AEM Home page> People > Faculty > Daniel D. Joseph> Archive on Irrotational Motions of Viscous and Viscoelastic Fluids

Viscous potential flow

By Daniel D. Joseph

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455 (USA)
joseph@aem.umn.edu

(Received 6 September 2002 and in revised form 10 December 2002)

Abstract

Potential flows are solutions of the Navier–Stokes equations for viscous incompressible fluids for which the vorticity is identically zero. The viscous term vanishes, but the viscous contribution to the stress in an incompressible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity of a viscous fluid in potential flow away from the boundary layers enters Prandtl’s boundary layer equations. Potential flow equations for viscous compressible fluids are derived for sound waves which perturb the Navier–Stokes equations linearized on a state of rest. These linearized equations support a potential flow with the novel features that the Bernoulli equation and the potential as well as the stress depend on the viscosity. The effect of viscosity is to produce decay in time of spatially periodic waves or decay and growth in space of time-periodic waves.

In all cases in which potential flows satisfy the Navier–Stokes equations, which includes all potential flows of incompressible fluids as well as potential flows in the acoustic approximation derived here, it is neither necessary nor useful to put the viscosity to zero.