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Purely irrotational theories of the effect of
the viscosity on the decay of waves

14.1 Decay of free gravity waves

It is generally believed that the major effects of viscosity are associated with vorticity. This belief is not always
well founded; major effects of viscosity cachap14-sep11-nocup.n be obtained from purely irrotational analysis
of flows of viscous fluids. Here we illustrate this point by a comparing irrotational solutions with Lamb’s 1932
exact solution of the problem of the decay of free gravity waves. Excellent agreements, even in fluids 107 more
viscous than water, are achieved for the decay rates n(k) for all wave numbers k excluding a small interval
around a critical value kc where progressive waves change to monotonic decay.

14.1.1 Introduction

Lamb (1932, §348, §349) performed an analysis of the effect of viscosity on free gravity waves. He computed the
decay rate by a dissipation method using the irrotational flow only. He also constructed an exact solution for
this problem, which satisfies both the normal and shear stress conditions at the interface.

Joseph & Wang (2004) studied Lamb’s problem using the theory of viscous potential flow (VPF) and obtained
a dispersion relation which gives rise to both the decay rate and wave-velocity. They also used VCVPF to obtain
another dispersion relation. Since VCVPF is an irrotational theory the shear stress cannot be made to vanish.
However, the shear stress in the energy balance can be eliminated in the mean by the selection of an irrotational
pressure which depends on viscosity.

Here we find that the viscous pressure correction gives rise to a higher order irrotational correction to the
velocity which is proportional to the viscosity and does not have a boundary layer structure. The corrected
velocity depends strongly on viscosity and is not related to vorticity. The corrected irrotational flow gives rise to
a dispersion relation which is in splendid agreement with Lamb’s exact solution, which has no explicit viscous
pressure. The agreement with the exact solution holds for fluids even 107 times more viscous than water and for
all wave numbers away from the cutoff wave number kc which marks the place where progressive waves change
to monotonic decay. We find that VCVPF gives rise to the same decay rate as in Lamb’s exact solution and
in his dissipation calculation when k < kc. The exact solution agrees with VPF when k > kc. The effects of
vorticity are evident only in a small interval centered on the cutoff wave number. We present a comprehensive
comparison for the decay rate and wave-velocity given by Lamb’s exact solution and Joseph and Wang’s VPF
and VCVPF theories.

14.1.2 Irrotational viscous corrections for the potential flow solution

The gravity wave problem is governed by the linearized Navier-Stokes equation and the continuity equation

∂u
∂t

= −1
ρ
∇p− gey + ν∇2u, (14.1.1)

∇ · u = 0, (14.1.2)

subject to the boundary conditions at the free surface (y ≈ 0)

Txy = 0, Tyy = 0, (14.1.3)
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where Txy and Tyy are components of the stress tensor and the surface tension is neglected. Surface tension
is important at high wavenumbers but, for simplicity, is neglected in the analyses given here. We divide the
velocity and pressure field into two parts

u = up + uv, p = pp + pv, (14.1.4)

where the subscript p denotes potential solutions and v denotes viscous corrections. The potential solutions
satisfy

up = ∇φ, ∇2φ = 0, (14.1.5)

and
∂up

∂t
= −1

ρ
∇pp − gey. (14.1.6)

The viscous corrections are governed by

∇ · uv = 0, (14.1.7)

∂uv

∂t
= −1

ρ
∇pv + ν∇2uv. (14.1.8)

We take the divergence of (14.1.8) and obtain

∇2pv = 0, (14.1.9)

which shows that the pressure correction must be harmonic. Next we introduce a stream function ψ so that
(14.1.7) is satisfied identically:

uv = −∂ψ

∂y
, vv =

∂ψ

∂x
. (14.1.10)

We eliminate pv from (14.1.8) by cross differentiation and obtain following equation for the stream function

∂

∂t
∇2ψ = ν∇4ψ. (14.1.11)

