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The problem of potential flow of a second-order fluid around an ellipsoid is solved, following general ex-
pressions in Lamb (1993), and the flow and stress fields are computed. The flow fields are determined by the
harmonic potential but the stress fields depend on viscosity and the parameters of the second-order fluid. The
stress fields on the surface of a tri-axial ellipsoid depend strongly on the ratios of principal axes and are such
as to suggest the formation of gas bubble with a round flat nose and two-dimensional cusped trailing edge. A
thin flat trailing edge gives rise to a large stress which makes the thin trailing edge thinner.
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1 Introduction

Wang and Joseph (2004) studied the potential flow of a second-order fluid over a sphere or an ellipse. The
potential for the ellipse is a classical solution given as a complex function of a complex variable. The stress for a
second-order fluid was evaluated on this irrotational flow. An important result of this study is that the normal
stress at a point of stagnation changes from compression to tension strongly under even mild conditions on the
viscoelastic parameters.

Here, we extend the three dimensional study of Wang and Joseph (2004) to the case of flow over an ellipsoid
whose three principal axes may be unequal. The solution of Laplace’s equation (∇2φ = 0) bounded internally
by an ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1, (1)

moving with constant velocity U in the direction x is given by Lamb (1993) (p. 152) and Milne-Thomson (1996)
(p. 510–512). Since a is arbitrary their solution is readily adapted to the case of a translating ellipsoid in any
of the three principal directions. To be definite we adopt the convention that

a > b > c. (2)

The motion of an ellipsoid in an arbitrary direction may be formed from superposing of motions in three
principal directions.

Here we compute solutions relative to a stationary ellipsoid in a uniform stream. Since our goal is the cal-
culation of irrotational viscous and non-Newtonian (second-order) stresses we must compute working formulas,
not in the literature, for velocities, pressure and the derivatives of velocity required to calculate stresses. We
first use these formulas to compute the velocity field and pressure for the classical problem of irrotational flow
of an inviscid fluid. Then we apply these same formulas to the case of a viscous, second-order, non-Newtonian
fluid.

The main goal of our calculations for the second-order fluid model is to identify mechanisms which lead to
“two-dimensional cusps” at the trailing edge of a gas bubble rising in an unbounded liquid where axisymmetric
solutions might be expected. We calculate the effects of viscosity, second-order viscoelasticity and inertia.
The effects of viscoelasticity are opposite to the effects of inertia; under modest and realizable assumptions
about the values of the second-order fluid parameters, the normal stresses at points of stagnation change from
compression to tension. The effect of inertia and elasticity are essentially symmetric in that they depend on
squares of velocity and velocity gradients but the effects of viscosity are asymmetric.
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(a) (b)

Figure 1: Two orthogonal views showing the cusped (a) and broad (b) shape of the trailing edge of an air bubble
(2 cm3), rising in a viscoelastic liquid (S1). The two photographs are from Liu, Liao & Joseph (1995).

For the rising gas bubbles, the effects of the second-order and viscous terms on the normal stress are such
as to extend and flatten the trailing edge. These calculations suggest that “two-dimensional cusping” can be
viewed as an instability in which a thin flat trailing edge gives rise to a large stress which makes the thin trailing
edge even thinner.

2 Fluid mechanics of two dimensional cusping at the trailing edge
of gas bubbles rising in viscoelastic liquids.

An air bubble rising freely in a non-Newtonian liquid tends to be prolate and can develop a cusp at the trailing
edge as shown in figure 1a. This cuspidal tale occurs only in gas bubbles rising freely in non-Newtonian liquids.
Joseph et al. (1991) defined the cuspidal tails as point singularities of curvature. They also stated that the
build-up of extensional stresses near stagnation points may favor the formation of cusps.

In its analysis of cusped interfaces, Joseph (1992a) suggests that the strong tendency for cusping in non-
Newtonian fluids is a mechanism for eliminating stagnation points for the relaxation of elongational stresses.

Hassager (1979) was the first to show that the cusp was not rotationally symmetric but two-dimensional,
with a broad shape in one view and so flat that exhibits a point cusp when observed orthogonally. Liu, Liao
& Joseph (1995) presented new experimental evidence of the two-dimensional characteristic of cusped bubbles
(see figure 1). They also reported the different shapes of the broad edge observed in experiments.

A comprehensive review of the literature concerning bubbles rising in non-Newtonian fluids and the analysis
of two-dimensional cusps at the trailing edge of the bubbles can be found in Liu, Liao & Joseph (1995). From
their experimental results for air bubbles of different sizes rising in various viscoelastic liquids and in columns
of different configurations, they concluded that the formation of cusps is independent of the size and shape of
the column.

Liu, Liao & Joseph (1995) reported that the cusping tails occur at the trailing edge of a bubble rising in a
non-Newtonian liquid for capillary numbers (Ca) of 1 or higher.

Pillapakkam & Singh (2001) developed a code to simulate the deformation of a gas bubble rising in an
Oldroyd-B liquid. They found that the shape of the bubble depends on both the Capillary (Ca) and Deborah
(De) numbers. They observed that in general, the gas bubble assumes an elongated shape with the frontal
part round and when both Ca and De numbers are of the order of 1 a two-dimensional cusp is developed at
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the trailing edge. They claim to show that the pull out effects of sufficiently large viscoelastic stresses near the
trailing edge of the bubble cause the formation of a cuspidal tail.

An interesting aspect of the rise of gas bubbles in a viscoelastic liquid is that the fluid in the region behind
the bubble moves in the opposite direction of the bubble. This phenomenon was reported for the first time by
Hassager (1979) and was termed “negative wake”.

