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We collected all of the published data we could find on the rise velocity of long gas
bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments
from the literature and seven new experiments at PDVSA Intevep for fluids with
viscosities ranging from 1mPa s up to 3900 mPa s were assembled on spread sheets
and processed in log–log plots of the normalized rise velocity, Fr= U/(gD)1/2 Froude
velocity vs. buoyancy Reynolds number, R =(D3g(ρl − ρg)ρl)

1/2/µ for fixed ranges
of the Eötvös number, Eo= gρlD

2/σ where D is the pipe diameter, ρl , ρg and σ are
densities and surface tension. The plots give rise to power laws in Eo; the composition
of these separate power laws emerge as bi-power laws for two separate flow regions
for large and small buoyancy Reynolds. For large R (>200) we find

Fr = 0.34/(1 + 3805/Eo3.06)0.58.

For small R (<10) we find

Fr =
9.494 × 10−3

(1 + 6197/Eo2.561)0.5793
R1.026.

The flat region for high buoyancy Reynolds number and sloped region for low
buoyancy Reynolds number is separated by a transition region (10< R < 200) which
we describe by fitting the data to a logistic dose curve. Repeated application of logistic
dose curves leads to a composition of rational fractions of rational fractions of power
laws. This leads to the following universal correlation:

Fr = L[R; A, B, C, G] ≡ A

(1 + (R/B)C)G

where

A = L[Eo; a, b, c, d], B = L[Eo; e, f, g, h], C = L[Eo; i, j, k, l], G = m/C

and the parameters (a, b, . . . , l) are

a=0.34; b=14.793; c=−3.06; d =0.58; e=31.08; f =29.868; g=−1.96;

h = −0.49; i = −1.45; j = 24.867; k = −9.93; l = −0.094; m = −1.0295.

The literature on this subject is reviewed together with a summary of previous
methods of prediction. New data and photographs collected at PDVSA-Intevep on
the rise of Taylor bubbles is presented.
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1. Literature review
Readers not familiar with Taylor bubbles should look at the photographs shown

in figure 5 below. These bubbles almost fill the tube cross-section and lead to the
formation of a falling film between the wall and the bubble. They also exhibit a
rounded nose and in water give rise to an unsteady and irregular tail. We follow
the convention introduced by previous authors who use the words ‘Taylor bubble’ to
describe the rise of long gas bubbles in circular tubes. Further information is given in
the excellent treatise of Wallis (1969). An early review of literature on the rise velocity
of Taylor bubbles in round pipes is given by Rader, Bourgoyne & Ward (1975), Clift,
Grace & Weber (1978) and Fabré & Liné (1992). The review given here updates the
recent review of Viana et al. (2001).

Research on Taylor bubbles dates back as far as 1913 to that by Gibson (cited by
White & Beardmore 1962). Later, this subject was addressed by Dumitrescu (1943)
and Davies & Taylor (1950). Both papers pointed out that a gas bubble must assume
a shape that allows the surface of the bubble to be an isobar.

The papers by Dumitrescu (1943), Davies & Taylor (1950), Brown (1965), White &
Beardmore (1962), Zukoski (1966) and the textbook of Wallis (1969) give prediction
formulae for the rise velocity. The first three use models and analysis to make their
predictions, the last three obtain predictions from processing data. Dumitrescu (1943)
computed the approximate shape of a bubble rising in a vertical tube from theoretical
considerations. The computed profile had a rounded nose and resembled a bullet.
Davies & Taylor also published photographs showing that a bubble rising in a
circular tube was bullet shaped. By ignoring the frictional and capillary effects, and
by considering only the potential and kinetic energy of the liquid falling around the
bubble, the approximate solution for the liquid flow around the top of the bubble
was determined by both Dumitrescu and Davies & Taylor. The solution published by
Dumitrescu relates the bubble velocity U through a liquid in a vertical circular tube
to the tube diameter and the acceleration due to gravity by the following equation:

U = 0.351
√

Dg (circular tube). (1)

This equation generally agreed with the equation later presented by Davies &
Taylor, which contained the constant 0.328 in place of the constant 0.351 in (1).
However, as shown in tables A1 and A2 in the Appendix†, experimental data obtained
by several investigators using air and water indicate that the equation presented by
Dumitrescu applies best in the larger tubes.