To determine the normal modes which are periodic in respect of x with a prescribed wave-length λ = 2π/k, we
assume that

ψ = Bent+ıkxemy, (14.1.12)

where m is to be determined from (14.1.11). Inserting (14.1.12) into (14.1.11), we obtain

(m2 − k2)
[
n− ν(m2 − k2)

]
= 0. (14.1.13)

The root m2 = k2 gives rise to irrotational flow; the root m2 = k2 + n/ν leads to the rotational component of
the flow. The rotational component cannot give rise to a harmonic pressure satisfying (14.1.9) because

∇2ent+ikxemy = (m2 − k2)ent+ikxemy (14.1.14)

does not vanish if m2 6= k2. Thus, the governing equation for the rotational part of the flow can be written as

∂ψ

∂t
= ν∇2ψ. (14.1.15)

This is the equation used by Lamb (1932) for the rotational part of his exact solution.
The effect of viscosity on the decay of a free gravity wave can be approximated by a purely irrotational theory

in which the explicit appearance of the irrotational shear stress in the mechanical energy equation is eliminated
by a viscous contribution pv to the irrotational pressure. In this theory u=∇φ and a stream function, which is
associated with vorticity, is not introduced. The kinetic energy, potential energy and dissipation of the flow can
be computed using the potential flow solution

φ = Aent+ky+ikx. (14.1.16)

We insert the potential flow solution into the mechanical energy equation (12.5.14)
∫

Sf

un

[
ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
+ 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = −

∫

Sf

τsusdSf , (14.1.17)
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where η is the elevation of the surface and D is the rate of strain tensor. The pressure correction pv satisfies
∫ λ

0

v(−pv)dx =
∫ λ

0

uτxydx. (14.1.18)

But in our problem here, there is no explicit viscous pressure function in the exact solution [see (14.1.23) and
(14.1.24)]. It turns out that the pressure correction defined here in the purely irrotational flow is related to
quantities in the exact solution in a complicated way which requires further analysis [see (14.1.30)].

Joseph & Wang (2004) solved for the harmonic pressure correction from (14.1.9), then determined the constant
in the expression of pv using (14.1.18), and obtained

pv = −2µk2Aent+ky+ikx. (14.1.19)

The velocity correction associated with this pressure correction can be obtained from (14.1.8). We seek normal
modes solution uv ∼ ent+ky+ıkx and equation (14.1.8) becomes

ρnuv = −∇pv. (14.1.20)

Hence, curl(uv) = 0 and uv is irrotational. After assuming uv = ∇φ1 and φ1 = A1ent+ky+ikx, we obtain

ρnφ1 = −pv ⇒ φ1 =
2µk2

ρn
Aent+ky+ikx. (14.1.21)

Given φ1, the correction η1 of η can be computed from the equation nη = ∂φ1/∂y.
This calculation shows that the velocity uv associated with the pressure correction is irrotational. The pres-

sure correction (14.1.19) is proportional to µ and it induces a correction φ1 given by (14.1.21), which is also
proportional to µ. The shear stress computed from uv = ∇φ1 is then proportional to µ2. To balance this
non-physical shear stress, one can add a pressure correction proportional to µ2, which will in turn induce a
correction for the velocity potential proportional to µ2. One can continue to build higher order corrections and
they will all be irrotational. The final velocity potential has the following form

φ = (A + A1 + A2 + · · · )ent+ky+ikx, (14.1.22)

where A1 ∼ µ, A2 ∼ µ2... Thus the VCVPF theory is an approximation to the exact solution based on solely
potential flow solutions, but the normal stress condition and n are not corrected.

Prosperetti (1976) considered viscous effects on standing free gravity waves using the same governing equa-
tions (14.1.7) and (14.1.8) for the viscous correction terms. If we adapt our VCPVF method to treat standing
waves represented by the potential φ = k−1(da/dt)eky cos kx, we can obtain −pv = 2µk(da/dt)eky cos kx, which
is exactly the same pressure correction obtained by Prosperetti (1976) using a different method.

