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Abstract

A Bernoulli equation for potential flow of a second order fluid is derived. This equation is used
to form an expression for normal extensional stresses at points of stagnation, is which elastic and
inertial pressures compete.
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The stress T in an incompressible fluid of second grade is given by

T = −p1 + µA + α1B + α2A2, (0.1)

where A = L + LT is the symmetric part of the velocity gradient L = ∇u ,

B = A,t + (u · ∇)A + AL + LTA, (0.2)

µ is the zero shear viscosity, α1 = −n1/2 and α2 = n1 + n2 where [n1, n2] =
[
N1(κ2), N2(κ2)

]
/κ2 as

κ → 0 are the constants obtained from the first and second normal stress difference.
The equations of motion are divu = 0 and

ρ [u,t + (u · ∇) u] = −∇P + µ∇2u + div
[
α1B + α2A2

]
, (0.3)

where

P = p− p0 − ρg · x (0.4)

is the piezometric pressure, p0 is a reference pressure and g is gravity.
For potential flow

curlu = 0,

u = ∇φ,

divu = ∇2φ = 0, (0.5)

(u · ∇) u = ∇
(

1
2
|u|2

)
,

Aij = 2φ,ij ,

A2
ij = 4φ,ilφ,lj .

Potential flow of a viscous or viscoelastic liquid is incompatible with the no-slip condition at the
boundary of the liquid and solid. It is thought that potential flow is a good approximation under
certain circumstances outside a thin boundary layer at the forward side of a body (see for example,



joseph-short-communication1991.tex 2

Rajeswari and Rathna [1], Beard and Walters [2], Davies [3], Leider and Lilleleht [4]) and dead water
region of separated flow at the rear of the body.

Pipkin [5] shows that when (5) holds

divA2 = ∇γ2, divB =
3
2
∇γ2, (0.6)

where

γ2 =
1
2
trA2 = 2φ,ilφ,il. (0.7)

After combining (5)2, (5)3, (5)4, (6)1, and (6)2 with (3), we find that

∇
[
ρφ,l + ρ |u|2 /2 + P − β̂γ2/2

]
= 0, (0.8)

where β̂ = 3α1 + 2α2 is the climbing constant and it is typically positive, β̂ > 0[6]. Hence,

ρφ,t + ρ |u|2 /2 + P − β̂γ2/2 = C. (0.9)

Equation (9) defines the Bernoulli equation for potential flow of a second order fluid. This equation
may be simplified for steady flow with uniform streaming U at infinity and γ = p−ρg ·x = 0 far from
the body. In this case

ρ |u|2 /2 + P − β̂ρ,ilρ,il = ρU2/2. (0.10)

Returning next to (1) with (4) and (9), we may eliminate p. Then

σij = −
[
C + β̂φ,lmφ,lm − ρφ,t − ρ |u|2 /2

]
δij + 2 [µ + α1 (∂t + u · ∇)]φij + 4 (α1 + α2) φ,ilφ,lj ,(0.11)

where

σij = Tij + ρg · xδij (0.12)

is the active dynamic stress. In the diagonal coordinates x1, x2, x3 of the frame in which φ,ij is diagonal

[φ,ij ] =




λ1 0 0
0 λ2 0
0 0 λ3


 , (0.13)

we have



σ11 0 0
0 σ22 0
0 0 σ33


 = −

[
C − ρφt − ρ |u|2 /2 + β̂

(
λ2

1 + λ2
2 + λ2

3

)]



1 0 0
0 1 0
0 0 1




+2 [µ + α1 (∂t +∇φ · ∇)]




λ1 0 0
0 λ2 0
0 0 λ3


 + 4 (α1 + α2)




λ2
1 0 0
0 λ2

2 0
0 0 λ2

3


 , (0.14)

where

α1 + α2 =
1
2
n1 + n2 > 0 (0.15)
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in all viscoelastic fluids known to me.
The case of flow at the stagnation points of a body in steady flow, in an arbitrary direction is of

special intrest. The steady streaming past a stationary body is equivalent, under a Galilean transfor-
mation, to the steady motion of a body in an otherwise quiet fluid. The potential flow of a fluid near
a point (x1, x2, x3) = (0, 0, 0) of stagnation is a purely extensional motion with

[λ1, λ2, λ3] =
U

L
Ṡ[2,−1,−1], (0.16)

where Ṡ is the dimensionless rate of stretching in the direction x1, L is the scale of length and

[u1, u2, u3] =
U

L
Ṡ [2x1,−x2,−x3] . (0.17)

In this case



σ11 0 0
0 σ22 0
0 0 σ33


 =

ρ

2

[
U2

L2
Ṡ2

(
4x2

1 + x2
2 + x2

3

)− U2

]


1 0 0
0 1 0
0 0 1




+µ
U

L
Ṡ




2 0 0
0 −1 0
0 0 −1


 + 2

U2

L2
Ṡ2



−α1 + 2α2 0 0

0 −7α1 − 4α2 0
0 0 −7α1 − 4α2


 (0.18)

At the stagnation point itself

σ11 = −ρ

2
U2 + 2µṠ + 2 (2α2 − α1)

U2

L2
Ṡ2. (0.19)

Since α1 < 0, 2α2 − α1 =
5
2
n1 + 2n2 > 0, the normal stress term in (19) is positive, independent of

the sign of Ṡ, but 2µṠ is negative at the front side of a falling body and is positive at the rear. This
is a new manifestation of the competition between inertia and normal stress, which I believe plays a
major role in recently observed flow induced anisotropy [7]. This causes long bodies to float broadside
on when the ratio of inertial pressure to normal (extensional) stress is large, and long-side on in the
other case. The same flow induced anisotropy causes suspensions of solid spheres to develop cross
strcam structure when the ratio is high, and to hook together in vertical chains when it is low.

Diensionless groups may be formed from the ratios of inertia ρU2/2, viscosity 2µU/L and normal-
extensional stresses (5n1 + 4n2)U2/L2. We could again speak of an inertial radius (Joseph [6]) for the
competition between inertial and normal-extensional stress with inertia dominant when L > Lc and
normal stress dominant when L < Lc where

L2
c ≈

10n1 + 8n2

ρ
.

is a material property. Riddle et al. [8] discovered that if the initial separation of two spheres settling
along their line of centers in a viscoelas-tic flued is larger than a certain critical separation the spheres
will diverge, whereas if it is smaller than this separation they will converge. This is consistent with
the notion that the critical separation is the inertial radius Lc.

Every potential flow is a solution of the equations of motion for a fluid of second grade with stresses
given by (11). Such solutions do not generally satisfy the condition of no-slip at solid boundaries.
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