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ABSTRACT 
 

    We convert Nikuradse’s (1933) data for six values of roughness into a single formula relating the 

friction factor to the Reynolds number for all values of roughness. The formula extrapolates and extends 

the experimental data between and beyond. Of particular interest is the connection of Nikuradse’s (1933) 

data for flow in artificial rough pipes to the data for flow in smooth pipes presented by Nikuradse (1932) 

and McKeon et al (2004) and for effectively smooth flow in rough pipes. The formula extrapolates and 

extends the experimental data between and beyond. This kind of correlation seeks the most accurate 

representation of the data as a problem of data mining independent of any input from theories arising from 

the researchers ideas about the underlying fluid mechanics. As such, these correlations provide an 

objective metric against which observations and other theoretical correlations may be applied. Our main 

hypothesis is that the data for flow in rough pipes terminates on the data for smooth and effectively 

smooth pipes at a definite Reynolds number ( )σσR ; if ( )σλ ,Ref=  is the friction factor in a pipe of 

roughness then ( )σσλ σ ),(Rf=  is the friction factor at the connection point. An analytic formula 

giving ( )σσR  is obtained here for the first time. 
 

1. Introduction 
 

Here we convert Nikuradse's data into explicit analytic correlation formulas by smoothly connecting 

different power laws with the five point rule associated with logistic dose functions. The correlation 

formulas are rational fractions of rational fractions of power laws. The method leads to a tree like structure 

with many branches that we call a correlation tree. Curves relating friction factors to the Reynolds number 

for a fixed value of the roughness ratio can be found from formulas on the correlation tree. Formulas 

predicting the values of the Reynolds number and friction factor for which the effects of roughness first 

appear are derived here for the first time. Many obscure features of turbulent flow in rough pipes are 

embedded in the correlation tree. The flow of fluids in rough pipes has been a topic of great interest to 

engineers for over a century. The landmark experiments of Nikuradse (1933) are the gold standard for work 

on this topic even today. Understanding the fluid mechanics of turbulent flow in rough pipes is still subject 

to controversy because mathematically rigorous approaches are not known and theoretical ideas must rest 

on the interpretations of the data. The problem discussed in this paper is related to how flows in a rough pipe 
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connect to flows which are effectively smooth in the same rough pipe. We call this the connection problem. 

Virtual Nikuradse is a consequence of our hypothesis that the transition from rough flow to effectively 

smooth flow in the same rough pipe occurs at a definite Reynolds number located on the bottom envelope of 

rough pipe data given in the famous plot of experiments in six pipes with different values of sand grain 

roughness given by Nikuradse (1933). Other ideas about the nature of the connection are discussed in this 

paper.   

    

Splines in log-log plots are smoothly connected in transition regions by logistic dose curves following 

along lines introduced by Joseph and Yang (2008). Here we extend the method to convert Nikuradse’s 

(1933) data for six values of roughness into a single formula (5) relating the friction factor to the Reynolds 

number for all values of roughness. Of particular interest is the connection of Nikuradse’s (1933) data for 

flow in rough pipes to the data for flow in smooth pipes presented by Nikuradse (1932) and McKeon et al 

(2004) and for effectively smooth flow in the same rough pipes. The formula extrapolates and extends the 

experimental data between and beyond. This kind of correlation seeks the most accurate representation of 

the data as a problem of data mining independent of any input from theories arising from the researchers 

ideas about the underlying fluid mechanics. As such, these correlations provide an objective metric against 

which observations and other theoretical correlations may be applied. Our main hypothesis is that the data 

for flow in rough pipes terminates on the data for smooth and effectively smooth pipes at a definite 

Reynolds number function ( )σσR  where ka /=σ  is the roughness ratio, a  is the pipe radius and k  

is the average depth of roughness. If ( )σλ ,Ref=  is the friction factor in a pipe of roughness σ  then 

( )σσλ σ ),(Rf=  is the friction factor at the connection point. Nikuradse (1933) presented his data for 

six values of the roughness jσ [ j = 1, 2, 3, 4, 5, 6] = [15, 30.6, 60, 126, 252, 507]. A formula giving 

( )σσR  is obtained here for the first time.  

 

2. Turbulent flow in smooth and effectively smooth pipes 
      

Joseph & Yang (2008) showed that data for the friction factor vs. Reynolds number in turbulent flow in 

the smooth pipes studied by Nikuradse (1932) coincide with data for effectively smooth flows in rough 

pipes studied by Nikuradse (1933) (see figure 1). 
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Figure 1: Friction factor vs. Reynolds number. The data from Nikuradse (1932) for flow in smooth pipes, 

the data from Nikuradse (1933) for effectively smooth turbulent flow in rough pipes and data from the 

Princeton superpipe coincide. It is generally agreed that the superpipe data is affected by roughness when 

the Reynolds number is greater than 24×106 and may be so affected when 24 is reduced to 13.6. Nikuradse 

(1932) and Princeton (2004) data are compared in figure 6.25 and the error in figure 6.26 of McKeon 

(2003).  
 
 
   Figure 1 suggests that the connection between rough and effectively smooth pipe data occurs at 

definite Reynolds number. Unfortunately deductions from data involve value judgments; it is not a science. 

Borrowing from mathematics where we can have a high degree of comfort, we imagine that the data for 

rough pipes connects with the smooth pipe data smoothly with a continuous first and discontinuous second 

derivative. It is not possible to read the coordinates of these connections from experimental data. We admit 

that our estimates of the connection values are not accurate but these estimates are all the better because 

they involve a progression of six values. 
    
