means of a low-rank formula. When pk is defined by (3.8) and Bk is positive definite,
one has

DEh[uk, δ] · pk = − (
B−1

k DEh[uk, δ]
) ·DEh[uk, δ] < 0 (3.9)

so that pk is clearly a descent direction. In our simulations we adopt a standard Newton
method.

At each step k, the scalar value αk is first approximated according to the Wolfe conditions

Eh [uk + αkpk, δ] ≤ Eh [uk, δ] + c1αkDEh[uk, δ] · pk , (3.10)

DEh [uk + αkpk, δ] · pk ≥ c2DEh[uk, δ] · pk , (3.11)

where 0 < c1 < c2 < 1. The Wolfe conditions are obtained by coupling the well known
Armijo condition (3.10) [12] with a restriction on the slope given by (3.11). It can be proved
that there exist step lengths that satisfy the Wolfe conditions for every function Eh[·, δ] that
is smooth and bounded from below. In the computations of this paper, it suffices to choose
the values c1 = 10−4 and c2 = 0.9.

The fulfilment of the local injectivity constraint det(I +∇u) ≥ ε > 0 is checked at the
Gauss points of the discrete domain, i.e., those points used for the numerical integration. In
case the constraint is violated, the value of αk is reduced until injectivity is respected via a
simple backtracking strategy. This control is very important to check in order to avoid the
condition where the iterate uk yields a value of the barrier function F [uk] that overcomes
the barrier defined by (3.2): this event in general produces serious numerical instabilities.

In summary, the numerical approach is carried out in two parts. First, for any fixed
δ, the functional Eh [u, δ] of (3.6) is minimized using the nonlinear optimization procedure
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outlined above, until the desired accuracy is obtained. Then, the value of δ is augmented
and the corresponding functional Eh [u, δ] is again minimized using the same procedure.
The solution of the minimization problem for δ is used as the starting point for the iterative
method of the next minimization problem after δ is changed. When the method was first
introduced in the 1960’s, it was referred to as the sequential unconstrained minimization
technique. Today the method is better known as the barrier method (see [16]).

The solution of the original constrained problem (3.1) is obtained in the limit δ → ∞.
The numerical approximation is said to be “sufficiently accurate” when δ is large enough so
that the distance between the solutions of two consecutive minimization problems remains
within a prescribed tolerance.

4 Numerical results

In the original Lekhnitskii’s problem the disk is radially compressed by a uniform pressure.
Here, because it is numerically advantageous, the displacement is assigned on the external
boundary. In particular, since the disk is centered at the coordinate origin, we apply the
following Dirichlet boundary conditions:

u(X) = −0.02X , for |X| = R0 . (4.1)

We set ε = 0.1 in the local injectivity condition det(I+∇u) > ε and, for convenience, all
lengths are normalized by setting the radius of the disk R0 = 1. The penalty approximation
scheme has been implemented in a program based upon the Open Source package deal.II
[4]. The mesh we employ is illustrated in Figure 2.

4.1 Symmetric solution

Consider first the elastic parameters listed in Table 1. The numerical simulations confirm
that the deformation is radially symmetric and of the type already discussed in [7]. In
particular, Figure 3 shows the field r(R)−R corresponding to the exact solution of Lekhnit-
skii’s problem (referred to as the Lekhnitskii solution) and to the solution of the constrained
problem (referred to as the symmetric solution). Figure 3 also shows a third graph (referred
to as the asymmetric solution) which soon will be discussed. Clearly, Figure 3b shows a
magnification of Figure 3a in a neighborhood of the center of the disk. In order to appreciate
where Lekhnitskii’s solution violates the injectivity condition, the line r(R)−R = −R, i.e.,
r(R) = 0, also is plotted: The intersection of the Lehknitskii solution with this line defines
the radius of the overlapping region.

c11 c12 c22 c66

1.e5 1.e3 1.e4 1.e5

Table 1: Elastic parameters used in the numerical simulation associated with a symmetric
solution.