Pillapakkam & Singh (2003) presented some numerical results that indicate a negative wake in the region
behind gas bubbles rising in viscoelastic liquids. They associated the presence of a negative wake with a certain
range of two viscoelastic parameters, the Deborah number and the polymer concentration. They found that for
a polymer concentration of 2, the shape of the fore part of the bubble is round and no negative wake is observed.
For polymer concentrations higher than 2, they reported the existence of a negative wake in the region behind
the bubble.

Here we show that the normal stress distribution at the surface of the bubble may cause the formation of a
cusp at the trailing edge. We analyze the effect of the normal stress on the shape of a gas bubble by computing
the normal stress at the surface of a tri-axial ellipsoid immersed in a uniform irrotational flow of a second-order
fluid.

3 Irrotational flow of an incompressible and inviscid fluid over a
stationary ellipsoid

The flows for which the vorticity vector vanishes (ω = ∇ × u) everywhere in the flow field are said to be
irrotational. Since for any scalar function φ it is satisfied that ∇ × ∇φ = 0, the condition of irrotationality
is redefined by choosing u = ∇φ. In which case the function φ is called the velocity potential. By using the
continuity equation of an incompressible fluid (∇ · u = 0) gives the Laplace’s equation (∇2φ = 0).

In this section we present the velocity potential for the flow induced by an ellipsoid that translates along the
x-axis given by Lamb (1993) and Milne-Thomson (1996). In addition, we compute the velocity components and
the inviscid pressure for the irrotational flow around a stationary ellipsoid.

The harmonic function presented by Lamb (1993) represents the solution to the Laplace’s equation expressed
in terms of a special system of orthogonal curvilinear coordinates known as ellipsoidal coordinates.

The equation

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1 a > b > c (3)

where a, b, c are fixed and θ is a parameter, represents for any constant value of θ a central quadric of a confocal
system. In particular, when θ = 0, we have the ellipsoid given by equation (1).

Equation (3) leads to the expression

f (θ) = x2
(
b2 + θ

) (
c2 + θ

)
+ y2

(
c2 + θ

) (
a2 + θ

)
+z2

(
a2 + θ

) (
b2 + θ

)− (a2 + θ
) (

b2 + θ
) (

c2 + θ
)

= 0 (4)

which is a cubic equation in θ and has three roots, say λ, µ and ν, that are distributed as follows (see Kellogg
1929):

−a2 ≤ ν ≤ −b2 ≤ µ ≤ −c2 ≤ λ. (5)

The values of x, y, z can be expressed as functions of λ, µ and ν by the following equations,

x2 =

(
a2 + λ

) (
a2 + µ

) (
a2 + ν

)
(a2 − b2) (a2 − c2)

,

y2 =

(
b2 + λ

) (
b2 + µ

) (
b2 + ν

)
(b2 − c2) (b2 − a2)

, (6)

z2 =

(
c2 + λ

) (
c2 + µ

) (
c2 + ν

)
(c2 − a2) (c2 − b2)

.
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It follows that,

∂x

∂λ
=

1
2

x

a2 + λ
,

∂y

∂λ
=

1
2

y

b2 + λ
,

∂z

∂λ
=

1
2

z

c2 + λ
, (7)

and hence,

h2
1 =

1
4

(
x2

(a2 + λ)2
+

y2

(b2 + λ)2
+

z2

(c2 + λ)2

)
. (8)

The square of the scale factors h1, h2, h3 in ellipsoidal coordinates are given by,

h2
1 =

1
4

(λ − µ) (λ − ν)
(a2 + λ) (b2 + λ) (c2 + λ)

h2
2 =

1
4

(µ − ν) (µ − λ)
(a2 + µ) (b2 + µ) (c2 + µ)

(9)

h2
3 =

1
4

(ν − λ) (ν − µ)
(a2 + ν) (b2 + ν) (c2 + ν)

.

The direction-cosines of the outward normal to the three surfaces which pass through (x, y, z) will be(
1
h1

∂x

∂λ
,

1
h1

∂y

∂λ
,

1
h1

∂z

∂λ

)
,

(
1
h2

∂x

∂µ
,

1
h2

∂y

∂µ
,

1
h2

∂z

∂µ

)
,

(
1
h3

∂x

∂ν
,

1
h3

∂y

∂ν
,

1
h3

∂z

∂ν

)
. (10)

We may note that if λ, µ, ν be regarded as functions of x, y, z the direction-cosines of the three line-elements
above considered can also be expressed in the forms(

h1
∂λ

∂x
, h1

∂λ

∂y
, h1

∂λ

∂z

)
,

(
h2

∂µ

∂x
, h2

∂µ

∂y
, h2

∂µ

∂z

)
,

(
h3

∂ν

∂x
, h3

∂ν

∂y
, h3

∂ν

∂z

)
, (11)

from which, and from (10), various interesting relations can be inferred. For our present purpose the following
relations would be useful,

∂λ

∂x
=

1
h2

1

∂x

∂λ
=

x

2h2
1(a2 + λ)

∂λ

∂y
=

1
h2

1

∂y

∂λ
=

y

2h2
1(b2 + λ)

(12)

∂λ

∂z
=

1
h2

1

∂z

∂λ
=

z

2h2
1(c2 + λ)

.

The Laplacian
(∇2

)
of the scalar function φ in ellipsoidal coordinates can be written in the form

∇2φ =
1

h1h2h3

{
∂

∂λ

(
h2h3

h1

∂φ

∂λ

)
+

∂

∂µ

(
h3h1

h2

∂φ

∂µ

)
+

∂

∂ν

(
h1h2

h3

∂φ

∂ν

)}
. (13)

Equating this to zero, we obtain the Laplace’s equation that is the general expression of continuity given in
ellipsoidal coordinates.