   In analyzing the effect of surface roughness on flow in pipes, the ratio of the roughness dimension to 

the thickness of the laminar sublayer has long been accepted as the governing factor. Thus, if the 

roughness elements are so small that the laminar sublayer enclosing them is stable against the perturbation, 

the roughness will have no drag increasing effect. This is called the “effectively smooth” case. On the 

other hand, if the size of the roughness is so large as to disrupt the laminar sublayer completely, the 

surface resistance will then be independent of the viscosity. This is called the case of fully developed 
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roughness action. Between these two extremes there exists an intermediate region in which only a fraction 

of the roughness elements disturbs the laminar sublayer. Consequently, the resistance law in this 

intermediate region depends upon both the roughness magnitude and the thickness of the laminar sublayer. 

In figure 1, to the right, each pipe with a unique roughness has a constant friction factor indicating that 

completely rough conditions have been reached, whereas to the left all curves converge towards that for 

smooth or effectively smooth surfaces. 
 
 
3. Colebrook and Moody 
 

Colebrook (1939) used the data from Colebrook and White (1937) to develop a function which gives a 

practical form for the transition curve between rough and smooth pipes which agrees with the two 

extremes of roughness and gives values in very satisfactory agreement with actual measurements on most 

forms of commercial piping and usual pipe surfaces. The Colebrook correlations were used by Moody 

(1944) to create the Moody diagram (figure 2) to be used in computing the loss of head in clean new pipes 

and in closed conduits running full with steady flow.  
 
It is apparent that the connection between rough and smooth pipes in the Moody diagram is greatly 

different. Much of the difference in the form of the friction factors in figures 1 and 2 is apparently 

associated with nature of the roughness as is shown in figure 3.  
 
Shockling, Allen and Smits (2006) studied roughness effects in turbulent pipe flows with honed 

roughness. They showed that in the transitionally rough regime where the friction factor depends on 

roughness height and Reynolds number ( )σλ ,Ref= , the friction factor for honed surfaces follows the 

Nikuradse (1933) form with dips and bellies rather than the monotonic relations seen in the Moody 

diagram. 
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Figure 2: Moody diagram 
 
 

 
Figure 3: Smooth to rough transition function relations [Reproduced after Robertson et al (1968)]. 
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   Nikuradse’s (1933) experiments measured the flow through uniformly roughened pipes and found 

comparatively abrupt transition from “smooth” law at slow speeds to “rough” law at high speeds. Other 

experimenters using natural surfaces, obtained results which can only be explained by a much more 

gradual transition between the two resistance laws. Colebrook and White (1937) carried out systematical 

experiments for artificial pipes with five different types of roughness, which were formed from various 

combinations of two sizes of sand grain (0.035cm and 0.35cm diameters). They found that with 

non-uniform roughness, the transition between two resistance laws is gradual, and in extreme cases so 

gradual that the whole working range lies within the transition zone. The experiments of Colebrook and 

White (1937) closed the gap between Nikuradse’s artificial roughness, and roughness normally found in 

natural pipes. Their results (see figure 4) demonstrated that the nature of the effect of surface roughness in 

the intermediate region depends as well on the geometrical characteristics of the roughness pattern; i.e., 

the spacing between sand grains and the composition of grain sizes. P. Bradshaw 2000 noted that “… an 

unrigorous but plausible analysis suggests that the concept of a critical roughness height, below which 

roughness does not affect a turbulent wall flow, is erroneous.” They use the Oseen approximation to 

construct their ad hoc argument. Their conclusion apparently is not applicable to sand grain roughness in 

Nikuradses experiments where the concept of effectively smooth flows in rough pipes is completely 

supported by experiments (see figure 1). 
 

 

(a) 
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Figure 4: Friction factor as a function of Reynolds number in the experiments of Colebrook and White 

(1937). Five types of artificial roughness were used in the experiments: (I). uniform sand 0.035cm 

diameter in 2 inch I.D. pipe, (II). Uniform sand with large 0.35cm grains covering 2.5% of area, (III). 

Uniform sand with large 0.35cm grains covering 5% of area, (IV). 48% area smooth, 47% area uniformly 

covered fine grains, 5% area covered large grains, (V). 95% area smooth, 5% area covered large grains.  

 
 
4. The work of Gioia & Chakraborty 2006 
 

An impressive theoretical study of turbulent flow in rough pipes by Gioia and Chakraborty (2006) 

gives rise to curves with bellies and valleys (figure 5) which resemble the shape of the Nikuradse’s data 

(figure 6). They use the phenomenological theory of Kolmogorov to model the shear that a turbulent eddy 

imparts to a rough surface. However, their model does not resemble the way that the friction factor for 

flow in rough pipes connects with the data for effectively smooth flow in rough pipes (figure 1); in fact, 

their model does not connect flow in rough pipes to effectively smooth flows in the same rough pipes. 

Their roughness curves start in a cluster at one and the same point in the region of transition from laminar 

to turbulent flow and then separate into curves with different roughness values which do not connect to 

smooth flow or each other. Their curves do not seem to achieve constant values independent of the 

Reynolds number at large Reynolds numbers.  
 

(b) 
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Figure 5: Friction factor curves produced by the analytic model of Gioia and Chakraborty (2006) (cf. 

figure 6) 

 

 

Figure 6. [After Goia & Chakraborty 2006] Nikuradse’s (1933) data for the friction factor vs. Reynolds 

number emphasizing the Blausius ¼ law and Stricklers σ1/3 correlation at large Reynolds numbers.   
 