In Figure 4, the determinant of the deformation gradient J ≡ det(I +∇u) is shown for
the symmetric solution. Here, it is clear that J becomes negative only in an annular region,
although material overlapping occurs in a whole central core. Recall that the determinant is
positive in a neighborhood of the center of the disk because, there, the Lehknitskii solution
suffers a double intersection and both the radial and the hoop infinitesimal strains are less
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than −1. This finding is not completely appreciated in [15], where the main consideration
is the issue of stress singularity in an elastic cylinder of cylindrically aelotropic material in
plane strain. Noting that the singularity may be attributed to a conflicting definition of
anisotropy at R = 0, the author then removes this conflict and considers a related problem
of a compound cylinder in which the outer cylinder is aeolotropic and the inner core is
isotropic. One of the conclusions in [15] is that the displacement field corresponds to a one-
to-one deformation mapping in the compound cylinder for all radii of the inner isotropic
core. However, such is not the case. In Figure 5, the field r(R)− R is plotted for different
isotropic core radii. It is evident that, as the radius of this core goes to zero, the solution
tends to the Lekhnitskii solution, which is not regular. Of course, in the isotropic core the
radial displacement is a linear function of the distance from the disk center, so that both
radial and hoop strains become equal and the determinant of the deformation gradient is
positive. However, this positiveness in the core region does not rule out interpenetration for
the reasons outlined above.
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Figure 3: Field r(R)−R for the Lekhnitskii solution, for the symmetric constrained solution
and for the asymmetric constrained solution. Two scales of R are shown.
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Figure 4: Determinant of the deformation gradient for the symmetric solution.
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Figure 5: Radial displacement obtained by considering compound disks with inner isotropic
cores of different radii R1, as proposed in [15]. The line r(R) − R = −R, i.e., r(R) = 0,
identifying the overlapping region, is also reported.
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4.2 Asymmetric solution

Consider now the case when the elastic parameters are as in Table 2. The difference from
Table 1 is that here the shear modulus c66 is two orders of magnitude smaller.

c11 c12 c22 c66

1.e5 1.e3 1.e4 1.e3

Table 2: Mechanical parameters adopted: Asymmetric solution

Remarkably, the deformation field associated with this case is substantially different
from the previous one is that it is no longer radially symmetric. Because of this, such a field
will be referred to as the asymmetric solution.

The numerical solution now presents considerable difficulties because of the highly non-
linear character of the determinant constraint. Consequently, the disk has been divided into
256 radial sectors and, in particular, we have found it essential to place a super-fine mesh
near the center of the disk. The adopted mesh consists of 54912 elements and 55049 nodes.
Figure 6 shows a magnification of the deformed mesh in a neighborhood of the origin (recall
that the disk radius R0 has been normalized to 1).

x

y
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-0.005

0

0.005

0.01

Figure 6: Asymmetric solution: Deformed mesh.
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From this figure it is difficult to appreciate the deformation field because the mesh is too
refined for the graphic resolution. Figure 7 represents the deformation of a much coarser
mesh, indeed the same mesh as shown in Figure 2, which is used here in the asymmetric
case only for the convenience of representation; the quantitative numerical results have been
generated with the finer mesh of Figure 6. It is evident in Figure 7 that a central core of
the disk has rotated in the deformation and, in fact, our computations show that a small
central core turns through 180◦ relative to the external boundary of the disk.