Davies & Taylor (1950) also analysed the related problem of the rise of a spherical
cap bubble in an unbounded liquid without the restraining effect of tube walls. They
found the value

√
2/3 instead of the lower value 0.328 for long gas bubbles associated

with the effects of liquid drainage on the tube walls. There are a number of anomalous
features associated with the rise of long bubbles in tubes and spherical cap bubbles
which have yet to be explained by the principles of fluid mechanics. These anomalies
will be discussed in § 6.

Laird & Chisholm (1956) also investigated bubble rise velocity through water in
vertical tubes. Working with a 2 in. diameter tube, they found bubble rise velocities
similar to those of Davies & Taylor. However, Laird & Chisholm reported a 10%
increase in bubble rise velocity as the length of the bubble was increased from 2 to

† Available as a supplement to the online version of this paper, or from the authors or the JFM
Editorial Office, Cambridge.
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25 pipe diameters. Since (1) does not contain a bubble-length term, this observation
and the measurements suggest that the rise velocity is nearly independent of length
when the bubble length is more than a few pipe diameters.

Griffith & Wallis (1961) investigated experimentally the two-phase slug flow through
various sizes of round pipes. Some of their experiments were done with single Taylor
bubbles rising in stagnant water. The measured rise velocities were in agreement with
the prediction of Dumitrescu (1). Regarding the applicability of (1) to finite bubbles,
Griffith & Wallis stated ‘. . . the finiteness of the slug flow bubbles did not appear to
make much difference in their rise velocity.’

White & Beardmore (1962) presented extensive experimental data on the rise of
Taylor bubbles in several different stagnant liquids. They used their own and literature
data to propose a general graphical correlation for predicting the terminal rise velocity
of bubbles in round pipes. They noted that ‘. . . for cylindrical bubbles the terminal
velocity is practically independent of the length of the bubble,’ in agreement with
previous works. White & Beardmore recognized the effect of the bubble expansion as
it rises into a lower hydrostatic pressure on the measured values on the rise velocity.

A correlation of data presented in graphs given by White and Beardmore was
developed and is

U =
√

gD

(
a1a2 exp(a3t)

a1 + a2(exp(a3t) − 1)
− a4

)
(2)

where

t = log10

(
ρlgD2

σ

)
, (3)

and σ is surface tension.
The parameters ai in (2) are seventh-degree polynomials:

ai =

8∑
j=1

cij xj−1 (i = 1, . . . , 4), (4)

x = log10

(
gµ4

ρlσ 3

)
. (5)

where µ is liquid viscosity and the coefficients cij are

cij =




3.5603852×10−1 2.6717658×10−3 −2.7121907×10−3 −2.0001955×10−3

1.5642441×10−3 2.8532721×10−4 −4.7831508×10−5 −3.605927×10−5

3.059819 −5.2353564 × 10−1 3.3906415 × 10−2 2.1368428 × 10−2

2.3221312 × 10−2 −1.809746 × 10−3 9.3468732 × 10−5 −2.3440168 × 10−4

8.622533 × 10−5 5.7198751 × 10−5 −2.4316663 × 10−6 −6.7582431 × 10−7

7.6382727 × 10−6 1.1736259 × 10−6 −1.5186036 × 10−7 −1.9756221 × 10−8

−3.2676237 × 10−3 −7.302379 × 10−4 7.2215493 × 10−5 1.1273658 × 10−5

5.9716008 × 10−5 9.7852173 × 10−6 −1.3514105 × 10−6 −1.74642 × 10−7


.

White & Beardmore referred to the dimensionless parameter gµ4/ρlσ
3 in (5) as the

property group (Y ). Clift et al. (1978) called this group the Morton number (M).
The correlation (2) has the limits

5 < Eo < 1000, 10−8 < Y < 106,

where Eötvös number Eo= gρlD
2/σ.
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Figure 1. (a) Relative error plot, (b) measured vs. calculated Fr using (2)–(5). These plots
show an overall good performance for White & Beardmore’s correlation, except for some data
for which we were unable to find an explanation.

The performance of White & Beardmore’s model using the data in the Appendix
is presented in figure 1. This model yielded a rather high squared residuals sum of
Froude number Fr = U/(gD)1/2:∑

(Frmeas. − Frcalc.)
2 = 0.23

when tested against the data.
Goldsmith & Mason (1962) presented a simple model for the hydrodynamics of

large bubbles and liquid drops, taking into account the liquid viscosity. Also, they
included the results of an extensive experimental investigation for bubbles and liquid
drops rising or falling in a small diameter round tube with suspending liquids with
several physical properties. Among many valuable observations is that for a constant
value of Eo, the overall bubble deformation (nose, film and tail) remained independent
of the liquid viscosity µ.