The asymptotic values of the friction factor are uncertain because the data has not flattened out. Our 

processing of the Nikuradse’s data does not lead to Strickler’s correlation (see equation (5)). 
 

   Goldenfeld (2006) discussed the scaling of turbulent flow in rough pipes in the frame of a theory of 

critical phenomenon. He constructs the form of a formula ( )( )DrRegRef /4/34/1−=  with g  

undetermined but such that the correlation reduces to Strickler’s on the left and Blausius on the right. 

When plotted in the reduced variables, the spread of the six curves for turbulent flow in rough pipes are 

greatly reduced and a partial collapse of the data is achieved.  
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5. Construction of friction factor correlation for Nikuradse’s (1932, 1933) data for flow in smooth 
and rough pipes 
 

Joseph and Yang (2008) has illustrated a simple sequential construction procedure for correlating 

friction factor to Reynolds number in smooth pipes using logistic dose function algorithm. In this section, 

we introduce a much more complicated sequential construction procedure for processing Nikuradse’s 

(1932, 1933) data for smooth and rough pipes. A new developed correlation tree is used in this procedure 

(figure 7), which includes one chain on the left for flow in smooth pipes and six chains on the right for 

flow in rough pipes with six values of roughness.  
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Figure 7: Correlation tree for smooth and rough pipes. iP  and jiP,  are power laws, iF  and jiF ,  are 

rational fractions of power laws. iR  are branch points for smooth pipes and jiR ,  are branch points for 

rough pipes. At each branch point, two assembly member functions are merged into a rational fraction of 

power laws by processing data with the logistic dose function algorithm. The chain on the left is for 

smooth pipes and leads to a rational fraction correlation 4F . The six chains on the right are for rough pipes 

and lead to six rough pipe correlations jF ,4 ( j = 1, 2, 3, 4, 5, 6). In the correlation tree, 

( ) ( )ReFReSS 4== λλ  and ( ) ( )jjRR ReFRe σσλλ ,, ,4== . These correlations are merged into a single 

composite correlation ( )σλ ,Ref= . 

 

In figure 7, the power laws shown above are jib
jiji ReaP ,

,, =  ( i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5, 6). In 

our construction of correlations, the prefactors jia ,  and exponents jib ,  of power laws and the branch 

Smooth Pipe Rough Pipe 
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points jiR ,  in the correlation tree for rough pipes are all correlated by power law functions or rational 

fractions of power laws of the roughness ratio σ  and do not depend on j . The power law formulas 

obtained here by processing the data for straight-line segments in log-log coordinates converts the six data 

points in Nikuradse's data into continuous functions of σ . These functions reduce to the original data at 

six values of σ . We may imagine that the range of these functions extend well beyond the range of the 

six data points. These correlations allow us to introduce the explicit dependence of the final correlation on 

the roughness ratio σ . 
 
The correlation formula obtained from the correlation tree for smooth and rough pipes is 
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where ( ) ( )ReFReS 4=λ  is the friction factor correlation for smooth and effectively smooth pipes and 

( ) ( )jjR ReFRe σσλ ,, ,4=  is the correlation for rough pipes. This formula is generated in the following 
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 ( i = 1, 2, …, 4; j = 1, 2, …, 6), jj PF ,1,0 = .            (3) 

where iR , is , it , im , in  ( i = 1, 2, 3, 4) , ia , ib  ( i = 1, 2, 3, 4, 5)  are all constants and jia , , jib , , 

and jiR ,  are all power law functions or rational fractions of power laws of the roughness ratio σ  (see 

tables A1 and A2 in the appendix). 
 

The correlation  

( )σσ σRR j =+= 1891196502.45 2369807.1
,5                      (4) 

is very important. It correlates the six branch points where the flow in smooth pipes are joined to six 

points for flow in rough pipes into a continuous power law function of σ  with a constant correlation 

term. This function predicts the Reynolds numbers on the smooth pipe curve at which the effects of 

roughness commence between and beyond the six values given in Nikuradse's experiments. That is to say, 
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( )σσR  identifies the minimum Reynolds number at which the roughness σ  first appears. For any pipe 

flow with a given equivalent sand-grain roughness σ  and Reynolds number Re , the friction factor can 

be calculated explicitly by equation (1) for a wide and extended range of roughness and for all fluid flow 

regimes including laminar, transition and turbulent flows. Joseph & Yang 2008 argue that the transition 

from smooth to rough pipe flow occurs near a value of 13.6×106 in agreement with a similar, earlier and 

independent analysis of McKeon et al (2004). When Re = 13.6×106, 41068.2/ ×== kaσ . 
 

The final composite correlation (1) is shown by the heavier solid lines in figure 8. This formula gives 

the friction factor as a function of the Reynolds number and roughness ratio for Nikuradse's (1932, 1933) 

data for smooth & rough pipes and the Princeton data for smooth pipes. Equation (1) is valid for 

continuous σ  and jR ,5  does not depend on j .  The solid lines in figure 8 only show the Re~λ  

correlations for flows in smooth pipe and rough pipes with six different roughnesses. Given a smooth pipe 

or a rough one of roughness σ , the friction factor can be calculated from equation (1). The friction factor 

λ  reduces to Sλ  for smooth pipes and Rλ  for rough ones. For continuous roughness σ > 15, equation 

(1) can sweep the huge area between the curve for σ = 15 and the one for smooth pipe. 
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FIGUR 8. Correlations ),( σλ Ref=  for laminar, transition and turbulent regimes in smooth and rough 

pipes. 
j

Ref σσσλ == |),(  describes the correlations for Nikuradse’s data with six values of roughness, 

and ∞== σσλ |),(Ref  describes the correlation for flow in smooth pipe. 
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6. Conversion of Nikuradse’s and Princeton experimental data to a continuous family of virtual 
curves between and beyond the original data as described by one explicit formula 
     

Our main results are presented in the previous section and this section. Figure 9 shows the curves for 

virtual experiments that arise from correlation of data leading to the long but explicit equation (5) which 

miraculously describes Nikuradse's real experiments and the virtual extension.   
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Figure 9: Virtual Nikuradse. Correlations ),( σλ Ref=  for values of σ  are up to 105, computed from 

equation (5). Nikuradse's (1932, 1933) data is included for comparison. 
 