x
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-0.02

-0.01

0

0.01

0.02

Figure 7: Deformed mesh for the asymmetric solution: Coarse mesh.
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In Figure 8, the intensity of the determinant of the deformation gradient J ≡ det(I+∇u)
is shown for the asymmetric solution. While only those values of J between 0.1 (the lowest
bound) and 0.3 are shown in this figure, our computations show that J takes very large
(positive) values in the proximity of the center of the disk and approaches +∞ as R → 0.
This singularity of J does not associate with material self-intersection because of the 180◦

rotation of the core. It is not yet exactly clear what is happening within this core because
the mesh converges and, consequently, accuracy of computation is a question. However, it
is clear that the material gets onto the other side of the origin not by mapping straight
through the origin, as in the Lehknitskii solution, but by rotating 180◦ aided by a strong
region of annular shear in which the injectivity constraint is active. Also, it appears that the
deformation gradient is singular. The region where J lies between 0.1 and 0.3 is an annulus
and J is greater than 0.3 in the central core as well as outside the annulus. By comparison
with Figure 4, we see that the injectivity constraint for the asymmetric solution is active
in a region very different from that of the symmetrical solution, i.e., the center is no longer
constrained.

Figure 8: Determinant of the deformation gradient for the asymmetric solution.

The rotation of the central core can be seen in Figures 9a and 9b, which show the
displacement component uϑ(R), as defined in Figure 1, for two scales of R.
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Figure 9: Displacement field uϑ(R) for the asymmetric constraint solution. Two scales of
R.
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The angle of rotation of the central core is more easily appreciated by examining the
field ϑ(R)−Θ, defined again as in Figure 1. We show this in Figure 10 for two scales of R.
It is clear that the angle of rotation of a core of small radius is nominally π.
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Figure 10: Field ϑ(R)−Θ for the asymmetric constrained solution. Two scales of R.
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The corresponding deformation is associated with a positive determinant of the deforma-
tion gradient field, even though the infinitesimal strain components err and eθθ both become
strongly negative in the vicinity of the origin. This limiting behavior is demonstrated in
Figures 11 and 12, where err and eθθ are plotted as a function of R. Indeed, for an exactly
rigid rotation there is a non-zero infinitesimal strain and when err = eθθ < 0 the rotation
angle is 180◦. In fact, in two dimensions a polar inversion is equivalent to a rotation of
180◦ about an axis perpendicular to the plane through the pole. This 180◦ rotation of a
core is how the classical Lehknitskii solution is altered within the confines of the injectivity
constraint and with minimal energy consumption. Of course, here a shear modulus is suf-
ficiently small to accomodate energetically a large azimuthal shear which makes the 180◦

core rotation possible.
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0

err

Figure 11: Asymmetric solution: Infinitesimal radial strain err.

The infinitesimal shear strain γrθ is shown in Figure 13. Note that γrθ is practically zero
sufficiently far from the center where the solution tends to become radially symmetric and
of the classical Lehknitskii type. Notice, also, that in a neighborhood of the center of the
disk, both positive and negative infinitesimal shearing strains are attained; we believe that
this is due to the effect of large rotation. The components of the constitutive stress σrr,
σθθ and σrθ, defined as in (2.1), are plotted as a function of R in Figures 14, 15 and 16,
respectively.

The field λδ of (3.5), representing an approximation of the Lagrange multiplier field λ∗

of (2.20), is shown in Figure 17. As reported earlier, we know that λδ → λ∗ for δ → +∞
and, in the case of Figure 17, the parameter δ = 109 is quite large. Numerical experiments
have confirmed that the form of λδ does not change if δ is further increased. The graph of
the Lagrange multiplier field as a function of the distance R from the disk center is shown
in Figure 18. Note, here, that the Lagrange multiplier takes large but finite values and, as
already mentioned, it vanishes outside of a certain radius as well as in a neighborhood of
the center of the disk because the injectivity constraint is not active in these two regions.
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Figure 12: Asymmetric solution: Infinitesimal hoop strain eθθ.
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Figure 13: Asymmetric solution: Infinitesimal shear strain γrθ.
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Figure 14: Asymmetric solution: Constitutive radial stress component σrr.
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Figure 15: Asymmetric solution: Constitutive hoop stress component σθθ.
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Figure 16: Asymmetric solution: Constitutive shear stress component σrθ.