Solutions to this equation are called ellipsoidal harmonics. From Milne-Thompson (1996) and Lamb (1993),
the corresponding ellipsoidal harmonics are given by,

φx = Cx

∞∫
λ

dλ

(a2 + λ)
√

(a2 + λ)(b2 + λ)(c2 + λ)
, (14)

φyz = Cyz

∞∫
λ

dλ

(b2 + λ)(c2 + λ)
√

(a2 + λ)(b2 + λ)(c2 + λ)
, (15)
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where C is an arbitrary constant, and x, y, z are supposed expressed in terms of λ, µ, ν by means of equations
(6).

For a full account of the solution of Laplace’s equation in ellipsoidal coordinates we must refer to Lamb
(1993) and Milne-Thomson (1996).

For the ellipsoid given by equation (1), which corresponds to λ = 0, moving in the direction of the x-axis
with velocity U , the boundary condition is

−∂φ

∂n
= U cos θx or

∂φ

∂λ
= −U

∂x

∂λ
, λ = 0. (16)

Thus when λ = 0, φ = −Ux, and when λ → ∞, φ → 0. These conditions are satisfied by the function φx of
equation (14).

Applying the boundary conditions to equation (14) gives,

C =
abcU

2 − α0
,

where,

α0 = abc

∫ ∞

0

dλ

(a2 + λ)
√

(a2 + λ) (b2 + λ) (c2 + λ)
. (17)

The constant α0 depends solely on the semi-axes a, b, c of the ellipsoid. Its numerical evaluation requires the
use of elliptic integrals.

Thus, finally,

φ =
abcUx

2 − α0

∫ ∞

λ

dλ

(a2 + λ)3/2 (b2 + λ)1/2 (c2 + λ)1/2
, (18)

and on the surface of the ellipsoid we have, from equation (14), with λ = 0,

φ =
xα0 U

2 − α0
. (19)

Equation (18) represents the potential for the space external to the ellipsoid (1) that moves with velocity U in
a liquid at rest at infinity. This result corresponds to an origin moving with the ellipsoid. By superposing a
uniform flow with velocity U , in the positive direction of the x-axis, gives,

φ = xU


 abc

2 − α0

∞∫
λ

dλ

(a2 + λ)
√

(a2 + λ) (b2 + λ) (c2 + λ)
+ 1


 (20)

and defining,

Γ = U


 abc

2 − α0

∞∫
λ

dλ

(a2 + λ)
√

(a2 + λ) (b2 + λ) (c2 + λ)
+ 1


 , (21)

it follows that,

φ = xΓ (22)

where, Γ is a function of λ only.
Equation (22) represents the velocity potential for the flow around a stationary ellipsoid.
The function Γ given by the equation (21) involves the elliptic integral,

I =
∫ ∞

λ

dλ

(a2 + λ)
√

(a2 + λ) (b2 + λ) (c2 + λ)
. (23)
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The solution to this integral, obtained from the handbook of elliptic integrals written by Byrd & Friedman
(1971) (p. 5), is given by

I =
2 [F (ϕ, k) − E (ϕ, k)]
k2 (a2 − c2)

√
a2 − c2

, (24)

where

ϕ = arcsin

√
a2 − c2

λ + a2
(25)

k =

√
a2 − b2

a2 − c2
(26)

and the functions F (ϕ, k) and E(ϕ, k) represent the incomplete elliptic integral of the first kind and the Leg-
endre’s incomplete elliptic integral of the second kind respectively. The values of the functions F (ϕ, k) and
E(ϕ, k) are tabulated in Byrd & Friedman (1971) for given values of ϕ and k.

The differentiation of the elliptic functions F (ϕ, k) and E(ϕ, k) with respect to ϕ yields (see Byrd & Friedman
(1971), p. 284),

d

dϕ
F (ϕ, k) =

1√
1 − k2 sin2 ϕ

, (27)

d

dϕ
E (ϕ, k) =

√
1 − k2 sin2 ϕ. (28)

With the expression for the elliptic integral given by equation (24), the equation (21) becomes,

Γ = U

[
abc

2 − α0

2 [F (ϕ, k) − E (ϕ, k)]
(a2 − b2)

√
a2 − c2

+ 1
]

. (29)

For an irrotational flow the velocity components are given by,

u = ∇φ =
∂φ

∂xi
. (30)

Applying equation (30) to the scalar function given by equation (22) gives,

u =
∂(xΓ)

∂x
= Γ + x

∂Γ
∂λ

∂λ

∂x
= Γ +

x2

2h2
1(a2 + λ)

∂Γ
∂λ

,

v =
∂(xΓ)

∂y
= x

∂Γ
∂λ

∂λ

∂y
=

xy

2h2
1(b2 + λ)

∂Γ
∂λ

, (31)

w =
∂(xΓ)

∂z
= x

∂Γ
∂λ

∂λ

∂z
=

xz

2h2
1(c2 + λ)

∂Γ
∂λ

,

which represent the velocity components of the irrotational flow of an inviscid fluid around an ellipsoid.
It is pertinent to introduce at this point, the first, second and third derivatives of Γ that would be used in

determining the velocity components and their derivatives.

∂Γ
∂λ

= − abcU

(2 − α0)(a2 + λ)3/2(b2 + λ)1/2(c2 + λ)1/2
, (32)

∂2Γ
∂λ2

= −∂Γ
∂λ

[
3

2 (a2 + λ)
+

1
2 (b2 + λ)

+
1

2 (c2 + λ)

]
, (33)

∂3Γ
∂λ3

=
∂Γ
∂λ

[
3

2 (a2 + λ)
+

1
2 (b2 + λ)

+
1

2 (c2 + λ)

]2

+
∂Γ
∂λ

[
3

2 (a2 + λ)2
+

1
2 (b2 + λ)2

+
1

2 (c2 + λ)2

]
. (34)
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A two dimensional representation of the flow field at the centerline of a tri-axial ellipsoid is shown in figure 2.
This representation corresponds to a tri-axial ellipsoid with semi-axes a/b = b/c = 2 and a Reynolds number of
0.05.