14.1.3 Relation between the pressure correction and Lamb’s exact solution

It has been conjectured and is widely believed (Moore 1963; Harper and Moore 1968; Joseph and Wang 2004)
that a viscous pressure correction arises in the vortical boundary layer at the free surface which is neglected in
the irrotational analysis. However, no viscous pressure correction arises in Lamb’s exact solution. His solution
is given by a potential φ and a stream function ψ:

u =
∂φ

∂x
− ∂ψ

∂y
, v =

∂φ

∂y
+

∂ψ

∂x
,

p

ρ
= −∂φ

∂t
− gy, (14.1.23)

satisfying

∇2φ = 0, ∂ψ/∂t = ν∇2ψ. (14.1.24)

The stream function gives rise to the rotational part of the flow. No pressure term enters into the stream function
equation, as we have shown in the previous section that the only harmonic pressure for the rotational part is
zero. The pressure p comes from Bernoulli’s equation in (14.1.23) and no explicit viscous pressure exists, though
p depends on the viscosity through the velocity potential. Lamb shows that (14.1.24) can be solved with normal
modes

φ = Aekyeikx+nt, ψ = Cemyeikx+nt, m2 = k2 + n/ν, (14.1.25)

where A and C are constants.
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k pv/ρ term1 term2 term 3 term 4
0.01 −2.063× 10−6 −1.325× 10−9+ −2.063× 10−6− −1.325× 10−9 5.300× 10−9 +

ı2.01× 10−4 ı2.01× 10−4 ı5.300× 10−9

0.1 −2.057× 10−4 −7.441× 10−7+ −2.071× 10−4− −7.461× 10−7 2.980× 10−6+
ı0.00358 ı0.00358 ı2.980× 10−6

1 −0.02022 −4.207× 10−4+ −0.02106− −4.186× 10−4 0.001679+
ı0.06272 ı0.06440 ı0.001679

10 −1.881 −0.3131 + ı0.6303 −2.423− ı1.513 −0.1829 1.038 + ı0.8830

Table 14.1. The value of each term in (14.1.30) normalized by AE for SO10000 oil at different wave numbers;
term1 = ∂

(
φJ − φE

)
/∂t, term2 = g(ηJ − ηE), term3 =2ν∂2

(
φJ − φE

)
/∂y2, and term4 = 2ν∂2ψE/∂x∂y.

It is therefore of interest to derive the connection between the viscous pressure correction pv in our VCVPF
theory and Lamb’s exact solution; superscript E represents Lamb’s exact solution and J represent Joseph and
Wang’s VCVPF theory. The irrotational pressure in the two solutions are

pE = −ρ
∂φE

∂t
− ρgηE , pJ

i = −ρ
∂φJ

∂t
− ρgηJ . (14.1.26)

The elevation η is obtained from the kinematic condition at y ≈ 0

∂η

∂t

E

=
∂φE

∂y
+

∂ψE

∂x
,

∂η

∂t

J

=
∂φJ

∂y
. (14.1.27)

The normal stress balance for the two solutions is

TE
yy = −pE + 2µ

∂2φE

∂2y
+ 2µ

∂2ψE

∂x∂y
= 0, (14.1.28)

T J
yy = −pJ

i − pv + 2µ
∂2φJ

∂2y
= 0. (14.1.29)

Therefore TE
yy − T J

yy = 0 and we can obtain

pv

ρ
=

∂
(
φJ − φE

)

∂t
+ g(ηJ − ηE) + 2ν

∂2
(
φJ − φE

)

∂y2
− 2ν

∂2ψE

∂x∂y
. (14.1.30)

The amplitude A for the potential is different in Lamb’s exact solution and in VCPVF:

φE = AEent+ky+ikx, φJ = AJent+ky+ikx, AE 6= AJ . (14.1.31)

To make the two solutions comparable, we compute the relation between AE and AJ by equating the dissipation
evaluated using Lamb’s exact solution and evaluated using VCVPF. In Table 14.1 we list the values of each
term in (14.1.30) normalized by AE . It seems that the term g(ηJ − ηE) gives the most important contribution
to pv, but the other terms are not negligible.