 

Substituting all the data in tables A1 and A2 into equations (2), (3) first and then equation (1), we can 

obtain the explicit composite correlation for λ  as a function of σ  and Re  for laminar, transition and 

turbulent flow in smooth and sand-grain rough pipes. 
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where Sλ  and Rλ  are given by equations (6) and (7). The Reynolds numbers jR ,5  are the six branch 

points where Sλ  and Rλ  are joined.  

We can also write out Sλ  and Rλ  explicitly. For flow in smooth pipes, ( ) ( )ReFReSS 4== λλ  is 
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an explicit rational power law function of Re  given by  
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For flow in rough pipes, we have 
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,1,0 +=+== −− σσ RePF jj . 

 
 
7. Comparison with Strickler's correlation in completely rough pipe flow 
 

Strickler's correlation for λ  at high Re  is given by 3/1~ −σλ  (see figure 6). We have noted that 

the six points in the completely turbulence zone are apparently off Strickler’s 1/3 law in the log-log 

coordinates. Obviously the scatter of the six data points strongly weakens the agreement between 

Nikuradse's data and Strickler's correlation, because the coordinates in figure 6 are logarithmic and a very 

small deviation from Strickler's straight line can cause huge difference to the value of λ . Our composite 

correlation (5), shows that 0098.017805185.0 46785053.0 +≈ −σλ  when 1000000>Re .  
 

 
 
8. Discussion and prediction 
 

The correlations derived in this paper allow one to analyze and predict the properties of friction factor 

in all fluid-flow regimes. Equation (5) shows that for any roughness σ , λ  depends on Re  alone when 

Re  is smaller than its threshold hold value 1891196502.45 2369807.1 += σσR  but it depends on both 

Re  and σ  when Re  is greater than σR . σR  is the locus of points where the curves for smooth and 
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rough pipes are joined by a logistic dose function. ( )σσR  identifies the minimum Reynolds number at 

which the roughness σ  first appears. We have already noted that Joseph & Yang (2008) argued that the 

transition from smooth to rough pipe flow occurs near a value of 13.6×106 in agreement with a similar, 

earlier and independent analysis of McKeon et al (2004). From equation (4) we may compute that when 
 

              Re = 13.6×106, 41068.2/ ×== kaσ .                        (8) 
 
 

For any pipe flow with a given roughness σ  and Reynolds number Re , the friction factor can be 

calculated explicitly by equation (5) for a wide and extended range of roughness and for all fluid flow 

regimes including laminar, transition and turbulent flows.  
 
 
9. Summary and conclusion 

 

Polygon approximation of data using linear splines is well known. Logistic dose functions could be 

used for such approximations in the case in which the data exhibits smooth transitions between successive 

splines. Our procedure is a realization of this idea in the case in which the spline approximations are 

carried out in log-log coordinates where splines are power laws. 
 

Power law representations of physical data are ubiquitous in science and in fluid mechanics. Very 

complicated data may be represented by piecewise power law coverings supplemented by fitting transition 

regions with logistic dose function algorithms. In this way we go from data to formulas. 
 

Discrete data is converted by correlations into formulas which allow one to fill gaps in the data and to 

greatly extend the range of data for which prediction can be made. In the case of Nikuradse's data for 

laminar, transition and turbulent flow in pipes we have produced formulas from the data which track the 

data, fill in the gaps and greatly extend the range of conditions to which friction factor predictions can be 

given. For example the roughness inception function predicts the Reynolds number in very smooth pipes 

at which the effects of roughness first appear. 
 

Our method has produced formulas of great complexity, which track, interpolate and extend the data. In 

the case of flow in pipes we found formulas which generated sequentially in branches with a tree like 

structure that we called a correlation tree. The formulas that we found are algebraic and easily 

programmed. These formulas, produced from data, could never be derived by mathematical analysis and 

could not now be produced by numerical analysis.  
 

The correlation tree with logistic dose function algorithm is an extremely convenient scaling tool for 
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processing data sets with self similar regions. The procedure described in this paper may be generalized in 

virtue of computer programming and widely applied to engineering practice. 
 

This method is easy to use, and the computation is only related to two forms of basic functions, logistic 

dose function and power law. It is very useful for kinds of interpolation or extrapolation of consecutive 

data sets with one-to-one correspondence, and even some special data sets with one-to-multiple 

correspondence. It represents an easier way to reveal some underlying physics from the limited data 

sources which are currently available.  
 

We have developed the λ  vs. Re  correlations for flows in smooth and rough pipes from Nikuradse's 

(1932, 1933) data for smooth & rough pipes and the Princeton data for smooth pipes. We found one 

formula, equation (5), as a composition of power laws which give the friction factor vs. Reynolds number 

as a family of curves with a continuous dependence on the roughness ratio σ  in all flow regimes. 
 