The issue of the dependence of rise velocity and bubble length, which is not directly
addressed by (1) or (2), was further investigated by Nicklin, Wilkes & Davidson
(1962). They measured the rise velocity of Taylor bubbles of several lengths using
different experimental arrangements in order to isolate the secondary effects due to
bubble expansion. Nicklin et al. arrived at the conclusion that (1) accurately predicted
the rise velocity of the Taylor bubbles studied in their experiments. Regarding the
bubble expansion effect, they stated, ‘This (rise) velocity is independent of the slug
(Taylor bubble) length, and is modified only by a net flow of liquid across a section
above the slug’. They also proposed that: (a) ‘. . . the slug (Taylor bubble) can be
assumed to consist of a nose region in which the liquid accelerates freely under
gravity, and a lower region in which gravity is balanced by wall shear forces and the
film thickness is constant,’ and (b) ‘It is therefore a correct generalization to say that
slugs always tend to rise as quickly as possible’.

Brown (1965) made an experimental and theoretical study of the effect of liquid
viscosity in the terminal rise velocity of Taylor bubbles. Brown stated that the potential
flow solution (e.g (1)) described quite well the velocities of bubbles in liquids of low
viscosities, but it was not suitable for liquids with higher viscosities. Through some
experiments, Brown found that regardless the viscosity of the liquid, the noses of
the different Taylor bubbles tested showed geometric similarity, in agreement with



Universal correlation for the rise velocity of gas bubbles 383

Goldsmith & Mason’s findings. This led Brown to propose a more general form of (1)
including the retarding effect of the liquid viscosity. This effect was taken into account
through the analysis of the falling liquid film thickness well below the bubble’s nose.
The original form of Brown’s equation is

U = 0.35
√

gD

√
1 − 2

(√
1 + ND − 1

ND

)
(6)

where

N =

(
14.5

ρ2
l g

µ2

)1/3

. (7)

N is dimensional but ND is dimensionless.
The applicability limits of (6) were established empirically as

surface tension:
ρlgD2

4σ

(
1 − 2

(√
1 + ND − 1

ND

))2

> 5.0,

viscosity: ND > 60.

Zukoski (1966) performed an extensive experimental study of the relevant variables
influencing the rise velocity of Taylor bubbles: viscosity, density, surface tension, pipe
diameter and angle of inclination. This work is perhaps the most comprehensive
available in the literature. Zukoski took data available in the literature along
with own data and used a set of three dimensionless parameters to analyse them.
These parameters are: Reynolds number, Rz = ρlUD/(2µ), dimensionless velocity,
Frz = U/(gD/2)1/2 and the surface tension number, Σ = 4σ/(ρlgD2). It was observed
that ‘. . . for Reynolds number greater than about 200, the propagation rates are
substantially independent of viscous effects’. This implies that the bubble’s movement
is governed solely by Σ . Also, for Σ < 0.1, the rise velocity is almost equal to that
predicted by (1). The different effects of viscosity and surface tension upon the rise
velocity are combined using

Frz(Rz, Σ) = Frz(∞, Σ)f (Rz). (8)

A numerical form of Frz(∞, Σ) and f (Rz) was obtained fitting the data points
displayed in Zukoski’s paper:

Frz(∞, Σ) = 0.4664 + 0.3473Σ − 5.3928Σ2 + 10.532Σ3 − 6.7095Σ4 (Σ < 0.6), (9)

f (Rz) =
1(

1 + 44.72
/
R1.8

z

)0.279
. (10)

For a given set of physical properties and pipe radius, the bubble’s rise velocity
can be calculated through a numerical method using (8), (9) and (10). Note that
Rz = R Fr/2 and Σ = 4/Eo. The performance of Zukoski’s model using the data in
the Appendix is presented in figure 2. The sum of squared residuals for this model is
0.07.

Wallis (1969) proposed a general correlation for Taylor bubble rise velocity in terms
of all the relevant variables:

U = k

[
Dg(ρl − ρg)

ρl

]1/2

(11)
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Figure 2. (a) Relative error plot for Zukoski’s correlation. Only 251 experiments were
included with Eo > 7. (b) Measured vs. calculated Fr.