Figure 17: Numerical approximation λδ of the Lagrange multiplier field for the asymmetric
constrained solution. Here, δ = 109.
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Figure 18: The Lagrange multiplier λδ as a function of R for δ = 109.
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The elastic parameter that influences the transition between the symmetric and asym-
metric solutions is the shear modulus c66. In Figure 19 we show the field uϑ(R) for different
values of the elastic parameter c66; here, we fix the remaining material moduli at the values
reported in Tables 1 and 2. It is clear from the graph that uϑ → 0 as c66 increases, i.e., the
stiffer the shear modulus, the more the solution becomes radially symmetric. This is not
surprising, since an increase in the shear stiffness diminishes the tendency for any possible
core rotation. We conclude that a bifurcation instability occurs when the shear stiffness is
sufficiently small–a defect-like instability.
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Figure 19: The field uϑ(R) for different values of the elastic modulus c66.

Our numerical experiments have shown that the threshold value of c66 that marks the
transition from the symmetric to the asymmetric solution is approximately 2.0e4. As c66 be-
comes sufficiently small (and the value c66 = 1 in Figure 19 qualifies), a vanishing resistance
is offered against the relative rotation of concentric disk portions. The wiggly appearance
of the corresponding graph in Figure 19 is a symptom of a numerical ill-conditioning that
is naturally associated with this kind of material instability.

4.3 Numerical remarks

The proposed numerical strategy to solve the constrained minimization problem consists of
outer and inner loop computations. The outer loop sets a starting point and an approxi-
mating objective function through a proper choice of the parameter δ in (3.6); the possible
strategies for such a choice will be explained. The corresponding optimization problem is
solved in the inner loop using Newton’s method coupled with a line-search procedure, as
discussed in Section 3. The crucial points in this procedure are the following:

1. Initial guess:

The interior penalty method requires the specification of a starting point u0 which
respects the boundary condition and does not violate the local injectivity constraint. If
the problem at hand was a mixed boundary value problem with homogeneous Dirichlet
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boundary conditions, the natural choice is the undistorted reference configuration, as
was chosen in [1]. When the displacement is assigned on the boundary, as in the present
case, a few difficulties may be encountered because, in general, it is not evident how
to specify a field that, while respecting the Dirichlet boundary condition, does not
violate the constraint. In the computations of this work, our starting point, u0, is
chosen to be the equilibrium displacement field for a homogeneous, isotropic disk,
which is obtained by assuming c11 = c22 in (2.7) (linear radial displacement).

2. Optimization of the numerical scheme:

Once the inner iteration loop has been completed, so that the corresponding optimiza-
tion problem associated with an assumed value of δ has been solved, the outer loop
proceeds by increasing the value of δ by a multiplicative factor µ > 1 and redoing the
inner loop.

Choice of µ: The choice of µ involves a “trade-off decision” in the number of inner and
outer iterations that are required. If µ is small (for example, nearly 1), then at each
outer iteration δ is increased by a small factor. Consequently, the iterate u obtained
at the end of the previous inner loop, is a very good initial point for the Newton
process that is to be carried out for the next inner iterative loop. Thus, the number of
Newton steps necessary to solve the corresponding optimization problem is relatively
small. On the other hand, the number of outer iterations consequently is large. Our
numerical experiments have shown that when µ is between 3 and 100, one effect offsets
the other, so that the total number of Newton steps remains approximately constant.
This means that the choice of µ is not particularly critical, and in this work we have
chosen µ = 10.

Choice of δ: The initial choice for the parameter δ may produce a dramatic effect
on the running time of the algorithm. A parameter that is too small may cause the
relevant system of equations to be ill-conditioned. Here, the trade-off is simple: If δ
is chosen too large, the first inner iteration loop will require too many iterations. On
the other hand, if δ is chosen too small, the algorithm will require additional outer
iterations.