   For the fully rough wall turbulence at high Reynolds numbers, we have evidently shown that 

Strickler’s one-fourth scaling is not an accurate scaling law for describing Nikuradse’s data. Instead of that, 

our equation 0098.017805185.0 46785053.0 += −σλ  can precisely predict the friction factor as a function 

of roughness ratio σ  in this region. 
 

We must remember, the roughness presented in this paper is the equivalent sand grain roughness and 

the natural roughness must be expressed in terms of the sand grain roughness which would result in the 

same friction factor. This is not easily achieved; in fact, the only way it can be done is by comparison of 

the behavior of a naturally rough pipe with a sand-roughened pipe. Moody (1944) has made such 

comparisons, and his widely used chart [figure 2 of Moody (1944)] gives the absolute and relative sand 

grain roughness of a variety of pipe-wall materials and can be used for reference. 
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APPENDIX 
 
Processing of Nikuradse’s (1932, 1933) data for constructing friction factor correlations for 

flow in smooth and artificial rough pipes 
 
 
(I). Construction of correlation trees 
 
Assembly rules based on fitting transition regions by the logistic dose function algorithm (LDFA) 
 

The logistic function is one of the oldest growth functions and a best candidate for fitting sigmoidal 
(also known as “logistic”) curves. In life sciences, logistic dose response curves are widely used to fit 
forward or backward S-shaped data sets with two plateau regions and a transition region. In a companion 
paper of Joseph and Yang (2008), we have showed how this method could be generalized to the case in 
which a power law and a rational fraction of power laws separated by a transition region could be 
assembled into a smooth function. To construct these functions, we first identify the transition region from 
one to the other. Then, we lay down the tangent of each function at the points of transition; there is a 
tangent to the function on the left and a tangent to the function on the right side. We are working this for 
the cases in which the two tangents intersect; in this the data in the transition region can be processed in 
the wedge formed by the two tangents. When we work in log-log planes, as is the case here, the tangents 
are power laws and can be fit smoothly as logistic dose curves.  

  
We now shall show how to create a logistic dose curve for two arbitrary functions. A typical 

five-parameter logistic dose response curve is given by 

( ) ( )edcx
baxfy

+
+==

1
,                           (A.1) 

where a , b , c , d , e  are constants, x  is the independent variable known as “dose”, y  is the 
dependent variable known as “response”. The constants a  and b  represent two plateau regions 
connected by a smooth transition. Such kind of data distribution has been observed in many cases in life 
sciences. 
 

Equation (A.1) can be easily remodeled to be in the form of 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )[ ]nm
c

LR
L

LR
L

xx

xfxfxf
xG

xfxfxfxfy
−+

−
+=

−
+==

/1
,             (A.2) 

where m  and n  are positive constants, cx  is the critical value of the independent variable ( cx  is also 
called “branch point” or “connection point” in a correlation tree), ( )xfL  and ( )xfR  are two assembly 
member functions. ( )xfL  and ( )xfR  can be power laws, rational fractions of power laws or other types 
of continuous functions. The logistic function ( )xf  in equation (A.2) describes a smooth connection of 
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( )xfL  and ( )xfR . The shape of ( )xf  is related to the three constants m , n  and cx . 
 

There are three key steps for assembling functions using the rules of the LDFA; these are (i) the 
selection of two appropriate assembly members ( )xfL  and ( )xfR , the identification of the transition 
region and the tangent extension of the assembly members.  (ii) the estimate of the threshold value cx  
which identifies the point of intersection of ( )xfL  and ( )xfR , and (iii) the five-point sharpness control 
for fitting the transition between the two assembly members. A main idea in the modified logistic dose 
curve fitting is to force the denominator function ( )xG  in equation (2) to move towards +∞ or 1 rapidly 
on different sides of the threshold value cx  once the independent variable x deviates cx , so that the 
logistic dose function can approach ( )xfL  on the left side and ( )xfR  on the right side of cx . Another 
noticeable difference between the classical logistic dose curve and the modified one is that the transition 
region has been minimized in the modified logistic dose curve fitting. The two assembly members ( )xfL  
and ( )xfR  could be constants (in this case, it will reduce to the classical logistic dose response curve), 
power laws, rational fractions of power laws, rational fractions of rational fractions of power laws, or 
other types of continuous functions.  
 
 

The correlation tree is a composition of power laws and rational fractions of power laws created by 
fitting transition regions by a sequential construction using the logistic dose function algorithm. 
  

In the present application, a logistic dose curve is always a rational fraction of power laws. If the 
number of power laws is M , then the number of rational fractions is 1−M . The logistic dose fitting 
curve of two power laws gives rise to a rational function of power laws. The logistic fitting curve of a 
power law and a rational fraction of power laws leads to a rational fraction of a rational fraction of power 
laws and so on. To simplify the writing, all orders of rational fractions are called rational fractions. In this 
appendix, we use five power laws and four rational fractions for smooth pipes and each of the six rough 
pipes used in Nikuradse's (1932, 1933) data. These elements are assembled sequentially as is shown in 
figure A1. The construction of a correlation tree is within a hierarchy system and starts from branches to 
the trunk of the tree. In this system, element power laws may enter at different levels for the assembly. The 
construction of the tree could be unidirectional, from left to right or from right to left, or more complicated 
and not unidirectional. Three typical tree structures are shown in figure A1. 
 