Figure 3. (a) Residuals plot for Wallis’s correlation, (b) measured vs. calculated Fr.

and

k = 0.345
(
1 − e−0.01R/0.345

)(
1 − e(3.37−Eo)/m

)
, (12)

where R is the buoyancy Reynolds number:

R =
[D3g(ρl − ρg)ρl]

1/2

µ
; (13)

m is a function of R and takes on the following values:

R > 250:

18 < R < 250:

R < 18:

m = 10,

m = 69R−0.35,

m = 25.


 (14)

The performance of Wallis’s correlation can be seen in figure 3. The sum of squared
residuals is 0.06.

Tung & Parlange (1976) studied long gas bubbles rising in closed cylindrical tubes
of large diameter in which viscosity effects are suppressed (Reynolds number of the
flow based on the radius of the tube is larger than 50) and surface tension effects
could be isolated. An analytical solution is presented for the rise velocity of long
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Fluid D(mm) µ(mPa s) ρi(kgm−3) σ (mN m) U (mm s−1)

Water 76.2 1.05 998 72.8 282
Silicon oil 76.2 1330 969 21.2 228
Silicon oil 76.2 3834 972 21.3 138
Water 12.7 1 1000 72 101
60% Glycerin 12.7 19 1157 68.5 101
75% Glycerin 12.7 67 1198 66.4 84

Table 1. The physical properties of the fluids used in the Intevep experiments.

bubbles as a function of surface tension, gravity, pipe diameter and liquid density:

Fr =
U√
gD

=

(
0.136 − 0.944

σ

ρgD2

)1/2

. (15)

Equation (15) shows that the rise velocity decreases as the surface tension effects
increase. For the particular case of negligible interfacial effects (σ = 0), equation (15)
gives Fr = 0.369, which may be compared with the value Fr =0.351 given by
Dumitrescu (1943). They found excellent agreement between the theoretical solution
(15) and the experimental observations.

2. Intevep experiments
The experimental set up is shown in figure 4. It consists of a transparent round

acrylic pipe column with an inside diameter of 76.2 mm and a total height of 2.5 m.
The tube ends at the top in an open tank. An acrylic box is connected at the column
bottom. The box has a hemispherical cup held above an injection capillary tubing.
This tubing is connected to a calibrated syringe as used by gas chromatographers. To
obtain the desired bubble volume, the air is injected repeatedly with as many syringe
strokes as necessary. The air will be trapped by the downward facing cup. The bubble
is released by inverting the cup. This mechanism allowed the formation of a wide
range of bubble sizes, from small (0.8 cm3) up to Taylor bubbles (300 cm3). A second
mechanism was used to form even larger Taylor bubbles, from 300 up to 1800 cm3.
This device replaces the transparent box. It consists of a 3 in. ball valve, a cylindrical
reservoir and a drain. To form a bubble, the ball valve is closed in order to separate
the liquid in the bubble formation section from the liquid in the column. Then, a
desired volume of liquid is drained from the reservoir. Finally, the bubble is released
by opening the valve.

To measure the rise velocity, most of the travelling bubbles were recorded with
a high-speed video camera NAC HSV 1000, which acquires 500 frames per second.
Due to a sudden malfunction in the HSV 1000, a Sony DXC537 video camera was
also used. This camera records in NTSC video format with 30 frames per second.
The frames were digitized with a PCI-1408 National Instruments image acquisition
board. The image processing used the IMAQ Vision package for Labview. The video
technique used for determining bubble velocities yields an error of ±4% for the slower
bubble velocities and ±2% for the highest velocities.

The physical properties of the fluids used in the experiments are given in table 1.
Photographs of Taylor bubbles rising through stagnant fluid taken in these

experiments are exhibited in figure 5. They have some distinctive features: (i) they
are large enough to bridge the pipe and are relatively long; (ii) a film of liquid on the
pipe wall terminating on the flat part of the cylindrical bubble falls under gravity;
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Figure 4. Experimental apparatus for obtaining Taylor bubbles.

(iii) the nose of the bubble is bullet shaped, nearly spherical and sharply defined; and
(iv) the wake behind the bubble is complex and varies strongly with liquid viscosity.
The wake structure is described in the caption of the cartoon shown in figure 6.

A wake type classification can be developed based on the structure of the wake
observed in the photographs in figure 5. Four different types are distinguished in the
cartoons in figure 7:

1. closed rounded (7a);
2. closed air cup with liquid hold up (7b, c);
3. open with wavy air membrane (7d);
4. open turbulent with bubbles detachment (7e).



