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In this paper we derive an accurate composite friction factor vs. Reynolds number correlation formula 
for laminar, transition and turbulent flow in smooth pipes. The correlation is given as a rational fraction of 
rational fractions of power laws which is systematically generated by smoothly connecting linear splines in 
log-log coordinates with a logistic dose curve algorithm. This kind of correlation seeks the most accurate 
representation of the data independent of any input from theories arising from the researchers ideas about the 
underlying fluid mechanics. As such, these correlations provide an objective metric against which 
observations and other theoretical correlations may be applied. Our correlation is as accurate, or more 
accurate, than other correlations in the range of Reynolds numbers in which the correlations overlap. 
However, our formula is not restricted to certain ranges of Reynolds number but instead applies uniformly to 
all smooth pipe flow data for which data is available. The properties of the classical logistic dose response 
curve are reviewed and extended to problems described by multiple branches of power laws. This extended 
method of fitting which leads to rational fractions of power laws is applied to data Marusic and Perry 1995 
for the velocity profile in a boundary layer on a flat plate with an adverse pressure gradient, to data of 
Nikuradse 1932 and McKeon et al. 2004 on friction factors for flow in smooth pipes and to the data of 
Nikuradse 1933 for effectively smooth pipes. 

 
1. Introduction 

The goal of this paper is to extract analytic formulas relating the friction factor ( ) ( )2//d/d 2Uxpd ρλ −=  
to the Reynolds number ν/dURe =  (U  being the average bulk velocity) from processing of data for flow 
in smooth pipes. No pipe can be perfectly smooth but when the roughness is small enough the flow depends 
only on the Reynolds number ( )Ref=λ  (and not on roughness) and the pipe is said to be effectively 
smooth. The effects of roughness on a nominally smooth wall are well described in the following personal 
communication with Ivan Marusic: 

The way I like to consider the effect of roughness vs. a smooth wall is by considering the range of scales in the flow. 
For a pipe of radius a, the friction Reynolds number, νττ /aURe = , is proportional to the ratio of the largest and smallest 
length scales in the flow that contribute to the friction factor. The largest length scale is proportional to a, and the smallest 
attached eddies scales with the τν U/  (say 100 τν U/  and this is towards the wall). (There is also the Kolmogorov scale, 
but those motions do not contribute to the energy-containing motions in a significant way, especially if the Reynolds 
number is high enough). 

On a smooth wall the range of scales continues to increase unabated as τRe  increases, and so friction factor is free 
to change likewise. 

On a rough wall the smallest scale is restricted by the roughness scale k. That is, as τRe  increases the smallest scale 
is fixed by k and will no longer depend on the Reynolds number. For this reason the friction factor levels off and becomes 
independent of Re . Different roughness scales will cause the friction factor to level off at different values and this 
leveling off will occur at lower τRe  for larger values of ak / . 

An expanded data set for flow in smooth pipes is created by extracting results for effectively smooth 
pipes from data of Nikuradse 1933 for flows spanning laminar, transition and turbulent flow in rough pipes. 
New results are obtained by direct comparison of data for smooth pipes with data for effectively smooth 
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pipes. We also present results comparing formulas for turbulent flow in smooth pipes based on modifications 
of classical log laws and the formula anchored in the theory of incomplete similarity (a power law for 

( )Ref=λ  with a pre-factor and exponent that also depend on Re) with each other and with the expanded 
data set. The principal results of this paper arise from the introduction of a new and systematic method for 
processing experimental data which can be described fitting data piecewise by linear splines (which are 
power laws in log-log coordinates). The data in the transition regions between the splines is processed by 
fitting five points with a logistic dose algorithm. This method of fitting leads to rational fractions of power 
laws and rational fractions of rational fractions of power laws. It is a fundamentally different than other 
methods of processing data. Other methods are motivated by flow fundamentals modulated by the 
researchers’ imagination. Our goal is to get formulas of the highest accuracy and greatest range; ideas about 
fluid mechanics and turbulence do not enter at any stage. We will show that our correlation is as accurate, or 
more accurate, than other correlations in the range of Reynolds numbers in which the correlations overlap. 
However, our formula is not restricted to certain ranges of Reynolds number but instead applies uniformly to 
all smooth pipe flow data for which data is available. Other methods for describing data on turbulent flow in 
pipes and boundary layers are rooted in hypotheses about the controlling fluid mechanics principles under 
sway.  It can be said that the implementation of the fluid mechanics ideas require a certain number of 
operational hypotheses leading to functional forms involving unknown quantities which must finally be 
selected to fit the data. In this sense, all these fluid mechanics motivated fitting methods are semi-empirical. 
An excellent description of the most popular of these methods has appeared in the review paper of Barenblatt 
et al. 1997 cited below.  

During the more than 60 years of active research into turbulent pipe flow, two contrasting laws for the velocity distribution in the 

intermediate region have coexisted in the literature (see, eg. Schlichting 1968): the first is the power or scaling law, 
αηφ C=                                                  (1.1) 

where the C and α are constants (i.e. parameters independent of η) believed to depend weakly on Re. Laws such as (1.1) were in 

particular proposed by engineers in the early years of turbulence research. The second law found in the literature is the universal, 

Reynolds number independent logarithmic law, 

( ) B+= κηφ /ln                                               (1.2) 

where κ  (von Kármán’s constant) and B are assumed to be universal, i.e. Re-independent, constants. 