�4 �2 0 2 4
x

�3

�2

�1

0

1

2

3

y

Figure 2: Velocity field of an irrotational, inviscid flow around an ellipsoid with semi-axes a = 3, b = 1.5,
c = 0.75, and a Reynolds number of 0.05. Two dimensional representation of the velocity field at the centerline
of the ellipsoid (z = 0).

Integration of the Euler’s equation yields the Bernoulli equation. Thus, for an incompressible, irrotational
and steady flow the inviscid pressure equation can be written as

pI =
ρ

2

(
U2 − |∇φ|2

)
+ p∞, (35)

where U and p∞ are the velocity and the pressure far away from the flow field.
Introducing the expression for the magnitude of the velocity vector in equation (35) yields,

pI =
ρ

2

[
U2 − Γ2 − x2

h2
1

(
Γ

(a2 + λ)
+ dΓ,λ

)
dΓ,λ

]
+ p∞. (36)

At the surface of the ellipsoid (λ = 0) the pressure distribution can be obtained by evaluating the following
expression,

pIs =
ρU2

2(2 − α0)2

[
α0(α0 − 4) +

4x2b4c4

(x2b4c4 + y2a4c4 + z2a4b4)

]
+ p∞. (37)

The non-dimensional pressure on the surface of the ellipsoid is obtained by substituting equation (37) into the
pressure coefficient defined as,

Cp ≡ p − p∞
1/2ρU2

. (38)

A plot of this function in the (x-y) and (x-z) planes is given in figure 3. It shows a symmetric pressure
distribution over the ellipsoid. At the fore and rear stagnation points the pressure force is maximum and
Cp = 1. As we move around the ellipsoid, the fluid accelerates and the pressure drops accordingly. At θ = π/2
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Figure 3: Pressure coefficient distribution on the surface of an ellipsoid for two cross sections in the (x-y) and
(x-z) planes with z = 0 and y = 0 respectively.

the pressure has dropped to Cp = −0.269. The pressure drops faster in the (x-z) plane where the cross section
is flatter than in the (x-y) plane due to the difference in curvature.

The velocity gradient can be decomposed into its symmetric and anti-symmetric parts. The symmetric part
is associated with the straining motions while the anti-symmetric part indicates the rotational motion of a fluid
element. Thus, the velocity gradient can be written as,

L = ∇u = D + Ω, (39)

where D = 1/2(∇u + ∇uT ) and Ω = 1/2(∇u - ∇uT ), represent the strain or deformation and the rotation
tensors respectively.

Since the rotation tensor is directly proportional to the vorticity vector, for an irrotational flow field, the
anti-symmetric part of the velocity gradient is identically zero. Thus, the strain tensor is equal to the velocity
gradient tensor (D = L).

For the flow field given by equation (31) the components of the strain tensor are:

Dij = Lij =
∂uj

∂xi
, (40)

L11 =
∂u

∂x
=
(

2
∂λ

∂x
+ x

∂2λ

∂x2

)
∂Γ
∂λ

+ x

(
∂λ

∂x

)2
∂2Γ
∂λ2

,

L12 =
∂v

∂x
=

∂u

∂y
=
(

∂λ

∂y
+ x

∂2λ

∂x∂y

)
∂Γ
∂λ

+ x

(
∂λ

∂x

∂λ

∂y

)
∂2Γ
∂λ2

,

L13 =
∂w

∂x
=

∂u

∂z
=
(

∂λ

∂z
+ x

∂2λ

∂x∂z

)
∂Γ
∂λ

+ x

(
∂λ

∂x

∂λ

∂z

)
∂2Γ
∂λ2

,

L22 =
∂v

∂y
= x

∂2λ

∂y2

∂Γ
∂λ

+ x

(
∂λ

∂y

)2
∂2Γ
∂λ2

,

L23 =
∂w

∂y
=

∂v

∂z
= x

∂2λ

∂y∂z

∂Γ
∂λ

+ x

(
∂λ

∂y

∂λ

∂z

)
∂2Γ
∂λ2

,

L33 =
∂w

∂z
= x

∂2λ

∂z2

∂Γ
∂λ

+ x

(
∂λ

∂z

)2
∂2Γ
∂λ2

.
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4 Second-order fluid model

For an incompressible fluid, the stress tensor can be written as,

T = −pI + S, (41)

where p is pressure and S is the extra stress which is modeled by a constitutive equation. There is not a single
constitutive equation for all flow motions. For very slow flows, all the models collapse into a single form, the
second-order fluid.

A second-order fluid is an asymptotic approximation to the stress for nearly steady and very slow flow. It is
quadratic in the shear rate and represents the recent memory of the fluid by a time derivative (Joseph 1996).

The approximation to S for a second-order fluid is given by (see Joseph 1992b),

S = ηA + α1B + α2A2, (42)

where A = L + LT , is twice the symmetric part of the velocity gradient L, and

B =
∂A
∂t

+ (u · ∇)A + AL + LT A. (43)

Thus, for a second-order fluid the stress tensor can be written as,

T = −pI + ηA + α1B + α2A2 (44)

where A and B are known as the first and second Rivlin-Ericksen tensors (see Joseph & Feng 1996).
The parameter η is the zero-shear viscosity and the parameters α1 = −n1/2 and α2 = n1 +n2, the quadratic

constants, are related by β̂ = 3α1 + 2α2 ≥ 0; where n1 and n2 are constants obtained from the first and second
normal stress differences and β̂ is the climbing constant.