14.1.4 Comparison of the decay rate and wave-velocity given by the exact solution, VPF and

VCVPF

When the surface tension is ignored, Lamb’s exact solution gives rise to the following dispersion relation:

n2 + 4νk2n + 4ν2k4 + gk = 4ν2k3
√

k2 + n/ν. (14.1.32)

Lamb considered the solution of (14.1.32) in the limits of small k and large k. When k ¿ kc = (g/ν2)1/3, he
obtained approximately

n = −2νk2 ± ik
√

g/k, (14.1.33)

which gives rise to the decay rate –2νk2, in agreement with the dissipation result, and the wave-velocity
√

g/k,
which is the same as the wave-velocity for inviscid potential flow. When k À kc = (g/ν2)1/3, Lamb noted that
the two roots of (14.1.32) are both real. One of them is

n1 = − g

2νk
, (14.1.34)
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and the other one is

n2 = −0.91νk2. (14.1.35)

Lamb pointed out n1 is the more important root because the motion corresponding to n2 dies out very rapidly.

14.1.4.1 VPF results

Joseph & Wang (2004) treated this problem using VPF and obtained the following dispersion relation

n2 + 2νk2n + gk = 0. (14.1.36)

When k < kc = (g/ν2)1/3, the solution of (14.1.36) is

n = −νk2 ± ik
√

g/k − ν2k2. (14.1.37)

We note that the decay rate –νk2 is half of that in (14.1.33) and the wave-velocity
√

g/k − ν2k2 is slower than
the inviscid wave-velocity. When k > kc = (g/ν2)1/3, the two roots of (14.1.36) are both real and they are

n = −νk2 ±
√

ν2k4 − gk. (14.1.38)

If k À kc = (g/ν2)1/3, the above two roots are approximately

n1 = − g

2νk
, (14.1.39)

and

n2 = −2νk2 +
g

2νk
. (14.1.40)

We note that (14.1.39) is the same as (14.1.34), and the magnitude of (14.1.40) is approximately twice of
(14.1.35).

14.1.4.2 VCVPF results

Joseph & Wang (2004) computed a pressure correction and added it to the normal stress balance to obtain

n2 + 4νk2n + gk = 0, (14.1.41)

which is the dispersion relation for VCVPF theory. When k < k′c = (g/4ν2)1/3, the solution of (14.1.41) is

n = −2νk2 ± ik
√

g/k − 4ν2k2. (14.1.42)

We note that the decay rate –2νk2 is the same as in (14.1.33) and the wave-velocity
√

g/k − 4ν2k2 is slower
than the inviscid wave-velocity. When k > k′c =(g/4ν2)1/3, the two roots of (14.1.41) are both real and they are

n = −2νk2 ±
√

4ν2k4 − gk. (14.1.43)

If k À k′c = (g/4ν2)1/3, the above two roots are approximately

n1 = − g

4νk
, (14.1.44)

and

n2 = −4νk2 +
g

4νk
. (14.1.45)

We note that (14.1.44) is half of (14.1.34), and the magnitude of (14.1.45) is approximately four times of
(14.1.35).
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Fluid water glycerin SO10000 –
ν(m2/s) 10−6 6.21× 10−4 1.03× 10−2 10
kc(1/m) 21399.7 294.1 45.2 0.461

Table 14.2. The values for the cutoff wave number kc for water, glycerin, SO10000 oil and the liquid with ν=
10 m2/s. kc decreases as the viscosity increases.
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Fig. 14.1. Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact solution
from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for VCVPF
is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact solution.
When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34),
(14.1.39) and (14.1.44). The exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for VPF is in
agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only half of the exact solution.