In more recent decades, the logarithmic law (1.2) has been emphasized over the power law (1.1), sometimes even to the exclusion 

of the latter. The reasons have been mainly theoretical: it was not recognized that the power law has an equally valid theoretical 

derivation and satisfies the approximate self-consistency (overlap) condition. This theoretical bias has been allowed to obscure the fact 

that the experimental data unequivocally militate in favor of the power law (1.1)… 

It is generally thought that the universal logarithmic law (1.2) is in satisfactory agreement with the experimental data both in pipes 

and in boundary layers….However, the scaling law (1.1) has also found experimental support, provided the dependence of the quantities 

C and α on the Reynolds number was properly taken into account. Indeed, Schlichting, following Nikuradse, showed that the 

experimental data agree with the scaling law over practically the whole cross-section of a pipe… 

An important conclusion has been reached: The power law (1.1) and the logarithmic law (1.2) can be derived with equal rigor but 

from different assumptions. The universal logarithmic law is obtained from the assumption of complete similarity in both parameters η 

and Re; physically, this assumption means that neither the molecular viscosity ν nor the pipe diameter d influences the flow in the 

intermediate region. The scaling law (1.1) is obtained from an assumption of incomplete similarity in η and no similarity in Re; this 

assumption means that the effects of both ν and d are perceptible in the intermediate region. 

 
2. Experimental data 

The data we use comes from three sources: (1) the experiments on the flow of water of in smooth pipes 
of Nikuradse 1932, (2) the experiments of Nikuradse 1933 on water flow in rough pipes from which we have 
extracted data for “effectively smooth pipes”. Figure 1 shows how we have selected effectively smooth pipe 
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data from the rough pipe data. Figure 2 shows that the smooth pipe data and effectively smooth pipe data are 
in good agreement. The third source of data is presented in the paper by McKeon, Swanson, Zagarolla, 
Donnelly and Smits in 2004 (hereafter MSZDS). Their data for the flow of gases in smooth pipes is 
presented graphically in figure 3 and in tabular form in table 1 of MSZDS 2004. They note that 

The Princeton (Zagarola & Smits 1998; McKeon et al. 2004a; McKeon, Zagarola & Smits 2004b) and Oregon (Swanson et al. 
2002) research groups have recently examined fully developed pipe flow using very different apparatus. Compressed air is used in the 
Princeton “Superpipe”, whereas the Oregon device uses several room temperature gases: helium, oxygen, nitrogen, carbon dioxide and 
sulphur hexafluoride are used for relatively small Reynolds numbers, and normal liquid helium (helium I) is used for highest Reynolds 
numbers. The difference in of the two devices is dramatic: for example, the Superpipe weighs about 25 tons, whereas the Oregon tube 
weighs about 1 ounce. 

Prior to the Princeton and Oregon experiments, the experiments performed by Nikuradse 1932 covered 
the largest range of Reynolds numbers. Most other experiments span less than an order of magnitude in 
Reynolds number (see Zagarola 1996, Table 1.2). The data of Nikuradse 1932, 1933 and MSZDS 2004 is 
relatively easy to process and compare with empirical formulas because it is presented in tabular form. 

 

0.01

0.1

1

100 1000 10000 100000 1000000
R e

λ

Nikuradse Rough Pipe Data
Nikuradse Effectively Smooth Pipe Data

 

0.001

0.01

0.1

1

100 1000 10000 100000 1000000 10000000
R e

λ

Nikuradse Smooth Pipe Data in Turbulent Regime
Nikuradse Effectively Smooth Pipe Data

 
 

FIGURE 1: Friction factor (λ ) vs. Reynolds 
number ( Re ) in rough pipes (Nikuradse 
1933). The dark points on the bottom 
envelope of curves which depend on 
roughness do not depend on roughness 

( )Ref=λ  can be said to be effectively 
smooth. 
 

FIGURE 2.  λ  vs. Re  ( 3101.3 ×  
<< Re 6102.3 × ) in smooth pipes (open red 

circles) from Nikuradse 1932 (open blue 
squares) compared with  λ  vs. Re  
( 2102.5 × << Re 4107.8 × ) in effectively 
smooth rough pipes (Nikuradse 1933, see 
figure 1). Turbulent data for effectively 
smooth pipes coincides with data from 
smooth pipes. 
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3. Comparison of formulas of Barenblatt 2003 and McKeon 2004, 2005 with the data 
and each other 

The fitting curve proposed by McKeon et al. 2004 is 

( ) 537.0log930.11
−= λ

λ
Re ;                            (3.1) 

it fits Princeton data with a percentage error less than 1.25% for 63 10351031 ×<<× Re  and 0.5% for 
63 106.1310300 ×<<× Re . 

The curve proposed by McKeon et al. 2005 includes a correction for the viscous deviation from the log 
law at the wall and is given by 

( ) ( ) 55.0

04.7475.0log920.11

λ
λ

λ Re
Re −−= .                     (3.2) 

This equation predicts the friction factor to within 1.4% of the Princeton data (0.6% at high Reynolds 
number, 63 103010310 ×<<× Re ) and within 2.0% of the Blasius relation at low Reynolds numbers 
( 33 10901010 ×<<× Re ). 

Barenblatt’s 2003 scaling law (8.29) is derived from an extended theory (incomplete similarity) of 

FIGURE 3. λ  vs. Re   from experiments 
reported in MSZDS 2004. The Princeton data 
is in good agreement with the smooth pipe 
data of Nikuradse 1932 (see figure 6.25 in the 
thesis of McKeon 2003). Figure 4 shows that 
the Oregon data is not in agreement with the 
1933 data of Nikuradse for “effectively 
smooth” pipes. 