After Joseph (1992b), the Bernoulli equation for potential flow of a second-order fluid and in particular for
steady flow can be written as,

p =
ρ

2

(
U2 − |∇φ|2

)
+

β̂

4
trA2 + p∞. (45)

By introducing the scalar function for the pressure given by equation (45), and the steady form of equation
(43), into equation (44) and rearranging we get,

T = −
[ρ
2

(
U2 − |∇φ|2

)
+ β̂χ + p∞

]
I + ηA + α1 (u · ∇) A + (α1 + α2)A2 . (46)

In index notation we have,

Aij = 2
∂2φ

∂xi∂xj
= 2

∂uj

∂xi
,

χ =
1
4
trA2 =

∂2φ

∂xi∂xk

∂2φ

∂xk∂xi
=

∂uk

∂xi

∂ui

∂xk
=
(

∂uk

∂xi

)2

,

Tij = −
[

ρ

2

(
U2 −

∣∣∣∣ ∂φ

∂xi

∣∣∣∣
2
)

+ β̂χ + p∞

]
δij + ηAij + α1

∂φ

∂xi

∂

∂xk
Aij + (α1 + α2) AikAkj .
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5 Irrotational flow of a second-order fluid over a stationary ellipsoid

The set of equations that fully define the irrotational and steady flow of a second-order fluid around an ellipsoid
is given next,

φ = xΓ(λ),
u = ∇φ,

∇ · u = 0,

T = −pI + ηA + α1 (u · ∇)A + (α1 + α2)A2,

ρ (u · ∇)u = −∇p + η∇2u + ∇ · [α1 (u · ∇)A + (α1 + α2)A2
]
,

p =
ρ

2

(
U2 − |∇φ|2

)
+

β̂

4
trA2 + p∞,

A = L + LT = 2
∂2φ

∂xi∂xj
,

1
4
trA2 =

∂2φ

∂xi∂xk

∂2φ

∂xk∂xi
,

(u · ∇)A =
∂φ

∂xk

∂

∂xk
Aij .

The normal component of the stress is computed as,

Tnn = n ·T · n, (47)

where n is the unit vector normal to the surface of the ellipsoid (1) and is given by,

n =
( x

a2
i +

y

b2
j +

z

c2
k
)/√

x2

a4
+

y2

b4
+

z2

c4
. (48)

The normal component of the stress tensor in index notation, in terms of the velocity components, is given by,

Tnn = ninjTij = −
[ρ
2
(
U2 − uiui

)
+ β̂χ + p∞

]
+ 2ηninj

∂uj

∂xi

+2α1ninjuk
∂2uj

∂xk∂xi
+ 4 (α1 + α2) ninj

∂uk

∂xi

∂uj

∂xk
. (49)

Expanding equation (49) yields,

Tnn = −ρ

2
[
U2 − (u2 + v2 + w2

)]− p∞

− (3α1 + 2α2)

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2

+ 2
(

∂v

∂x

)2

+ 2
(

∂w

∂x

)2

+ 2
(

∂w

∂y

)2
]

+2η

[
n2

x

∂u

∂x
+ n2

y

∂v

∂y
+ n2

z

∂w

∂z
+ 2nxny

∂v

∂x
+ 2nxnz

∂w

∂x
+ 2nynz

∂w

∂y

]

+2α1

[
n2

x

(
u

∂2u

∂x2
+ v

∂2v

∂x2
+ w

∂2w

∂x2

)
+ n2

y

(
u

∂2u

∂y2
+ v

∂2v

∂y2
+ w

∂2w

∂y2

)
+ n2

z

(
u

∂2u

∂z2
+ v

∂2v

∂z2
+ w

∂2w

∂z2

)

+2nxny

(
u

∂2v

∂x2
+ v

∂2u

∂y2
+ w

∂2w

∂x∂y

)
+ 2nxnz

(
u

∂2w

∂x2
+ v

∂2w

∂x∂y
+ w

∂2u

∂z2

)
+ 2nynz

(
u

∂2w

∂x∂y
+ v

∂2w

∂y2
+ w

∂2v

∂z2

)]

+4 (α1 + α2)

{
n2

x

[(
∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2
]

+ n2
y

[(
∂v

∂x

)2

+
(

∂v

∂y

)2

+
(

∂v

∂z

)2
]

+n2
z

[(
∂w

∂x

)2

+
(

∂w

∂y

)2

+
(

∂w

∂z

)2
]

+ 2nxny

[
∂u

∂x

∂v

∂x
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

]