14.1.4.3 Comparison of the exact and purely irrotational solutions

We compute the solution of (14.1.32) and compare the real and imaginary part of n with those obtained by
solving (14.1.36) and (14.1.41). Water, glycerin and SO10000 oil, for which the kinematic viscosity is 10−6,
6.21× 10−4, and 1.03× 10−2 m2/s, respectively, are chosen as examples. Figures 14.1 and 14.2 show the decay
rate −Re(n) for water; the root n1 when k > kc is shown in figure 14.1 and the root n2 in figure 14.2. The
imaginary part of n, i.e. the wave-velocity multiplied by k, is plotted in figure 14.3 for water. For glycerin and
SO10000 oil (figures 14.4 and 14.5), we only plot the decay rate corresponding to the more important root n1;
the plots for the root n2 and the wave-velocity are omitted. Figure 14.6 shows the decay rate corresponding
to the root n1 for ν = 10 m2/s, which is 1000 times more viscous than SO10000 oil; the comparison between
the exact solution and VPF, VCVPF is still excellent. The cutoff wave number kc = (g/ν2)1/3 decreases as the
viscosity increases. In Table 14.2 we list the values of kc for water, glycerin, SO10000 oil and the liquid with ν=
10 m2/s. In practice waves associated with different wave numbers may exist simultaneously. For very viscous
fluids, kc is small and the majority of the wave numbers are above kc, therefore the motion of monotonic decay
dominates; for less viscous fluids, the motion of progressive waves may dominate.

14.1.5 Why does the exact solution agree with VCVPF when k < kc and with VPF when k > kc?

Our VCVPF solution and Lamb’s dissipation calculation are based on the assumption that the energy equation
(14.1.17) for the exact solution is well approximated by an irrotational solution. To verify this, we computed
and compared the rates of change of the kinetic energy, the potential energy and dissipation terms in (14.1.17)
for Lamb’s exact solution and for the purely irrotational part of his solution. The agreement is excellent when
k < kc. This shows that the vorticity may be neglected in the computation of terms in the energy balance when
k < kc, and is consistent with results given in §14.1.4 which demonstrate that the decay rates from VCVPF
and the dissipation calculation agree with the exact solution when k is small. The agreement is poor for k in
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Fig. 14.2. Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact solution
from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k > kc, n has two real solutions in each
theory. In this figure, we plot the decay rate n2 corresponding to (14.1.35), (14.1.40) and (14.1.45). The decay rate for
the exact solution can be approximated by −0.91νk2; the decay rate ≈ −2νk2 for VPF is closer to the exact solution
than the decay rate ≈ −4νk2 for VCVPF.
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Fig. 14.3. Im(n), i.e. the wave-velocity multiplied by k, vs. wave number k for water, ν=10−6m2/s. Im(n) is computed
for the exact solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the three
theories give almost the same wave-velocity. When k > kc, all the three theories give zero imaginary part of n.

the vicinity of kc, therefore the decay rates from VCVPF deviate from the exact solution near kc as shown in
figures 14.1-14.6.

When k is much larger than kc, the energy equation is not well approximated by the irrotational part of the
exact solution. However, this result does not mean that the vorticity is important. Lamb pointed out m ≈ k

when k is large, which is confirmed in our calculation. It follows that the vorticity of the exact solution is

∇2ψ =
(
m2 − k2

)
Cemy+ikx+nt ≈ 0; (14.1.46)

the vorticity is negligible when k is large. The result that the wave is nearly irrotational for large k was also
pointed out by Tait (1890). Consequently, the decay rate −g/(2νk) from VPF is in good agreement with the
exact solution and no pressure correction is needed.
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Fig. 14.4. Decay rate −Re(n) vs. wave number k for glycerin, ν = 6.21 × 10−4m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for
VCVPF is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact
solution. When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding
to (14.1.34), (14.1.39) and (14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay
rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only
half of the exact solution.
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Fig. 14.5. Decay rate −Re(n) vs. wave number k for SO10000 oil, ν = 1.03×10−2 m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for
VCVPF is in good agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact
solution. When k > kc, n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding
to (14.1.34), (14.1.39) and (14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay
rate −g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only
half of the exact solution.