FIGURE 4. Comparison of data from 
Nikuradse 1933 for effectively smooth pipes 
with Oregon data (table 1) for flow in smooth 
pipes. The Oregon data is greatly different 
than Nikuradse data in the transition region. 
Data in the transition is associated with the 
instability of laminar flow which depends on 
parameters like the pipe length which do not 
strongly influence laminar or turbulent flow. 
The data in the transition region forms a 
cloud rather than a curve. 
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similarity (power law in the Reynolds number) to a form in which the prefactor and exponent of the power 
law also depend on the Reynolds number; the functional form of the prefactor and exponent are derived from 
theoretical assumptions. It is given by  

( )αψ
λ += 1/2

8
,                                  (3.3) 

where 
( )

( )( )ααα
αψ α ++

+
=

212
532/3e

 and ( )Reln2
3

=α . 
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4. Logistic dose curves for data sets with multiple power law regions 

    Prior to the relatively recent work of Joseph and his coworkers, it was not known that the classical 
logistic dose response curve could be used to fit data arising from real and numerical experiments in fluid 
mechanics and other hard sciences. In this section we will briefly review the properties of the classical 
logistic dose response curve and extend this method of fitting for correlations with multiple branches of 
power laws. This extended method of fitting which leads to rational fractions of power laws and to rational 
fractions of rational fractions of power laws is applied here to data on the friction factor vs. Reynolds number 
for laminar, transition and turbulent flow in smooth pipes (McKeon et al. 2004); this method of fitting leads 
to a composite correlation which describes all the available data unrestricted by Reynolds number.  The 
formula follows from direct processing of the data and does not depend on any assumption or correlation 
from fluid mechanics. 

 
4.1. Classical logistic dose response curve 

The logistic function is one of the oldest growth functions and a best candidate for fitting sigmoidal 
(also known as “logistic”) curves. Especially the logistic dose response function is a robust fitting function 
for transition phenomena. The 3-parameter, 4-parameter and 5-parameter logistic dose response curves are 
widely used in non-linear data fitting in life sciences; pharmacy and agronomy (see Balakrishnan N. 1992). 

A typical 5-parameter logistic dose response curve is given by  

FIGURE 5. Comparison of the power law 
formula (3.3) and the modified log formula 
(3.2) with the data of MSZDS. The 
differences between (3.2) and (3.3) are about 
2% for large Re (see figure 10). 
 



 6

nm

t
x

abay

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

−
+=

1

)(
,                                 (4.1) 

where x  and y  are the independent and the dependent variables. It is widely used in the literature to 
describe the correlations between x  and y  featured by two plateau regions and a transition region. Two 
typical examples are shown in figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

To our knowledge the first studies using logistic dose curve fitting in fluid mechanics can be found in the 
study of sedimentation by Patankar et al. 2002. This study was inspected by R. Barree who explained this 
method of 5-parameter fitting in an appendix “Fitting power-law data with transition regions by a continuous 
function: Application to the Richardson-Zaki correlation”.  

We shall call the correlation of data which can be described by two power laws connected by continuous 
data in the transition region a two power law correlation (or bi-power correlation). Two power law 
correlations for sediment transport have been studied by Wang et al. (2003) and for friction factors in 
turbulent gas-liquid flows by Garcia et al (2003, 2005). Correlations of families of bi-power laws depending 
on a third parameter have been constructed by Viana et al. (2003) who correlated data for the rise velocity of 
Taylor bubbles in round vertical pipes as a family of bi-power laws of the Froude number vs. Reynolds 
number indexed by the Eotvos number. A file of papers correlating large data sets from real and numerical 
experiments can be found at (http://www.aem.umn.edu/people/faculty/joseph/PL-correlations). 

The processing of data covered by linear splines and connected by the five point rule of the logistic dose 
curve (4.1) is an approximate method whose accuracy is judged by analysis of the error of the fit. Moreover, 
analytical functions like (4.1) which vary on some interval cannot assume a constant value at any finite x 
because discontinuous derivatives are required at such points. However, functions with discontinuous 
derivatives can be closely modeled by analytic functions as in the case in the two logistic dose functions 
shown in figure 6. The dose function (4.1) is actually a rather complicated nonlinear function and the 
mathematical problem of approximation of experimental data with such functions deserves further study.    
 
4.2. Modified logistic dose response curve 

The classical 5-parameter logistic dose response curve (4.1) is modeled to equation (4.2), in which the 
two constants a and b in equation (4.1) are replaced by two continuous functions ( )xfL  and ( )xfR , 
respectively. cx , m  and n  are constants. cx  is an important constant in determining the convergence 
trend of ( )xf  when the coefficient m  is negative and n  is a small positive number.  (Hereafter cx  is 
called the “threshold value” of x ) 

FIGURE 6. Classical forward and 
backward logistic dose response curves.  
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Here we show how to construct logistic dose curves (see equation (4.2)) for complicated data which can 
be described by piecewise continuous multiple power laws or multiple rational fractions of power laws, 
where the rational fractions of power laws themselves are also logistic dose functions. There are three key 
steps in determining a modified logistic dose curve; these are (1) the selection of two appropriate assembly 
members ( )xfL  and ( )xfR , (2) the estimate of the threshold value cx  which identifies the point of 
intersection of ( )xfL  and ( )xfR , and (3) the five-point sharpness control for fitting the transitional part 
between the two assembly members.  