+2nxnz

[
∂u

∂x

∂w

∂x
+

∂v

∂x

∂w

∂y
+

∂w

∂x

∂w

∂z

]
+ 2nynz

[
∂v

∂x

∂w

∂x
+

∂v

∂y

∂w

∂y
+

∂w

∂y

∂w

∂z

]}
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where,

∂2u

∂x2
=

(
3
∂2λ

∂x2
+ x

∂3λ

∂x3

)
∂Γ
∂λ

+ 3
∂λ

∂x

(
∂λ

∂x
+ x

∂2λ

∂x2

)
∂2Γ
∂λ2

+ x

(
∂λ

∂x

)3
∂3Γ
∂λ3

,

∂2v

∂x2
=

(
2

∂2λ

∂x∂y
+ x

∂3λ

∂x2∂y

)
∂Γ
∂λ

+
(

2
∂λ

∂x

∂λ

∂y
+ x

∂2λ

∂x2

∂λ

∂y
+ 2x

∂λ

∂x

∂2λ

∂x∂y

)
∂2Γ
∂λ2

+ x

(
∂λ

∂x

)2
∂λ

∂y

∂3Γ
∂λ3

,

∂2w

∂x2
=

(
2

∂2λ

∂x∂z
+ x

∂3λ

∂x2∂z

)
∂Γ
∂λ

+
(

2
∂λ

∂x

∂λ

∂z
+ x

∂2λ

∂x2

∂λ

∂z
+ 2x

∂λ

∂x

∂2λ

∂x∂z

)
∂2Γ
∂λ2

+ x

(
∂λ

∂x

)2
∂λ

∂z

∂3Γ
∂λ3

,

∂2u

∂y2
=

(
∂2λ

∂y2
+ x

∂3λ

∂x∂y2

)
∂Γ
∂λ

+

((
∂λ

∂y

)2

+ 2x
∂λ

∂y

∂2λ

∂x∂y
+ x

∂λ

∂x

∂2λ

∂y2

)
∂2Γ
∂λ2

+ x
∂λ

∂x

(
∂λ

∂y

)2
∂3Γ
∂λ3

,

∂2v

∂y2
= x

∂3λ

∂y3

∂Γ
∂λ

+ 3x
∂λ

∂y

∂2λ

∂y2

∂2Γ
∂λ2

+ x

(
∂λ

∂y

)3
∂3Γ
∂λ3

,

∂2w

∂y2
= x

∂3λ

∂y2∂z

∂Γ
∂λ

+
(

x
∂2λ

∂y2

∂λ

∂z
+ 2x

∂λ

∂y

∂2λ

∂y∂z

)
∂2Γ
∂λ2

+ x

(
∂λ

∂y

)2
∂λ

∂z

∂3Γ
∂λ3

,

∂2u

∂z2
=

(
∂2λ

∂z2
+ x

∂3λ

∂x∂z2

)
∂Γ
∂λ

+

((
∂λ

∂z

)2

+ 2x
∂2λ

∂x∂z

∂λ

∂z
+ x

∂λ

∂x

∂2λ

∂z2

)
∂2Γ
∂λ2

+ x
∂λ

∂x

(
∂λ

∂z

)2
∂3Γ
∂λ3

,

∂2v

∂z2
= x

∂3λ

∂y∂z2

∂Γ
∂λ

+
(

2x
∂λ

∂z

∂2λ

∂y∂z
+ x

∂λ

∂y

∂2λ

∂z2

)
∂2Γ
∂λ2

+ x
∂λ

∂y

(
∂λ

∂z

)2
∂3Γ
∂λ3

,

∂2w

∂z2
= x

∂3λ

∂z3

∂Γ
∂λ

+ 3x
∂λ

∂z

∂2λ

∂z2

∂2Γ
∂λ2

+ x

(
∂λ

∂z

)3
∂3Γ
∂λ3

,

∂2w

∂x∂y
=

(
∂2λ

∂y∂z
+ x

∂3λ

∂x∂y∂z

)
∂Γ
∂λ

+
(

∂λ

∂y

∂λ

∂z
+ x

∂λ

∂z

∂2λ

∂x∂y
+ x

∂λ

∂x

∂2λ

∂y∂z
+ x

∂λ

∂y

∂2λ

∂x∂z

)
∂2Γ
∂λ2

+x
∂λ

∂x

∂λ

∂y

∂λ

∂z

∂3Γ
∂λ3

.

The higher order derivatives of the ellipsoidal parameter λ, are obtained from the first derivatives given by
equation (12) with λ = λ(x, y, z).

With u, v and w given by equation (31), the resulting normal stress for a second-order fluid around an ellipsoid
is of the form Tnn = Tnn (x, y, z, λ). On the surface of the ellipsoid λ = 0, so that the normal component of the
stress on the surface of the ellipsoid is a function of the Cartesian coordinates only. The dimensionless form of
the normal stress at the surface is expressed as,

T ∗
nn =

Tnn + p∞
ρU2

/
2

. (50)

6 Normal stress distribution on the ellipsoid

Here we present the results of the normal stress evaluated at the surface of an ellipsoid, immersed in a uniform
flow of a second-order fluid, for a Reynolds number (Re = ρUa/η) of 0.05. Three different cases are shown to
illustrate the effects of the semi-axes ratios in the stress distribution. First, the normal stress is evaluated on
a tri-axial ellipsoid with a/b = b/c = 2. The second case corresponds to a flatter ellipsoid with a/b = 2 and
b/c = 5. Finally, we show the distribution of the stress at the surface of a prolate spheroid with a/b = 2 and
b = c. As an example of second-order fluid we used the liquid M1 with the following properties (Hu et al. 1990):
[ρ = 0.895 g/cm3, η = 30 P, α1 = −3 and α2 = 5.34 g/cm].

The distribution and sign of the normal stress at the surface is depicted by arrows around ellipses that
represent cross sections of the ellipsoid (see figures 4-13, 16 and 17). If the normal stress is negative it gives rise
to compression and if positive, it induces tensions that may be responsible for the deformation of gas bubbles
in viscoelastic liquids. Inward arrows represent the negative values and outward arrows represent the positive
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values of the normal stress. We also present the results of the dimensionless normal stress T ∗
nn, as a function of

the polar angle θ (see figures 14 and 15).
The normal stress distribution on the surface of a tri-axial ellipsoid with a = 3, b = 1.5 and c = 0.75 cm,

shown in figures 4-15, suggest the formation of a gas bubble with a prolate shape in the front and a flat
two-dimensional shape in the back with an elongated trailing edge.

We made the former ellipsoid even flatter by making c = 0.3 cm. The computed normal stress distribution is
depicted in figure 16. The results indicate that as the rear part of the bubble gets flatter, the pulling out effect
at the right and left poles increase giving rise to a thinner tail.

Once the bubble acquires the prolate shape in the front, the stresses around the ellipsoid become constant
for each cross section. This is shown in figure 17, that represent the stresses around the ellipsoid with a = 3.0,
b = 1.5 and c = 1.5 cm. The normal stress for each cross section located at: x = −2.9, −2.6, −2.0, −1.0, 0.0,
1.0, 2.0, 2.6 and 2.9, is constant and they are all compression in the front and tension in the back. For the
three semi-axes ratios covered in this study, there is a strong tension near the rear stagnation point that could
be responsible for the build up of a two-dimensional cusp at the trailing edge of a bubble.