Branches of the correlation tree 
 

Chords or tangents can be used to approximate any curve as in the construction of a circle as a limit of 
interior or exterior polygons. The chords and tangents are straight lines in log-log coordinates and power 
laws in regular coordinates. The application of these spline-like approximations is especially powerful for 
the representation of physical phenomena where log laws are so ubiquitous. Straight lines approximate the 
response curves in log-log coordinates piecewise, and each straight line represents a power law. The points 
of intersections of these straight lines are the locations where the branches of the tree are created. Each 
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point of intersection is a branch point of the tree. The transition of the data from one branch to another lies 
in the wedge defined at the branch point. Each branch point identifies two adjacent power laws or rational 
fractions of power laws.  
 
Accuracy  
 

Since the fitting procedure works like splines, the accuracy of the approximation improves with the 
number of splines. However, data from real or numerical experiments is usually scattered and in these 
cases, the quality of the fitting curve may not be simply evaluated by the R-square value. 
 
Sharpness control 
 

The two positive constants m  and n  in equation (A.2) can be tuned to fit transition data near the 
branch points. When m  is large, the transition is sharp (i.e. the radius of curvature ℜ  of the data 
segment in transition region is small). When m  is small, the transition is smooth (i.e. ℜ  is large). 
There is certain flexibility in selection of the points where the transition from one power law or rational 
fraction of power laws begins. If you change the position of these points you will change the slope of the 
tangent there. The parameter m  may be used to move these points. This type of tuning is needed when 
m  is relatively small. The coefficient n  has only a weak influence on sharpness and it is often kept 
constant in the construction. The sharpness control parameters m  and n  are bundled together with the 
position of the branch point cx . 
 
Rules for constructing the correlation tree 
 
(i) Two adjacent power laws can be assembled into a rational fraction of power laws by the logistic dose 
function algorithm LDFA 
 
(ii) A rational fraction of power laws assembled with an adjacent power law following LDFA leads to a 
new rational fraction of power laws, and the number of power laws is increased by one. 
 
(iii) The direction of the assembly of adjacent members under LDFA, from left to right, from right to left, 
or from side to middle, is not important. The direction of assembling members does give rise to different 
trees as shown in figure A1 but there is not much difference between one and another (see figure A6), 
although the final expression of fitting curve may look very different.  
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Figure A1: Three typical correlation trees leading to a rational fraction of five power laws iP ( i = 1, 2, 3, 4, 

5) (also see figure A5). The construction of correlation starts from the top to the bottom with the LDFA. 

 
The construction of the trees shown in figure A1 starts from branches to the trunk of the tree: (a) left to 

right, (b) side to middle, and (c) right to left. Sλ , S'λ  and S"λ  are correlation formulas for the friction 
factor in laminar, transition and turbulent flow in smooth pipes. iP  (i = 1, 2, …, 5) are power laws. iF , 

'
iF  and ''

iF  ( i  = 1, 2, …, 4) are rational fractions of power laws. The sharpness control parameters m  
and n  are the same on each point of intersection in all the three tree structures. 
 
(iv) The greater the number of power laws used to approximate data the better is the approximation  
(approximating functions in log-log plots with a greater number of straight line splines leads to a better 
approximation). Arbitrary accuracy may be obtained by assembling more and more power laws under 
LDFA rules. The upper bound on the fitting error is mainly determined by the scatter of experimental data 
set. 
 
(v) The assembly member functions need not be power laws. They can be different of continuous 
functions. This feature is demonstrated by another simple example shown in figure A2, which indicates 

that the two assembly member functions ( )xfL sin= , π30 ≤≤ x  and π3−= xfR , 153 ≤≤ xπ  

can be easily fitted by LDFA rule using the logistic dose function  

( ) ( ) ( ) ( ) ( )
( )[ ] 5.01003/1

sin3sin
−+

−−
+=

−
+=

π

π

x

xxx
f

fffxf
D

LR
L , 150 ≤≤ x . 

 

(a) (b) (c) 
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Figure A2: A typical logistic dose fitting curve for two adjacent non-power law assembly member 
functions. 
 

   However, we must know that the logistic dose function ( )xf  can not pass through any points exactly 

on the two assembly member functions ( )xfL  and ( )xfR  except the point of intersection. In most cases 

of smooth transitions (i.e. ℜ  is large), modifications of assembly members may be necessary so that the 
logistic dose function of the modified assembly member functions can best fit the data points on the 
transition segment. When the assembly member functions are power laws, the prefactors and exponents 
can be easily modified. The point of intersection of the two power laws must be located on the trend of the 
smooth transition region, so that the logistic dose curve can automatically pass through that point. The 
details of modifications depend upon the distribution of data points in the whole domain. An example of 
constructing a logistic dose curve for two power laws is illustrated in Joseph and Yang (2008). 
 
 
(II). Correlation of data for friction factors vs. Reynolds number in smooth and rough pipes  
 
Processing of Nikuradse's data and Princeton data for flow in smooth pipes 
 

The Princeton data presented by McKeon et al. (2004) includes a wide range of Reynolds numbers 
from 410131.3 ×  to 710554.3 ×  and agrees well with Nikuradse's (1932, 1933) data for smooth and 
effectively smooth pipes. Since the largest Reynolds number in Nikuradse’s data is only 61023.3 × , the 
Princeton data may be considered as an excellent extension of Nikuradse’s (1932) data for flow in smooth 
pipes. Among the data which is available in literature, the data obtained in Princeton superpipe can be said 
to be the best representation of the Re~λ  in smooth pipes for large Reynolds numbers. 
 