Universal correlation for the rise velocity of gas bubbles 387

(a) (b) (c) (d)

Figure 5. Photographs of Taylor bubbles rising through 76.2 mm inside-diameter pipe filled
with different viscosity liquids: (a) water; (b) Purolub 150 oil (480mPa s); (c) silicone oil
(1300mPa s); (d) silicone oil (3900mPa s).

Other classifications of the wake of long gas bubbles, based on the flow pattern
behind the bubble, can be found in Campos & Guedes (1988) and Pinto & Campos
(1996).

Photographs of bubbles wakes of type 7(b, c, d, e) are given in figure 5(d, c, b, a).
The type of wake shown in the 7(e) can be seen also in figure 1 of Pinto & Campos
(1996). To our knowledge, the photograph in figure 5(b) is the only one of its type
in the published literature. We expect to see rounded wakes (a) for R < 15, since the
liquid hold up seems to decrease with R. Taylor bubbles rising in water typically have
turbulent wakes but the data do not suggest that turbulence has a strong influence on
the rise velocity. The influence of surface tension on the rise velocity of the bubbles
shown in figure 7 can be neglected since Eo > 40. However, we do not know if the
viscosity or the surface tension is the property that defines the shape of the wake of
the bubble.

3. Processing data for power laws
We collected data on the rise velocity of Taylor bubbles from all available sources

and from our own experiments at PDVSA Intevep S.A. The primitive data were
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(a) (b) (c) (d )

Figure 6. Cartoons of the Taylor bubbles shown in figure 5 which highlight great differences
in the structure of the wake as the viscosity increases. (a) A bubble rising in water. A highly
turbulent region with small bubbles may be observed in the wake. The bottom of this Taylor
bubble is irregular and unsteady. A fast falling film drags air into the bubble’s wake, which
breaks up into many small bubbles that either re-enter the main bubble or are left behind. (b) A
Taylor bubble in 480 mPa s machinery oil. The top is similar to that found in water; the bottom
is flat and steady. The flat bottom is encapsulated by a thin wavy air membrane that surrounds
the liquid at the bubble bottom. Small bubbles may be entrained into the encapsulated region.
This membrane sometimes breaks into small bubbles, which are reabsorbed by the Taylor
bubble. Almost none of these small bubbles are left behind the Taylor bubble. (c, d) A bubble
rising through silicon oil with viscosity 1300 and 3900mPa s respectively. The bottom of these
bubbles is convex and is surrounded by an hemispherical air membrane that encapsulates
some liquid and acts like a virtual ‘cup’ made of air holding up a small mass of liquid. No
bubbles are left behind the Taylor bubble. The quantity of liquid trapped in the bubble tail is
lower when the viscosity is higher (d).

processed with Mathematica 4.1 from Wolfram Research. This data is given in the
Appendix in tables A1 and A2. The primitive variables were then used to form
columns of dimensionless velocity, buoyancy Reynolds number and Eötvös number
which we plotted systematically in log–log plots. This processing led to the universal
correlation in (23) below.

Data from 262 experiments are plotted in a log Fr vs. log R plane with Eo as a
parameter in figure 8. It is clear from figure 8 that the data sort into a flat region
for large R (>200), a slope region for small R (<10) and a transition region between.
These data are sorted in Eo groups in figure 9. Data for 19 experiments with Eo < 6
are plotted in the same log–log graph in figure 9(f ). The scatter is much greater
when Eo is less than 6 and these 19 points have not been included in the development
of (23). These points are principally those in small diameter tubes in which bubbles
do not move. White & Beardmore (1962) said that bubbles will not rise when
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Figure 7. Wake types based on the structure of the wake at the tail of long gas bubbles rising
in liquids sorted by the value of the buoyancy Reynolds number (R). Typical values of the
Reynolds numbers (Re= ρgD/µ) and Eötvös numbers (Eo) are also shown; the flow in the
wake does not seem to be turbulent in cases (a–d).

Figure 8. Data from all sources (with Eo � 6). Data with Eo < 6 are plotted in figure 9(f ).

Eo < 4. They compared this critical Eo = 4 to the values 3.36 given by Hattori (1935),
3.37 given by Bretherton (1961), 0.58 given by Barr (1926) and 4 given by Gibson
(1913). When the surface tension is large, the bubble tends to ball up and fill the
tube.