A main idea in the modified logistic dose curve fitting is to force the denominator function ( )xG  in 
equation (4.2) to move towards +∞ or 1 rapidly on different sides of the threshold value cx  once the 
independent variable x deviates from cx , so that the logistic dose function can approach ( )xfL  
asymptotically on one side and ( )xfR  on the other side of cx . The two assembly members ( )xfL  and 

( )xfR  can be constants (in this case, it will reduce to the classical logistic dose response curve), power laws, 
rational fractions of power laws, rational fractions of rational fractions of power laws, or any other type of 
continuous functions. The splitting trends of ( )xf  at cxx =  is the basis of the sequential construction of 
a rational fraction of multiple segments of power laws. 
 
4.2.1 Logistic dose curve fitting for mixed power laws and/or rational fractions of power laws 

The logistic dose function for a two power law correlation (4.2) is a rational fraction of two power laws. 
Here we go one step further and replace one of the two member functions ( )xfL  and ( )xfR  in equation 
(4.2) with a rational fraction of two power laws. Then we can use the modified logistic dose curve to create a 
three power law correlation. If both ( )xfL  and ( )xfR  are replaced by rational fractions of two power laws, 
the modified logistic dose curve can even fit data which contains four subsections of power laws. Since 

( )xfL  and ( )xfR  can be updated with new rational fractions again and again by adding more and more 
power laws, we may expect to use the modified logistic dose response curve to fit a correlation composed of 
five or even more branches of power laws. Such correlations lead inevitably to rational fractions of rational 
fractions of power laws. 
 
4.2.2 Threshold values xc of the independent variable x 

We have found that the independent variable x  is sensitive to the threshold value cx  in equation (4.2); 
cx  can be used to locate the point of intersection of the two assembly members ( )xfL  and ( )xfR . That is 

to say, cxx =  when ( ) ( )xfxf RL = . When cxx < , the denominator function ( )xG  in equation (4.2) will 
approach +∞ and therefore ( ) ( )xfxf L≈  since m  is negative. When cxx > , ( )xG  approaches 1 
asymptotically; therefore ( ) ( )xfxf R≈ . 
 

4.2.3 Five-point sharpness control for the transition region between ( )xfL  and ( )xfR  

Data which is very closed to the two assembly members ( )xfL  and ( )xfR  at the point cx  of 
intersection is said to have sharp transition. The constants m  and n  can control the smoothness of the 
transitional part between ( )xfL  and ( )xfR . On the transitional part, the smoothness of data increases as the 
magnitude of m  decreases. We use a five-point rule to judge the accuracy of the fitting curve. Five data 
points on or near the transition segment of the two assembly members are selected; the errors between the 
five sample points and the fitting curve are calculated and evaluated by the R-square value. The goal of the 
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five-point rule is to make the fitting curve for the five selected points as smooth as possible, which can be 
seen in the zoom-in view of transition region. 

 
4.2.4 Construction of a logistic dose function for data sets identified by two power laws and a smooth 
transition segment 

 In this section we illustrate the procedure for constructing a logistic dose correlation for two power 
laws and a smooth transition segment for data of Marusic and Perry (1995) on the variation the 
dimensionless velocity ∗= uu /φ  vs the dimensionless distance from the wall νη /yu∗=  in boundary 
layers with an adverse pressure gradient. An example of the selection of two power laws and the calculation 
of sharpness control parameters m  and n  based on raw data is given here. The tabulated results are 
shown in table 1 for 30 APG mean flow at 02.19133=Re . 
 

30 APG MEAN FLOW (Re = 19133.02) 
No. φ  η  No. φ  η  No. φ  η  No. φ  η  

1 14.19779 39.48126 12 17.8959 204.6324 23 24.29825 916.1413 34 36.18715 2715.102

2 14.31916 41.87337 13 18.46791 238.6003 24 25.19049 1032.206 35 37.04935 2931.252

3 14.48314 47.04032 14 18.71844 277.0654 25 26.06025 1157.457 36 37.60313 3147.403

4 14.98265 54.50369 15 19.2299 320.1233 26 27.08825 1292.467 37 37.87272 3363.554

5 15.25863 64.45486 16 19.59897 367.9655 27 28.18673 1436.568 38 37.99084 3579.705

6 15.62833 76.89382 17 20.22202 425.7588 28 29.35161 1590.715 39 38.02275 3795.951

7 16.08429 91.91626 18 20.88928 484.0305 29 30.40133 1754.718 40 38.04359 3988.087

8 16.49045 109.4265 19 21.43574 552.0621 30 31.58338 1927.811 41 38.03168 4204.234

9 16.84369 129.4245 20 21.99511 627.6527 31 32.73956 2110.185 42 38.04827 4363.204

10 17.26571 151.8146 21 22.74916 714.0556 32 33.8983 2301.65 43 38.04868 4554.573

11 17.56293 175.7357 22 23.4404 810.1227 33 35.05426 2502.969 44 38.06908 4745.942

TABLE 1. Experimental data (30APG mean flow at 02.19133=Re ) for boundary layer flows with adverse pressure gradient 
[Reproduced after Marusic and Perry 1995]. 
 