Figure 14 shows a maximum compression near the leading edge. The maximum tension, that is almost twice
the maximum compression, is located very close to the trailing edge (see figure 15).
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Figure 4: Distribution of the normal stress at the surface of a tri-axial ellipsoid, immersed in a uniform stream
that moves from left to right. Two-dimensional representation in the (x, y)-plane of an ellipsoid (with semi-axes
a = 3, b = 1.5, c = 0.75 cm). The arrows represent the normal stress (Tnnnx + Tnnny) /150 dyn/cm2 evaluated
for different cross sections along the ellipsoid. The cross sections are located at: x = −2.9 (a), −2.6 (b), −2.0
(c), −1.0 (d), 0.0 (e), 1.0 (f), 2.0 (g), 2.6 (h) and 2.9 (i) cm. A perpendicular view of the different cross sections
is shown in figures 5-13. There is compression in the fore part of the ellipsoid and a strong tension in the rear,
near the trailing stagnation point.
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Figure 5: Normal stress (Tnnny + Tnnnz) /600 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.92/a2 at x = −2.9 cm
in the (y, z)-plane. Perpendicular view of the cross section (a) in figure 4. The normal stress at the front of the
ellipsoid gives rise to compression near the leading edge. This may explain the flat top observed in gas bubbles
rising in viscoelastic fluids (see figure 1).
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Figure 6: Normal stress (Tnnny + Tnnnz) /300 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.62/a2 at x = −2.6 cm
in the (y, z)-plane. Perpendicular view of the cross section (b) in figure 4. There is a bigger compression
(indicated by bigger inwards arrows) at the right and left poles of the ellipse. This may cause that the cross
section of the ellipsoid becomes more round and in consequence the ellipsoid would tend to be prolate.
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Figure 7: Normal stress (Tnnny + Tnnnz) /150 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.02/a2 at x = −2.0 cm
in the (y, z)-plane. Perpendicular view of the cross section (c) in figure 4. Strong compression at the right and
left poles of the ellipse and mild compression towards the center.
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Figure 8: Normal stress (Tnnny + Tnnnz) /50 dyn/cm2 for an ellipse y2/b2 +z2/c2 = 1−1.02/a2 at x = −1.0 cm
in the (y, z)-plane. Perpendicular view of the cross section (d) in figure 4. Small compression at the center and
high compression at the right and left poles of the ellipse (indicated by small and big inwards arrows). This
suggests that the upper part of a gas bubble rising in a viscoelastic fluid would tend to be prolate.
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Figure 9: Normal stress (Tnnny + Tnnnz) /2.5 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1 at x = 0.0 cm in the
(y, z)-plane. Perpendicular view of the cross section (e) in figure 4. There is still compression right in the middle
of the ellipsoid.
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Figure 10: Normal stress (Tnnny + Tnnnz) /50 dyn/cm2 for an ellipse y2/b2 + z2/c2 = 1−1.02/a2 at x = 1.0 cm
in the (y, z)-plane. Perpendicular view of the cross section (f) in figure 4. There is a change of sign of the normal
stress right after the front half of the ellipsoid. It changes from negative (compression) to positive (tension).
Strong tension near the right and left poles and mild tension towards the center. This may induce the formation
of a flat tail for a gas bubble. The same effect is observed in the other cross sections of the rear part of the
ellipsoid (see figures 11-13) .
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Figure 11: Normal stress (Tnnny + Tnnnz) /150 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.02/a2 at x = 2.0 cm
in the (y, z)-plane. Perpendicular view of the cross section (g) in figure 4. Strong tension at the right and left
poles, causes the ellipsoid to get flatter.
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Figure 12: Normal stress (Tnnny + Tnnnz) /300 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.62/a2 at x = 2.6 cm
in the (y, z)-plane. Perpendicular view of the cross section (h) in figure 4. Strong tension at the right and left
poles, causes the ellipsoid to get flatter.
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Figure 13: Normal stress (Tnnny + Tnnnz) /600 dyn/cm2 for an ellipse y2/b2+z2/c2 = 1−2.92/a2 at x = 2.9 cm
in the (y, z)-plane. Perpendicular view of the cross section (i) in figure 4. The strong tension observed near the
trailing stagnation point may explain the formation of a two-dimensional cusping tail in a gas bubble rising in
viscoelastic fluids.

19



θ

T
nn

*

0 1 2 3 4 5 6
-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

200

300
x = -2.9
x = -2.6
x = -2.0
x = -1.0
x = 0.0

Figure 14: Dimensionless normal stress as a function of the polar angle θ for the different cross sections of the
frontal part of the ellipsoid shown in figures 5 to 9 (x ≤ 0). The normal stress is compression in the fore part of
the ellipsoid. The maximum compression is observed near the leading edge, and decreases as we move towards
the rear of the ellipsoid.
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Figure 15: Dimensionless normal stress as a function of the polar angle θ for the different cross sections of the
rear part of the ellipsoid shown in figures 9 to 13 (x ≥ 0). The normal stress is tension in the rear of the
ellipsoid, with a strong tension near the trailing edge.
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(a) (Tnnnx + Tnnny) /1200 dyn/cm2 for an ellipsoid
x2/a2 + y2/b2 = 1 − z2/c2 with z = 0,
in the (x, y)-plane.

(b) (Tnnny + Tnnnz) /7500 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.9 cm,
in the (y, z)-plane.

(c) (Tnnny + Tnnnz) /800 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.0 cm,
in the (y, z)-plane.

(d) (Tnnny + Tnnnz) /10 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 0.0 cm,
in the (y, z)-plane.

(e) (Tnnny + Tnnnz) /800 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 2.0 cm,
in the (y, z)-plane.

(f) (Tnnny + Tnnnz) /7500 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 2.9 cm,
in the (y, z)-plane.