390 F. Viana, R. Pardo, R. Yánez, J. L. Trallero and D. D. Joseph

Figure 9. Data from figure 8 divided into various ranges of Eo: (a) Eo > 40, (b) 26 < Eo < 40,
(c) 14 < Eo < 26, (d) 9 < Eo < 14, (e) 6 < Eo < 9, (f ) Eo < 6. A specific power law was fitted for
the slope and flat regions in each group of Eo, except for Eo < 6 where too much scatter is
present. As can be seen from (a)–(e), the slope region has almost the same value for the slope
(exponent of R), being nearly 1. This allows us to choose a single value for the exponent of
the slope region regardless of Eo to develop the correlation (22) for R < 10.

4. Correlation construction
The plots in figure 9 show that power laws of the type Fr = α(Eo)Rβ(Eo) can be used

to collapse data on the rise velocity of long bubbles in round tubes. Typically there
is a large and small buoyancy Reynolds number power law separated by transition
regions which may also be processed using logistic dose curve fitting for composite
correlations in the form of rational fractions of power laws.
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Figure 10. Fr vs. Eo for R > 200, which shows two regimes connected by a transition. For
Eo large enough, say 40, the rise velocity becomes independent of surface tension effects.

4.1. Flat region: R > 200

To obtain the correlation (23) we took advantage of the fact that for R > 200, the
dimensionless velocity Fr varies only with Eo (see figure 10).

For Eo > 40, Fr can be considered a constant:

Fr = 0.34, Eo > 40. (16)

This result agrees with Dumitrescu and White & Beardmore. Wallis denotes this
region as inertial where liquid viscosity and surface tension are not important, but
with different limits: R > 300 and Eo > 100. For White & Beardmore these limits are
R > 550 and Eo > 70.

The slope region of figure 10 can be fitted with a power law:

Fr = 2.431 × 10−3Eo1.783 (6 < Eo � 40). (17)

Equation (17) describes the bubble’s motion only in terms of Eo. This slope region
is dominated by surface tension. Wallis recognizes a similar condition but only if
the bubble does not move at all with Eo = 3.37. White & Beardmore also describe a
region where Fr is a function of Eo only for R > 550 and Eo < 70.

Logistic dose curves are a curve fitting algorithm which is well suited to describing
regions of transition between power laws as the case shown in figure 10 (see Appendix
by R. D. Barree in Patankar et al. 2002). In the present case we have

Fr = L[Eo; b, t, c, d] ≡ b(
1 +

(
Eo

t

)c)d
, (18)

where, for figure 10:
b = 0.34 is the best fit constant for the flat region,
c × d = −1.783 is the negative of the slope of the power law for the slope region

(17),
c defines the sharpness of curvature in the transition region,
t defines the value of the independent variable (Eo) at the transition point.
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Figure 11. Data in the slope region with Eo > 40. A power law was fitted to this data. The
slope for this line is applied to the rest of the data (Eo < 40).

We used the nonlinear regression functions of Mathematica 4.1 to obtain appro-
priate values for the remaining unknown parameters of (18): c, d and t . The result of
this fitting is

Fr =
0.34(

1 +
3805

Eo3.06

)0.58
(19)

4.2. Slope region: R < 10

The slope region is more complicated than the flat region (R > 200). Here, two
subregions are identified for data above and below Eo = 40. When Eo > 40, Fr is a
function of R alone; the data may be fitted to a power law (see figure 11).

Fr = 9.494 × 10−3R1.026. (20)

In figure 12, we plot all the data in the slope region with variables Fr/R1.206 vs. Eo.
Two subregions may be identified: a flat region for Eo > 40 and a slope region for
Eo < 40.

A power law corresponding to the slope region of figure 12 is given by

Fr

R1.026
= 4.417 × 10−5Eo1.484. (21)

The power laws (20) and (21) are connected by a transition region. A composite
expression in the form of a rational fraction of power laws,

Fr =
9.494 × 10−3

(1 + 6197/Eo2.561)0.5793
R1.026, (22)

was obtained by processing the data with a logistic dose curve. This completes the
analysis for the data with R < 10.
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Figure 12. Slope region data showing the existence of two regions described by equations
(20) and (21).

4.3. Universal correlation

The composite correlations for large and small R may now be joined by processing
the correlations (19) and (22) with the logistic dose curve (18). This give rise to an
overall universal correlation:

Fr = L[R; A, B, C, G] ≡ A(
1 +

(
R

B

)C
)G

, (23)

where

A = L[Eo; a, b, c, d], B = L[Eo; e, f, g, h], C = L[Eo; i, j, k, l], G = m/C,

and the parameters (a, b, . . . , l) are:

a = 0.34; b = 14.793; c = −3.06; d = 0.58; e = 31.08; f = 29.868; g = −1.96;

h = −0.49; i = −1.45; j = 24.867; k = −9.93; l = −0.094; m = −1.0295.