The smooth pipe data is enormously important for the description of turbulent flow in rough pipes. The 
idea pursued here is that the smooth pipe data is an envelope for the initiation of effects of roughness. The 
effects of roughness for the friction factor in a pipe of fixed roughness is not felt for Reynolds numbers 
smaller than those in a smooth pipe and they begin to be felt at a critical Reynolds number at a point on 
the friction factor curve for smooth pipes. If σ  is the roughness ratio, the curve of friction factors for the 

flow through rough pipes can be indexed on a curve )(σσR  where )]([ σσRf  is the friction factor for 

turbulent through smooth pipes. 
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     Five element power laws iP  were chosen for fitting the Re~λ  correlations of Nikuradse's data 

and Princeton data for smooth and effectively smooth pipes. We use one power law for fitting the data in 
laminar regime and another for transition regime. To best represent the data in turbulent regime, in which 
roughnesses start to be effective, we choose three power laws for Reynolds number ranging from 

31081.3 ×  to 71055.3 × . The five power laws, which were chosen to construct the Re~λ  correlation 

for flow in smooth pipes, are  
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respectively (see figure A3). The correlation chain (also considered as the simplest correlation tree) is 
shown in figure A4 for the sequential construction of Re~λ  correlation for smooth pipes. The curve 
which emerges after processing power laws with the logistic dose function algorithm LDFA is shown in 
figure A5. 
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Figure A3: Nikuradse’s and Princeton data for constructing friction factor correlation in smooth and 

effectively smooth pipes. Fives branches of power laws are identified in the graph. They are iP  (i = 1, 2, 

3, 4, 5) in equation (A.3). 
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Figure A4: The correlation tree for constructing Re~λ  correlation describing Nikuradse’s and 
Princeton data for flow in smooth and effectively smooth pipes. The tree leads to the friction factor 

correlation 4FS =λ . The prefactors ia , exponents ib  of five power laws, the branch points iR , and the 

sharpness control parameters is  and it  are listed in table A1. 

 
 

i 1 2 3 4 5 

ai 64 0.000083 0.3164 0.1537 0.0753 

bi -1 0.75 -0.25 -0.185 -0.136 

si -50 -15 -5 -2 - 

ti 0.5 0.5 0.5 0.5 - 

Ri 2320 3810 70000 2000000 - 

Table A1: Coefficients of power laws ib
ii ReaP =  ( i = 1, 2, 3, 4, 5) for fitting Re~λ  correlations and 

branch points in the correlation tree for smooth pipes. iR  ( i = 1, 2, 3, 4) are the Reynolds numbers at the 

points of intersection of the power laws at the branch points shown in figure 7 and figure A4. is  and it  

( i = 1, 2, 3, 4) are sharpness control parameters defined in equation (A.2). 
 
 



 24

0.001

0.01

0.1

1000 10000 100000 1000000 10000000 100000000

R e

λ

Nikuradse's rough pipe data for  σ = 15, 30.6, 60, 126, 252, 507
Nikuradse effectively smooth pipe data
Nikuradse smooth pipe data in turbulent regime
Princeton data
Smooth pipe logistic fitting for virtual Nikuradse

 

Figure A5: Nikuradse's data augmented with Princeton data for flow in smooth and effectively smooth 
pipes. 
 

The three rational fractions 4F , '
4F  and "

4F  in figure 1 corresponding to the power laws 

Re/64=λ , 75.05103.8 Re−×=λ , 25.03164.0 −= Reλ , 185.01537.0 −= Reλ  and 136.00753.0 −= Reλ , 

are plotted in figure A6. This figure indicates that the correlation tree for flow in smooth pipes exhibited in 

figure A4 is largely independent of the way that the branches of the tree are assembled. The power laws 

coefficients, branch points and sharpness control parameters for the smooth pipe correlation are shown in 

table A1. 
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Figure A6: Comparison of three correlations 4F , '
4F  and "

4F  obtained from three different tree 

structures shown in figure A1.  
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                      (c)                                         (d) 
Figure A7: Sequential construction of the correlation tree for smooth pipes. In each of the four panels the 

straight lines are power laws fit to the data at five places. In panel (a), two power laws 1P  and 2P  are 

composed into a rational fraction 1F . In panel (b), 3P  is composed with 1F  to get 2F . In panel (c), 4P  

is composed with 2F  to get 3F . In panel (d), 5P  is composed with 3F  to get 4F  which gives the 

final formula giving friction factors vs. Reynolds numbers in smooth pipes (i.e. 4FS =λ ). 

 
 
Processing Nikuradse's data for flow in rough pipes. 

 
Nikuradse (1933) is responsible for the most comprehensive studies of turbulent flow in pipes of well 

defined roughness, prepared by cementing sand grains to the inside of the walls. The relative roughness is 
defined as akr /= , where k  is the average depth of roughness and a  is the radius of the pipe. The 
reciprocal of the relative roughness, r/1=σ , is often used as the dimensionless parameter to represent 
roughness. Nikuradse presented his (1933) data for six values of the roughness 

           jσ [j = 1, 2, …, 6] = [15, 30.6, 60, 126, 252, 507].                    (A.4) 
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The structure of the correlation tree for rough pipes is shown in figure A7.  