14.1.6 Conclusion and discussion

The problem of decay of free gravity waves due to viscosity was analyzed using two different theories of viscous
potential flow, VPF and VCVPF. The pressure correction leads to a hierarchy of potential flows in powers of
viscosity. These higher order contributions vanish more rapidly than the principal correction which is propor-
tional to µ. The higher order corrections do not have a boundary layer structure and may not have a physical
significance.

The irrotational theory is in splendid agreement with Lamb’s exact solution for all wave numbers k except
for those in a small interval around kc where progressive waves change to monotonic decay. VCVPF agrees with
Lamb’s solution when k < kc (progressive waves) and VPF agrees with Lamb’s exact solution when k > kc

(monotonic decay). The cutoff wave number kc = (g/ν2)1/3 decreases as the viscosity increases. In practice
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Fig. 14.6. Decay rate −Re(n) vs. wave number k for ν=10 m2/s. Re(n) is computed for the exact solution from (14.1.32),
for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay rate −2νk2 for VCVPF is in good
agreement with the exact solution, whereas the decay rate −νk2 for VPF is only half of the exact solution. When k > kc,
n has two real solutions in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and
(14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for VPF is
in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only half of the exact solution.

waves associated with different wave numbers may exist simultaneously. For very viscous fluids, kc is small and
the majority of the wave numbers are above kc, therefore the motion of monotonic decay dominates; for less
viscous fluids, the motion of progressive waves may dominate.

There is a boundary layer of vorticity associated with the back and forth motion of the progressive waves. The
confined vorticity layer has almost no effect on the solution except for k near kc. There is no explicit pressure
correction in the exact solution. The vortical part of the exact solution does not generate a pressure correction;
the pressure depends on the viscosity through the velocity potential and the surface elevation; it is related to
the potential and vortical parts of the exact solution in a complicated way. The vortical part is not dominant
and the pressure correction is not primarily associated with a boundary layer [see (14.1.30) and Table 14.1].

The analysis of capillary instability of liquid in gas (Wang, Joseph & Funada 2005) is very much like the
analysis of the decay of free gravity waves. The purely potential flow analysis is in splendid agreement with
Tomotika’s (1935) exact solution which has no explicit dependence on viscous pressure. In the case of capillary
instability, the best result is based on VCVPF because the short waves which give rise to a sluggish decay in
Lamb’s problem are stabilized by surface tension.

14.1.7 Quasipotential approximation – vorticity layers

A tractable theory for weakly damped, nonlinear Stokes waves was formulated by Ruvinsky and Freidman
(1985a, b; 1987). This theory has come to known as the quasi-potential approximation. The approximation is
based on a Helmholtz decomposition

u = ∇φ + v (14.1.47)

where v is the rotational part. They apply a boundary-layer approximation to v and obtain the following system
of coupled equations

∇2φ = 0,
∂φ

∂z
→ 0, as z →∞ (14.1.48)

and, on z = η

∂φ

∂t
+

1
2
|∇φ|2 + gη − γ

ρ
κ + 2ν

∂2φ

∂z2
= 0, (14.1.49)

∂η

∂t
+

∂η

∂x

∂φ

∂x
=

∂φ

∂z
+ vz (14.1.50)
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where κ =
(
∂2η/∂x2

)
/

(
1 + (∂η/∂x)2

)3/2

and vz is the vertical component of the rotational velocity satisfying

∂vz

∂t
= 2ν

∂3φ

∂x2∂z
. (14.1.51)

These are three equations in φ, η and vz. The derivation of these is such that vz is assumed small. This is one
reason why the quasipotential approximation is said to model weak effects of viscosity.