Figure 16: Distribution of the normal stress Tnn on various cross sections on the (y, z)-planes of an ellipsoid
(with semi-axes a = 3, b = 1.5, c = 0.3 cm) immerse in a flow of fluid M1 (moving from left to right), with a
Reynolds number of 0.05. The properties of the liquid M1 that are used in the calculations are: ρ = 0.895 g/cm3,
η = 30 P, α1 = −3 and α2 = 5.34 g/cm. The normal stress is represented by vectors at the surface of the
ellipsoid on the (y, z)-planes corresponding to the cross sections of the ellipsoid at x = −2.9 (b), −2.0 (c), 0.0
(d), 2.0 (e), and 2.9 (f) cm. The orientation of the vectors indicate compression (inwards) or tension (outwards)
exerted by the normal stress at the surface of the ellipsoid. In the first half of the ellipsoid the normal stress is
mainly compression and, it changes to tension as we approach the trailing edge.
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(a) (Tnnnx + Tnnny) /100 dyn/cm2 for an ellipsoid
x2/a2 + y2/b2 = 1 − z2/c2 with z = 0,
in the (x, y)-plane.

(b) (Tnnny + Tnnnz) /250 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.9 cm,
in the (y, z)-plane.

(c) (Tnnny + Tnnnz) /50 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = −2.0 cm,
in the (y, z)-plane.

(d) (Tnnny + Tnnnz) dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 0.0 cm,
in the (y, z)-plane.

(e) (Tnnny + Tnnnz) /50 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 2.0 cm,
in the (y, z)-plane.

(f) (Tnnny + Tnnnz) /250 dyn/cm2 for an ellipsoid
y2/b2 + z2/c2 = 1 − x2/a2 with x = 2.9 cm,
in the (y, z)-plane.

Figure 17: Distribution of the normal stress Tnn on various cross sections on the (y, z)-planes of an ellipsoid
(with semi-axes a = 3, b = 1.5, c = 1.5 cm) immerse in a flow of fluid M1 with a Reynolds number of 0.05.
The properties of the liquid M1 that are used in the calculations are: ρ = 0.895 g/cm3, η = 30 P, α1 = −3 and
α2 = 5.34 g/cm. The normal stress is represented by vectors at the surface of the ellipsoid on the (y, z)-planes
corresponding to the cross sections of the ellipsoid at x = −2.9 (b), −2.0 (c), 0.0 (d), 2.0 (e), and 2.9 (f) cm.
The orientation of the vectors indicate compression (inwards) or tension (outwards) exerted by the normal stress
at the surface of the ellipsoid. The normal stress is constant at each cross section, and it is compression in the
front and tension in the back.
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7 Conclusions

We developed the analysis of viscoelastic potential flow of a second-order fluid around an ellipsoid. To carry
out these calculations we formed expressions for the velocity, the inviscid pressure, the velocity derivatives and
the composition of these derivatives to compute stresses. The calculations give rise to normal stress distribution
compatible with experimental observations of gas bubbles rising in viscoelastic liquids. In particular, the normal
stress at the top of a rising bubble is compression and the side stress tends to round the elliptic shape. The
trailing edge of the bubble is stretched into a cusp and the side of the ellipse tends to flatten into the remarkable
two-dimensional cusps observed in experiments. Since the velocity is obtained from a harmonic potential, the
velocity field does not depend on viscous or viscoelastic parameters. This suggests that the cusping effect is
associated primarily with normal stresses rather than with secondary effects due to changes in velocity not
computed here.

References

[1] Byrd P.F & Friedman M. D. 1971 Handbook of Elliptic Integrals, 2nd Edition, Springer-Verlag, New
Springer-Verlag, New York, Heidelberg, Berlin.

[2] Hu H. H., Riccius O., Chen K. P., Arney M. & Joseph D. D. 1990 Climbing constant, second-order
correction of trouton’s viscosity, wave speed and delayed die swell for M1. J. of Non-Newtonian Fluid
Mech., 35 287-307.

[3] Joseph D. D. 1991 Two-dimensional cusped interfaces. J. Fluid Mech. 223, 383-409.

[4] Joseph D. D. 1992a Understanding cusped interfaces. J. of Non-Newtonian Fluid Mech., 44 127-148.

[5] Joseph D. D. 1992b Bernoulli equation and the competition of elastic and inertial pressures in the potential
flow of a second-order fluid. J. of Non-Newtonian Fluid Mech., 42 385-389.

[6] Joseph D. D. 1996 Flow induced microstructure in Newtonian and Viscoelastic Fluids. Proceedings of the
5 th World Congress of Chemical Engineering, Particle Technology Track. Second Particle Technology, San
Diego, AIChE New York, 6 3-16.

[7] Joseph D. D. & Feng J. 1996 A note on the forces that move particles in a second-order fluid. J. of
Non-Newtonian Fluid Mech., 64 299-302

[8] Kellogg, O. D. 1929 Foundations of Potential Theory, Dover Publications Inc., New York.

[9] Lamb, S. H. 1993 Hydrodynamics, First Cambridge University Press Edition.

[10] Liu Y. J., Liao T. Y. & Joseph D. D. 1995 A two-dimensional cusp at the trailing edge of an air bubble
rising in a viscoelastic liquid. J. Fluid Mech. 304, 321-342.

[11] Milne-Thomson L. M. 1996 Theoretical Hydrodynamics, Fifth Edition, Dover Publications Inc., New York.

[12] Pillapakkam S. B. & Singh P. 2001 A level-set method for computing solutions to viscoelastic two-phase
flow. J. of Comp. Phys. 174, 552-578.

[13] Pillapakkam S. B. & Singh P. 2003 Negative wake and velocity of a bubble rising in a viscoelastic fluid.
Proceedings of 2003 ASME International Mechanical Engineering Congress FED-259, 709-714.

[14] Wang J. & Joseph D. D. 2004 Potential flow of a second order fluid over a sphere or an ellipse. J. Fluid
Mech. 511, 201-215.

24