Figure 7 illustrates the typical procedure of the construction of a logistic dose correlation for two power 
laws connected by a smooth transition. Panel (a) shows all the data from table 1. Five data segments can be 
identified from the graph: data segments 1, 3, 5 are three power laws segments; segments 2 and 4 are 
transition segments between power laws. In this example, we do not consider segments 4 and 5. Panel (b) 
shows two power laws 1P  and 2P  which are identified on segments 1 and 3, respectively. The whole plane 
is divided into four regions by 1P  and 2P  (i.e. ①, ②, ③ and ④ in panels (b) and (c)). Panel (b) clearly 
shows that the transition segment 2 is located in region ①. We shall show that logistic dose function of 1P  
and 2P  cannot pass through any data points in region ①.  

 
After 1P  and 2P  are determined, we can easily obtain the crossing point cηη =  by letting 

021 =− PP . The two parameters m  and n  are unknown, and they are obtained by substituting two data 
points into the following logistic function of 1P  and 2P . 

( ) ( ) ( )
( )[ ]nm

c

PPP
ηη

ηηηφ
/1

12
1

+

−
+= .                             (4.3) 

● We tentatively choose the point A ( )11  ,φη  which is located right on the power law 1P  (see panel (b) in 
figure 7). It follows that  
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( ) ( ) ( )
( )[ ]

( )
( )[ ]nm

c

nm
c

PPPP
ηη

φηφ
ηη

ηηηφ
/1/1 1

112
1

1

1112
111

+

−
+=

+

−
+= .                   (4.4) 

It follows that ( ) 112 φη =P  and 1P  = 2P  . Only the point of intersection can satisfy this condition but it is 
not near the transition segment. 

● Similarly, if we choose point B ( )22  ,φη  which is located on the power law 2P , we have 

( ) ( ) ( )
( )[ ]

( )
( )[ ]nm

c

nm
c

PPPP
ηη

ηφφ
ηη

ηηηφ
/1/12 1

212
2

2

2122
212

+

−
+=

+

−
+= .                 (4.5) 

Therefore ( ) 221 φη =P  giving rise to the same problem of point A ( )11  ,φη . 

● If we choose a point C ( )33  ,φη  in region ① but at the left side of cηη = , we obtain 

( ) ( ) ( )
( )[ ]nm

c

PPP
ηη

ηηηφ
/1 3

3132
313

+

−
+= . 

It follows that 

( )[ ] ( ) ( )
( )313

3132
3 /1

ηφ
ηηηη

P
PPnm

c −
−

=+ .                          (4.6) 

However, the LHS of equation (4.6) is always positive, but the RHS of (4.6) is negative because 
( ) ( )3132 ηη PP <  and ( )313 ηφ P> . Parameters m  and n  cannot be found to resolve this contradiction at 

( )33  ,φη . 

● If we choose a point D ( )44  ,φη  in region ① but at the right side of cηη = , we obtain 

( ) ( ) ( )
( )[ ]nm

c

PPP
ηη

ηηηφ
/1 4

4142
414

+

−
+= . 

Therefore  

( )[ ] ( ) ( )
( )414

4142
4 /1

ηφ
ηηηη

P
PPnm

c −
−

=+ .                          (4.7) 

Since ( )424 ηφ P> , we have ( )[ ] 1/10 4 <+<
nm

cηη . In this case, (4.3) can be satisfied only if the 
exponent n  is negative. However, if n  is negative, φ  in equation (4.3) cannot approach the two power 
laws 1P  and 2P  on different sides of cηη = , as expected. 

    We have shown that the logistic function for power laws 1P  and 2P  has no solution if m  and n  
are chosen to match any points in region ① or on the two power laws. 

When transition segment is sharp (i.e. m  is large and the radius of curvature of the data segment is 
small), the logistic function (4.3) follows the two power laws closely and the deviation of logistic function 
from power laws is not even appreciable. In these cases, we do not modify the power laws in data processing 
because the logistic function can easily satisfy the requirement of fitting error. However, if the radius of 
curvature of transition segment is large, we want the fitting curve to pass through the data points in a smooth 
transition. A most convenient way to realize this is to modify the prefactors of the two power laws 1P  and 

2P . Then we can obtain two new power laws '1P  and '2P  (see panel (c)). The purpose of the modification 
is to move all the data points on transition segment out of region ①. In this case, equation (4.3) can be 
processed to fit points on the transition segment. This procedure is not sensitive to small changes in the 
prefactors of '1P  and '2P . After '1P  and '2P  are determined, we choose two points on or nearby the 
transition segment and substitute into equation (4.3) to solve for m  and n  by iterations. In this example, 
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1P , 2P , '1P  and '2P  are 1429.041.8 ηφ = , 3726.089.1 ηφ = , 1429.076.8 ηφ =  and 3726.004.2 ηφ = , 
respectively. The threshold value cη  can be determined by letting 021 =− PP  and then .95.701=cη  If we 
choose points No.15 and No.18 (see table 1) to solve for m  and n , then we can get 9225.0−=m  and 

0703.1=n . Therefore, we have the composite logistic function expressed as 

0703.19225.0

1429.03726.0
1429.012

1

95.701
1

76.804.276.8

1
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φ nm
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PPP .               (4.8) 

Equation (4.8) is the rational fraction formula for the data in table 1 without considering the last 10 points. 