The elaborate function given by (23) describes all of the experimental data with
Eo > 6.

The performance of the universal correlation (23) is evaluated in figures 13 and 14.
In figure 13 the values predicted by (23) are compared to the experiments. Almost
all of the values fall within the 20% error line and most of the data are within 10%
of the predicted values. This can be seen also in figure 14(b). The sum of squared
residuals is 0.03.

At this point, we wish to focus attention on the fact that (23) arises from the
double application of logistic dose curve fittings. The first application leads to rational
fractions of power laws which describe the Eo family of curves shown in figure 15.
These composite expressions can be regarded as objects which can again be processed
by logistic dose curve fittings leading to the universal expression (23) in which the
variations of the composite expressions shown graphically are collapsed into one
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Figure 13. Fr predicted from (23) vs. experimental data (Eo > 6).
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Figure 14. (a) Residuals plot for the universal correlation (23). This plot shows that Fr can
be predicted with an error of ±0.05 at most, (b) Relative error plot. The fitting is better at
higher Fr values. This is a consequence of using the least-squares method to fit the data.

analytical expression. This procedure is a notable example of the value of systematic
processing of real data for mathematical formulas describing system response.

5. Summary
The rise velocity of Taylor bubbles in round tubes was obtained by processing

data for power laws. The data sorts into two different power laws for large and
small buoyancy Reynolds numbers which are connected by a transition region. These
curves may be described by rational functions of power laws obtained by fitting data
to logistic dose curves sorted into packets depending on Eo as in figure 15. A second
application of dose curve fitting to the family of curves in figure 15 leads to the
universal composite correlation (23) in which all experimental data are described by
one universal mathematical expression.

Correlations for different regimes involving effects of inertia, interfacial tension and
viscosity can be identified and associated with values of Eo and R as is done in
table 2.
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Figure 15. Universal correlation plot for Eo = 6, 10, 16, 20, 30 and 40.

Important dimensionless Retarding forces
parameters Limits other than inertia Equation

Fr R > 200 and Eo> 40 None 16
Fr, Eo R > 200 and 6 < Eo < 40 Interfacial 17
Fr, R R < 10 and Eo> 40 Viscous 20
Fr, R Eo R < 10 and 6 < Eo < 40 Viscous and interfacial 21
Fr, R, Eo All data Viscous and interfacial 23

Table 2. Classification of the correlations with values of dimensionless parameters.

The universal composite correlation (23) can be compared with other predictions in
the literature. The graphical correlations of White & Beardmore (1962) and Zukoski
(1966) were converted into formulas to facilitate the evaluation and comparison
of their results with others. White & Beardmore’s correlation represented the data
reasonably well, with small errors for most of the data but large and erratic errors
for some data. The general correlation of Wallis (1969), the analytical version of
Zukoski’s correlation and the universal correlation (23) all represent the data with
only small errors, with a somewhat better performance for (23).

The ubiquitous tendency of natural phenomenon to follow hidden laws of
self similarity is realized in the widespread success of power laws in describing
experimental data. A fine collection of examples showing that ‘. . . power laws, with
integer or fractional exponents, are one of the most fertile fields and abundant sources
of self-similarity.’, can be found in Chapter 4 of Schroeder (1990). An excellent
mathematical theory of self-similarity with extensions to ‘incomplete self-similarity’
in which the prefactors and exponents of power laws depend on other parameters
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has been developed by Barenblatt (1996). The flow of dispersed matter is a branch
of fluid mechanics in which self-similarity, power laws, are widespread and widely
applicable.

In this paper, we have extended the systematic processing of data for power laws
to cases in which different power laws are joined by a transition region which may
be described by rational fractions of power laws obtained empirically by fitting
parameters of logistic dose curves. Going further, we combined the rational fraction
compositions of power laws which depend on Eo (see figure 15) into an overall
universal correlation (23) by fitting curves rather than points to a logistic dose curve.

6. Discussion
The correlations obtained in this paper can in some sense be regarded as the

solution of the problem of determining a mathematical description of the rise velocity
of long bubbles in round tubes. The accurate prediction of the rise velocity which
emerges from processing data does not explain anomalous features which arise in
attempting to understand the rise from the principles of fluid mechanics. Some of the
anomalies which are so far not explained are:

(i) The rise velocity can be predicted without any dynamic force balance from the
shape of the bubble alone.