Spivak et al. 2002 applied the quasi-potential methodology, for a slightly viscous fluid and small surface
elasticity, to numerically compute typical free surface profiles induced by a moving pressure distribution under
the combined effects of gravity, viscosity, surface tension and film elasticity.

Ruvinsky, Feldstein and Freidman 1991 carried out simulations of ripple excitation by steep gravity capillary
waves. They note that when describing the capillary-gravity excitation phenomenon, dissipative processes must
be taken into account. “In an exact formulation, this problem has not yet been solved even with a computer.”
To solve their problem they used the quasi-potential methodology.

Longuet-Higgins 1992 gave a simplified derivation of the quasi-potential methodology in an application to
the theory of weakly damped Stokes waves. He gave a simpler form of the equations by applying the boundary
conditions on a slightly displaced surface.

Are the principal effects of viscosity associated with vorticity or are they purely irrotational? In his 1992
paper Longuet-Higgins says that “... Lamb 1932 ... showed that for most wavelengths of interest the effects
of viscosity on linear, deep-water waves are confined to a thin vortex layer near the free surface, of thickness
D0 = (2ν/γ)1/2 (where ν denotes the kinematic viscosity and σ the radian frequency). When kD0 ¿ 1 (k the
wavenumber) we may say that the waves are weakly damped.”

The foregoing statement by Longuet-Higgins is not correct. The effects of viscosity are not confined to a thin
vortex layer; the main effects of viscosity on the decay of waves are irrotational. Typically the effects of viscosity
arising from the boundary layer at a gas-liquid surface are small because the rates of strain in these layers are
no larger than in the irrotational flow and the layer thickness is small. In a later work, Longuet-Higgins 1997
(§14.3.2) calculated the decay of nonlinear capillary-gravity waves by computing the viscous dissipation of the
irrotational flow without vorticity or vorticity layers.

14.2 Viscous decay of capillary waves on drops and bubbles

Now we consider the problem of decay of capillary waves on free surfaces of spherical form. Free-surfaces are
gas-liquid surfaces in which the dynamical effects of the gas is neglected. A drop is a liquid sphere with gas
outside; a bubble is a gas sphere with liquid outside.

We may consider two types of waves on a spherical surface, capillary waves and gravity waves. Capillary
waves are driven by surface tension. Gravity waves are driven by gravity; in the case of spheres some form of
central gravity law must be adopted.

In the limit of a large radius of the spherical surface we obtain a plane problem such as the problem of free
gravity waves considered in the previous section. The problem of decay of capillary waves or capillary-gravity
waves on plane or spherical surfaces can be considered.

In the last section we studied the decay of gravity waves on a plane free surface. The short waves decay
monotonically and are well approximated by VPF. The long waves are progressive and the decay of these
progressive waves are well approximates by VCVPF. Here we shall show that the same result holds for capillary
waves and hence may be expected for capillary-gravity waves.

In the sequel, we shall confine our attention to capillary waves on a spherical surface. The problem of the
viscous decay of gravity waves on a globe was considered by Lamb 1932.

The following citation from Lamb §355 makes the point about viscosity and irrotationality in oscillations
of a liquid globe. He gives the formula for decay constant τ for exp(−t/τ) from the dissipation analysis τ =
a2/(n− 1)(2n + 1)ν and says that

the most remarkable feature of this result is the excessively minute extent to which the oscillations of a globe of moderate
dimensions are affected by such a degree of viscosity as is ordinarily met in nature. For a globe of the size of the earth,
and of the same kinematic viscosity as water, we have, on the cgs system, a = 6.37× 108, ν = 0.0178 and the value of τ
for the gravitational oscillation of longest period (n = 2) is therefore

τ = 1.44× 1011 years.
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