     The correlation in equation (4.8) is shown in panel (d) of figure 7, which passes through the data 
points in segments 1, 2 and 3 perfectly.   
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                      (c)                                          (d) 
FIGURE 7. Dimensionless velocity profile vs. dimensionless distance from wall for 30 APG mean flow at Re = 19133.02. The 
construction of the logistic dose function as a rational fraction of two power laws is shown in the graphs. The data are from the 
adverse pressure gradient experiments of Marusic and Perry (1995). The four panels are: (a) the raw data are identified by three 
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power law segments and two transition segments, (b) for segments 1 and 3, two power laws P1 and P2 are identified, (c) P1 and P2 are 
modified to P1' and P2' so that equation (4.3) can be processed to fit the points on or nearby the transition segment, (d) the logistic 
dose function is constructed as a rational fraction of P1' and P2' after m and n are determined (the fitting errors for segments 1, 2 and 3 
are less than 1.9% or 0.9% if the first three points are not considered). 
 

Turbulent data suitable for processing as two power law correlations can be found in figures 8.5 and 8.8 
in the scaling book of Barenblatt 2003. The correlation in figure 7 corresponds to 1 in figure 8.8 in the 
Barenblatt book in which the data is described by two broken power laws but no description of the smooth 
transition between them is given. Keller 2002 introduced a method for constructing a smooth transition 
between power laws. A differential equation for this problem is proposed and solved. It leads to a power law 
for the velocity profile followed by a smooth transition to a different power law. Two formulas giving 
different results are derived; they give different results. Comparisons to data are not given. 

 
5. Processing the data of MSZDS 2004 for rational fraction correlations between λ and 
Re for laminar, transition and turbulent flow in smooth pipes 

    More complicated data which requires the use of more than two power laws may require that the 
exponents as well as the prefactors need to be modified. The selection of these modifications of the power 
laws depend on the details of data distribution and cannot be specified a priori. The selection of data points 
for processing even on apparently smooth transition segments are also uncertain in log-log plots where 
apparently small errors are actually rather large. If improper data points are chosen, the logistic dose function 
may not have a solution or may give rise to an inaccurate solution. The construction of accurate logistic dose 
curve solutions is something of an art. A rule of thumb procedure is to estimate the value of m  from the 
curvature and distribution of data, and then choose only one point from the transition segment to solve for n . The 
processing of multi-power law data is carried out in the appendix, from which we obtain three friction factor 
correlations λ , 'λ  and "λ  (see equations (A.5), (A.7) and (A.9) in appendix). λ  and 'λ  are generated by 
connecting four segments of power laws 164 −= Reλ , 416101.4 Re−×=λ , 255.0351.0 −= Reλ  and 

165.0118.0 −= Reλ  from different sequences and are in minute agreement with each other. "λ  is constructed 
with the addition of the fifth power law 82.019 −= Reλ  due to the fact that the Oregon data does not agree with 
the laminar solution 164 −= Reλ  for 2900950 << Re . The comparison of "λ  with the data of MSZDS 
(2004) is shown in figure 8. 
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FIGURE 8. The comparison of logistic 
fitting curve "λ  (see equation (A.9) in 
appendix) with the data of MSZDS (2004). 

"λ  is a rational fraction of five power 
laws 164 −= Reλ , 82.019 −= Reλ , 

416101.4 Re−×=λ , 255.0351.0 −= Reλ  
and 165.0118.0 −= Reλ . The R-square value 
of "λ  is 0.996216 for the full range of 
Princeton and Oregon data. 
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6. Roughness 

An accurate formula for the full range data of McKeon et al 2004 for pipe flow was derived as a rational 
fraction of five power laws connected smoothly by the logistic dose curve algorithm. The turbulent flow data is 
represented by a composition of two power laws with errors less than 1% for Re < 13×106 but the error increases 
rapidly thereafter. This rather sudden increase of data can be interpreted as a manifestation of the effect of 
roughness in an effectively smooth pipe with honed roughness. It is of considerable interest that this critical value 
was also obtained independently McKeon et al 2004 as a lower bound for the manifestation of roughness by 
studying the error of their best log formula.  
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We might hope that the quality of our method of logistic dose curve fitting can be improved to arbitrary 

accuracy, modulo experimental scatter, by choosing more and more branches of power laws and adjusting the 
sharpness control parameters m  and n  in equation (A.1). However, as a practical matter, the 
implementation of fitting more and more power laws is more and more difficult. Moreover, in principle, the 
five point rule of the logistic dose curve algorithm which is at the center of our fitting method cannot 
possibly give a perfectly accurate representation of the continuous data connecting power laws.   
 

FIGURE 10. Relative fitting error ε  vs. 
Re  between four Re~λ  correlations and 
the Princeton data in turbulent regime 
( 63 10361031 ×<<× Re ). 
 

FIGURE 9. Comparison of MSZDS’s data 
with three fitting curves in equations (3.2), 
(3.3) and equation (A.9) in the appendix. 
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7. Friction factor correlation of Nikuradse’s data (1932, 1933) for smooth and 
effectively smooth pipes 

We conclude our analysis with a comparison of our rational fraction of power law correlation (A.9) with 
Nikurdses data for smooth and effectively smooth pipes. Equation (A.9) was derived from data of MSZDS 
2004 but is in satisfactory agreement with the Nikuradse data. The reader will recall that the full range data 
given by MSKDS is not in good agreement with the full range data Nikuradse 1933. A new full range 
correlation which coincides with (A.9) in the overlap region is derived in a companion paper by Yang & 
Joseph 2008 on flow in rough pipes is shown figure 12. 
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8. Conclusion and discussion 