 
   j  1 2 3 4 5 6 

i  im  in  jσ  

 
15 30.6 60 126 252 507 

jia ,
 0.05996 0.04579 0.03595 0.02831 0.02324 0.01945 

0098.0~
,, −= jiji aa  0.05016 0.03599 0.02615 0.01851 0.01344 0.00965 

jib ,
 0 0 0 0 0 0 

1 2 0.5 

jiR ,
 1010000 1400000 1900000 2660000 3650000 5000000

jia ,
 0.0586 0.0441 0.0345 0.0271 0.0223 0.0189 

011.0~
,, −= jiji aa  0.0476 0.0331 0.0235 0.0161 0.0113 0.0079 

jib ,
 0.002 0.002 0.002 0.002 0.002 0.002 

2 5 0.5 

jiR ,
 23900 49800 100100 214500 441000 910000 

jia ,
 0.01474 0.01288 0.01145 0.01021 0.00927 0.00850 

0053.0~
,, −= jiji aa  0.00944 0.00758 0.00615 0.00491 0.00397 0.00320 

jib ,
 0.1379 0.115 0.0972 0.0815 0.0694 0.0595 

015.0~
,, −= jiji bb  0.1229 0.1 0.0822 0.0665 0.0544 0.0445 

3 5 0.5 

jiR ,
 6000 12300 23900 50100 99900 200000 

jia ,
 0.02076 0.02448 0.02869 0.03410 0.04000 0.04710 

jib ,
 0.1035 0.0503 0.0093 -0.0291 -0.0573 -0.0811 

191.0~
,, += jiji bb  0.2945 0.2413 0.2003 0.1619 0.1337 0.1099 

4 5 0.5 

jiR ,
 6000 10280 17100 29900 50000 85070 

jia ,
 0.00253 0.0225 0.0561 0.1031 0.1307 0.1593 

jib ,
 0.3403 0.0655 -0.0615 -0.1339 -0.1676 -0.1851 

2032.0~
,, += jiji bb  0.5435 0.2687 0.1417 0.0693 0.0356 0.0181 

jiR ,
 3180 5000 9000 20000 44000 102000 

5 5 0.5 

1891~
,, −= jiji RR  1289 3109 7109 18109 42109 100109 

 

TABLE A2. Coefficients of power laws ijb
ijij ReaP = , (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5, 6) for fitting 

Nikuradse's data and branch points in the correlation tree for rough pipes. ijR  are the Reynolds numbers 
at the point of intersection of the power laws at the branch points in figure 7; there are 5 branch points for 
each of 6 roughness values, 30 in all. im  and in  are sharpness control parameters defined in (2). ija~ , 

ijb~  and ijR~  are corrections of the prefactors ija , the exponents ijb  and the branch points ijR , 
respectively (also see figures A10, A11 and A12). 
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Figure A8: The correlation trees for Re  vs.λ  in each of the six rough pipes [j = 1, 2, 3, 4, 5, 6] in 

Nikuradse's experiments. There are six final correlations jF ,4 , 24 interim rational fractions and 30 power 

laws for fitting the data and listed in table A2. 
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Figure A9: The construction of Re~λ  correlations in rough pipes using Nikuradse's data for six values 
of the roughness ratio σ . The dotted line is the correlation for smooth pipe, and the heavier solid lines 
are the correlations for rough pipes. 
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Figure A10: Power law functions in the roughness ratio σ  for Reynolds number for each of 5 branch 
points (see table A2).  
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Figure A11: Power law functions or rational fraction of power laws in the roughness ratio σ  for the 

power law coefficients ija  (see table A2).  
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Figure A12: Power law functions in the roughness ratio σ  for the power law exponents ijb  (see table 

A2).  
 

Figures A10, A11 and A12 show that jia , , jib , , and jiR ,  are power law functions or rational fractions 

of power laws of the roughness ratio σ  defined in table A2 and do not depend on j . The power law 

formulas obtained here by processing the data for straight lines in log-log coordinates converts the six data 
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points in Nikuradse's (1933) data into continuous functions of σ . These functions reduce to the original 

data at six discrete points. We may imagine that the range of these functions extend well beyond the range 

of the six data points. These correlations allow us to introduce the explicit dependence of the final 

correlation on the roughness ratio σ . These power law based functions are listed in table A3. 
 

0098.017805185.0 46785053.0
1 += −σja ,  

01 =jb ,  

45435343.0
1 05.295530 σ=jR ;  

011.018954211.0 51003100.0
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TABLE A3: Power law functions and rational fractions of power laws for the prefactors, exponents and 
joining Reynolds numbers 
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Joining correlation curves for flows in smooth and rough pipes 
 

Using the correlations derived in above sections, we can merge the two final correlations for smooth 

and rough pipes and join them together at jRRe ,5=  to get the final formula ),( σλ Ref=  for 

Re~λ  correlations in all fluid flow regimes.  
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Figure A13: Correlation trees for smooth and rough pipes. The chain on the left is for smooth pipes and 

leads to a rational fraction correlation 4F . The six chains on the right are for rough pipes and lead to six 

rough pipe correlations jF ,4 . These correlations are merged into a single composite correlation 

),( σλ Ref= . 

 
The correlation formula for rough pipes is 
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This formula is generated in the following sequence:  
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where iR , is , it , im , in  ( i = 1, 2, 3, 4) , ia , ib  ( i = 1, 2, 3, 4, 5)  are all constants and jia , , jib , , 

and jiR ,  are all power law functions or rational fraction of power laws of the roughness ratio σ  (see 

table A3). 
 

The final composite correlation (A.5) is shown by the heavier solid lines in figure A14. This formula 
gives the friction factor as a function of the Reynolds number and roughness ratio for Nikuradse's data for 
smooth and rough pipes and the Princeton data for smooth pipes. 
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Figure A14: Correlations ),( σλ Ref=  for laminar, transition and turbulent regimes in smooth and 

rough pipes. 
j

Ref σσσλ == |),(  describes the correlations for Nikuradse’s data with six values of 

roughness, and ∞== σσλ |),(Ref  describes the correlation for flow in smooth pipe. 
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