(ii) The rise velocity is independent of the length of the bubble for long bubbles.
The usual ideas based on buoyancy and Archimedes principle do not seem to apply
in any obvious way.

(iii) The rise velocity does not depend on how the gas is introduced. In the Davies
& Taylor (1950) experiments, the bubble column is open to the air at the bottom. In
other experiments the gas is injected into a column with a closed bottom.

(iv) The predicted rise velocity is independent of the gas or liquid density or
viscosity.

In Davies & Taylor (1950), the rise velocity of long gas bubbles and the spherical
cap bubble, which was also analyzed by them, is determined only from the shape of
the nose of the bubble and ideas from the irrotational flow of an inviscid fluid. They
find for the spherical cap bubble that

U = K
√

gD, K =

√
2

3
, (24)

where K is a shape factor. Batchelor (1967) notes that ‘. . . the remarkable feature of
[equations like (24)] and its various extensions is that the speed of movement of the
bubble is derived in terms of the bubble shape, without any need for consideration
of the mechanism of the retarding force which balances the effect of the buoyancy
force on a bubble in steady motion. That retarding force is evidently independent of
Reynolds number, and the rate of dissipation of mechanical energy is independent of
viscosity, implying that stresses due to turbulent transfer of momentum are controlling
the flow pattern in the wake of the bubble.’

The rise of a Taylor bubble is similar, but slightly lower, with an empirical K of
about 0.35. The formula (24) for the rise velocity is independent of the length of the
bubble, and it is independent of the gas or liquid density or viscosity. In the case
of long bubbles rising in tubes, the velocity can be strongly influenced by viscosity
and surface tension. An explanation of the effect of viscosity due to liquid drainage
at the tube wake was given by White & Beardmore (1962) and Brown (1965). In
these analysis, the formula (24) remains important. The effects of viscosity on the
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rise velocity of the spherical cap bubble for which liquid drainage is not a factor was
recently obtained from an analysis based on the irrotational flow of a viscous fluid,
which is based on the same assumptions as those used by Davies & Taylor. Joseph
(2003) found that rise velocity is given by

U√
gD

= −8

3

ν(1 + 8s)√
gD3

+

√
2

3

[
1 − 2s − 16sσ

ρgD2
+

32ν2

gD3
(1 + 8s)2

]1/2

(25)

where rc = D/2 is the radius of the cap, ρ and ν are the density and kinematic
viscosity of the liquid, σ is the surface tension and s = r ′′(0)/D is the deviation of the
free surface

r(θ) = rc +
1

2
r ′′(0)θ2 = rc(1 + sθ2)

from perfect sphericity: r(θ) = rc near the stagnation point θ =0. The bubble nose
is more pointed when s < 0 and more blunt when s > 0. A more pointed bubble
increases the rise velocity; the blunter bubble rises slower.

The Davies & Taylor (1950) result (24) holds when all other effects vanish; if s

alone is zero,

U√
gD

= −8

3

ν√
gD3

+

√
2

3

[
1 +

32ν2

gD3

]1/2

, (26)

showing that viscosity slows the rise velocity. Equation (26) gives rise to a hyperbolic
drag law

CD = 6 +
32

Re
(27)

which agrees with data on the rise velocity of spherical cap bubbles given by Bhaga
& Weber (1981). The success of equation (27) in predicting the Bhaga & Weber data
is associated with the fact that the uncompensated shear stress which would arise
from computing viscous stresses from potential flow does not arise at the nose of
the rising bubble, which is a stagnation point for the flow in a coordinate system in
which the fluid is at rest.

This argument does not address the unsettling absence of an equation of motion
for the Taylor bubble or the spherical cap bubble and the independence of the rise
velocity from the volume of gas in the bubble. The suggestion of Batchelor in the
citation below (24) that the retarding forces are associated with turbulent stresses in
the wake is not consistent with the observations here (figure 7) and elsewhere that
the rise velocity seems not to depend strongly on whether the wake is laminar or
turbulent.

We are very grateful to Enrique Carios (PDVSA-Intevep) for his valuable help in
the rise velocity experiments. Also, Edgar Suárez (PDVSA-Intevep) is credited here
for the photographs shown in this paper. The work of D.D.J. was supported by
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