An effectively smooth pipe is one for which the friction factor depends only on the Reynolds number 
( )Ref=λ  and not on roughness. We showed that the bottom envelope of Nikuradse’s 1933 data for rough pipes 

are effectively smooth and  in fact coincide with his 1932 data for smooth pipes and with superpipe data 
presented by McKeon et al. 2004 in the interval 43 107.8102.4 ×<<× Re . The McKeon data is full range 
over all Reynolds numbers less than 31×106 combining Oregon data for laminar, transition and turbulent 
flow with Princeton superpipe data for turbulent flow.  The Oregon data for transition and near transition 

FIGURE 12. Comparison of Nikuradse’s 
1932 and 1933 data for smooth and 
effectively smooth pipes with the logistic 
dose curve sλ  for effectively smooth pipes 
derived by Yang & Joseph 2008. sλ  is 
constructed from Nikuradse’s 1933 data by a 
procedure similar to the one described in this 
paper; sλ  is a rational fraction of five 
power laws: Re/64=λ , 

75.0000083.0 Re=λ , 25.03164.0 −= Reλ , 
185.01537.0 −= Reλ  and 
136.00753.0 −= Reλ . The R-square value of 

sλ  is 0.995444 for the full range of 
Nikuradse’s data for smooth and effectively 
smooth pipes. 

FIGURE 11. Comparison of Nikuradse’s 
1932 data for turbulent flow in smooth pipes 
with the correlation "λ  (A.9) in appendix. 
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flows of various gases differ strongly with Nikuradse’s 1933 data for the flow of water. We introduced a new 
method for processing data. The correlation is given as a rational fraction of rational fractions of power laws 
which is systematically generated by smoothly connecting linear splines in log-log coordinates with a 
logistic dose curve algorithm. This kind of correlation seeks the most accurate representation of the data 
independent of any input from theories arising from the researchers ideas about the underlying fluid 
mechanics. As such, these correlations provide an objective metric against which observations and other 
theoretical correlations may be applied. Our correlation is as accurate, or more accurate, than best log formula 
of McKeon et al 2004 and incomplete similarity power law formula of Barenblatt et al 1996 in the range of 
Reynolds numbers in which the correlations overlap. Moreover, our formula is not restricted to certain ranges 
of Reynolds number but instead applies uniformly to all smooth pipe flow data for which data is available. 
Our method was applied to data for the mean flow profile in a boundary layer on a flat plate with adverse 
pressure gradient. We obtained a correlation formula of good accuracy as a rational fraction of two power laws. A 
highly accurate formula for the full range data of McKeon et al 2004 for pipe flow was derived as a rational 
fraction of five power laws connected smoothly by the logistic dose curve algorithm. The turbulent flow data is 
represented by a composition of two power laws with errors less than 1% for <Re 13.6×106 but the error 
increases rapidly thereafter. This rather sudden increase of data can be interpreted as a manifestation of the effect 
of roughness in an effectively smooth pipe with honed roughness. It is of considerable interest, though possibly 
for tuitis, that this critical value was also obtained independently McKeon et al 2004 as a lower bound for the 
manifestation of roughness by studying the error of their best log formula.  

The ideas and methods presented here may be used to correlate complicated engineering data from real 
and numerical experiments directly into explicit formulas which could never be obtained by mathematical 
analysis. 
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discussed in this paper. 
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APPENDIX 

Fitting procedure for constructing multiple power law correlations  
between λ  and Re  for smooth pipes 

 

(I). Data for the correlation between λ  and Re  for turbulent flow in smooth pipes   

Now we will fit data for the correlations between the friction factor λ  and the Reynolds number Re . 
The modified logistic dose response curve can be expressed as 

( ) ( ) ( ) ( )
( )[ ]nm

c

LR
L

ReRe

RefRefRefRef  
/1+

−
+==λ ,                        (A.1) 

where cRe  is the critical Reynolds number (i.e. threshold value of Reynolds number), Lf  and Rf  are the 
two assembly members, m  and n  are constants. 

Experimental data of MSZDS 2004 for friction factors in turbulent flow in smooth pipes is presented in 
figure 3; the figure shows that the data contains four subsections of straight lines that are distributed in the 
interval(0, 2900), (2900, 3050), (3050, 240000) and (240000, +∞), respectively. The four straight lines 
represent four branches of power laws in the log-log plot shown in figure A1, and they are 

164 −= Refa , 416101.4 Refb
−×= , 255.0351.0 −= Refc  and 165.0118.0 −= Refd .       (A.2) 
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(II). Modified logistic dose curve fitting for two power laws 

Substituting aL ff =  and bR ff =  into equation (A.1), we obtain a rational fraction for the two 
subsections af  and bf  in figure A1; identified in figure A2 by a thick solid line in green color, giving rise 
to the expression  

( )[ ] 5.0501
/1

)(
−+

−
+=

c

ab
a

ReRe

fffF ,                           (A.3) 

where the critical Reynolds number cRe  is 2900. 

FIGURE A1. Data of MSZDS 2004 for 

friction factors in laminar, transition and 

turbulent flow in smooth pipes. Four 

branches of power laws are identified in the 

plot, and they are
af ,

bf , 
cf  and 

df . 
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Similarly, another logistic dose function for the two subsections on the right side is given by 
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fffF ,                           (A.4) 

FIGURE A2. The composite logistic dose 

function 1F  is a rational fraction of two 

power laws af  and bf  (see equation 

(A.3)) 

 

FIGURE A3. The composite logistic dose 

function 2F  is a rational fraction of two 

power laws cf  and df  (see equation 

(A.4)) 

 

FIGURE A4. The composite logistic dose 

function λ  is a rational fraction of two 

rational fractions 1F  and 2F , which are 

logistic dose functions of two power laws 

(see equations (A.3) and (A.4)). λ  is a 

logistic fitting curve based on four power 

laws af , bf , cf  and df .  
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where the critical Reynolds number '
cRe  is 240000 (see figure A3). 