In Figures 20-22 we show the numerical solutions for r(R) − R and uϑ(R) that are
obtained by increasing the penalty parameter δ. Each graph corresponds to the solu-
tion of the optimization problem defined in (3.3) corresponding to a specific value of
δ. Note that small values of the parameter δ (starting from δ = 10−3) have been con-
sidered. It should be observed that no spurious field is obtained even for the smallest
δ, and the convergence of the outer iteration loop is quite accurate. This finding is
somewhat different from what was reported in [1]. There, the solution associated with
the smallest values of δ was quite inaccurate.
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Figure 20: The field r(R)−R for the symmetric constrained solution for different values of
the penalty parameter δ.
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Figure 21: The field r(R) − R for the asymmetric constrained solution for different values
of the penalty parameter δ; two scales of R.
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Figure 22: The field uϑ(R) for the asymmetric constrained solution for different values of
the penalty parameter δ; two scales of R.
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Truncated Newton methods were introduced in the early 1980’s [11] and have gained
wide popularity. Such methods rely upon the idea that an exact solution at every
step of the iteration is unnecessary and, indeed, can be computationally wasteful in
the framework of a basic descent method. Even a rough approximation of the descent
direction can suffice when the objective function is not well approximated by a convex
quadratic function and, when a solution of the minimization problem is approached,
more effort in solving the the resulting system of algebraic equations using the Newton-
Raphson method may be warranted.

3. Ill-conditioning:

When the parameter δ is large, the functional (3.6) is difficult to minimize by New-
ton’s method because its Hessian varies rapidly near the boundary of the admissible
set. This problem can be overcome by an iterative method: Solve the minimization
problem for some initial δ, and then increase δ (and therefore the accuracy of the
approximation) at each step, starting each Newton minimization at the solution of
the problem corresponding to the previous value of δ.

5 Discussion and conclusions

The constrained theory here applied represents an attempt to remove the physical unaccept-
ability of material interpenetration that occurs in many classical problems, usually involv-
ing stress singularities. The theory, first proposed in [7], attempts to maintain the original
framework of linear elasticity theory, but adds an internal requirement, i.e., the constraint
of local injectivity, that aims at modelling, in the simplest way, the strong repelling forces
that occur between the material particles when the separation distance between them tends
to become zero. This constraint represents, in a certain sense, a “minimal” requirement to
be added to the linear elasticity theory, without having to resort to the whole complexity
of a full non-linear elasticity theory. In fact, linear elasticity theory gives very accurate re-
sults at points sufficiently far from singular points, and must be rejected only in very small
regions of singular behavior. Moreover, this approach preserves the definition of material
symmetries, which have a more complicated characterization in non-linear theories.

The elementary classical Lekhnitskii problem for an aelotropic disk, proposed as the
paradigmatic example of the constrained theory, has been revisited. The main novelty of
this work is that the problem has been solved numerically without enforcing an assumption
of radial symmetry, which reduces the problem to one of one-dimension. Of course, the
solution of the full 2-D problem presents considerable more difficulty from a numerical point
of view than does the 1-D problem. An ad hoc numerical strategy has been adopted which
solves a sequence of specially constructed unconstrained optimization problems within the
framework of the internal penalty formulation.

Our approach and numerical experiments have allowed us to discover and to discuss
asymmetric minimizers to a problem that was thought to possess only radially symmet-
ric solutions, highlighting the occurrence of internal material bifurcation instabilities. This
phenomenon essentially is due to the non-linear character of the constraint. For the disk
problem, the 180◦ rotation of the central core gives rise to an asymmetric minimizing de-
formation field and this deformation is possible because the shear modulus, which governs
the azimuthal shear, is sufficiently small.

In general, the proposed constrained theory of [7] may be particularly relevant to model
the response of brittle materials, such as glass, whose behavior is practically linear elastic
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up to rupture, without the mitigating effect of plasticity or damage. Possible applications
may be envisaged in a number of classical problems, such as the bonded punch problem,
already discussed in [2], or in linear elastic fracture mechanics.
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