 

(III). Logistic dose curve fitting for two rational fractions of power laws 

To describe all of the data of MSZDS 2004 for friction factors in laminar, transition and turbulent flow in 
smooth pipes connecting the four branches of power laws, we first replace the two assembly members Lf  
and Rf  with 1F  and 2F  which are defined in section (II). This leads to the following rational fraction of 
power laws: 

( )[ ] 5.050"
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FFFλ ,                           (A.5) 

where the critical Reynolds number "
cRe  is 3050 (see figure A4). 

Figure A4 shows that the fitting curve described in equation (A.5) can fit the data of MSZDS 2004 nearly 
perfectly in the full range of Reynolds numbers.  
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Another procedure for fitting two rational fractions of power laws is to construct a logistic dose function, 
first for a rational fraction of three power laws af , bf  and cf  fit to a fourth power law df . This procedure 
is exhibited in figures A5 and A6. Figure A5 shows the logistic dose curve fitting of three power laws by 

FIGURE A5. The composite logistic dose 

function 3F  is a rational fraction of a two 

power law rational fraction 1F  and a single 

power law cf  (see equation (A.6)). 

 

FIGURE A6. The composite logistic dose 

function 'λ  is a rational fraction of a 

rational fractions 3F  and a power law df . 

3F  is a logistic dose functions of three 

power laws (see equation (A.6)). 'λ  is a 

logistic fitting curve based on four power 

laws af , bf , cf  and df . The R-square 

value of 'λ  is 0.996213 for the full range of 

Princeton and Oregon data. 
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replacing Lf  and Rf  in equation (A.1) with 1F  and cf ; this curve is expressed as  
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where the threshold value of Reynolds number '''
cRe = 3050. 
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FIGURE A7. Comparison of logistic dose fitting curves λ  and 'λ . 

 
The logistic dose function 3F  in equation (A.6) represents a fitting curve of three power laws. We can 

combine 3F  with the fourth power law df  to obtain the fitting curve for the data of MSZDS 2004 for the 
full range of Reynolds number (see figure A6). The fitting curve is given by 
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where the threshold value of Reynolds number "''
cRe = 240000. 

Figures A4 and A6 show that both procedures lead to fitting curves which agree well with the 
experimental data. Moreover, the two fitting curves in equations (A.5) and (A.7) are in a good agreement 
with one another. We have compared the difference between the two curves in equations (A.5) and (A.7), and 
the results are shown in figure A7 which shows that the relative error between the two curves can be 
controlled within ±3%. The large errors mainly occur in the range of small Re  because Oregon data does 
not agree well with the theoretical solution Re/64=λ  for laminar flow, which is used in the constructions 
of correlations (A.5) and (A.7). Another reason is that the power law bf  is too steep in the log-log plot and 
logistic function may not handle it perfectly. 
 

(IV). Analysis of fitting error ε 

Figures A4 and A6 show that the data does not match the fitting curves perfectly in a small interval 
around Re  = 1000. The deviation is due to the fact that the data of MSZDS 2004 does not match the 
laminar correlation Ref /64= . This deviation of the four power law correlations (A.5) and (A.7) from the 
experimental data can be reduced by representing the data with five rather than four power laws. The 
measure of the deviation used here is 

experimentin   valueObserved
experimentin   valueObserved - curve fittingby   valuePredicted

=ε .             (A.8) 

The five power law construction is carried out as follows: We first split the laminar correlation Refa /64=   
into two parts and replace it with a rational fraction 
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The fitting curve "λ  in equation (A.9) is shown in figure 8. A zoom-in plot of our fitting curve "λ  for 
Re  ranging from 2000 to 4000 is shown in figure A8; the fitting curve "λ  passes through the data 
smoothly, the relative errors of some points, due to scatter, cannot be reduced to less than 5-10% . 
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Fitting errors of the correlations in equations (A.9) and (3.2)
for Princeton and Oregon data in full range of R e (1.1×10 < R e  < 36×106)
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FIGURE A9. Relative fitting error vs. Re  between our logistic dose curve "λ  (A.9), the best formula (3.2) of McKeon et al 2005 

and the data of MSZDS 2004. McKeon et al. fit their data with an empirical formula based on logarithms rather than powers; their 

formula fits the data well in a limited range of Reynolds numbers Re  ( 63 10351031 ×≤≤× Re ) in the turbulent regime. The 

relative error of their formula (3.2) in representing the data is also shown in this figure. Our equation (A.9) applies to the full range of 

Reynolds numbers given by MSZDS 2004 rather than a limited one. 

 

FIGURE A8. The zoom-in view of the modified 

logistic dose fitting curves 'λ  and "λ  for 

2000 ≤≤ Re 4000 shows that the logistic dose 

fitting curves can be improved by choosing more 

power laws. The two fitting curves 'λ  and "λ  

are based on four and five power laws, 

respectively. The fitting errors on some points 

cannot be reduced to less than 5-10% due to the 

scatter of experimental data. The big circles show 

the five points which are chosen to fit the data in 

transition regions. 
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