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Results from the numerical simulation of the two-dimensional incompressible un-
steady Navier–Stokes equations for streaming flow past a rotating circular cylinder
are presented in this study. The numerical solution of the equations of motion is
conducted with a commercial computational fluid dynamics package which discretizes
the equations applying the control volume method. The numerical set-up is validated
by comparing results for a Reynolds number based on the free stream of Re = 200
and dimensionless peripheral speed of q̃ = 3, 4 and 5 with results from the literature.
After the validation stage, various pairs of Re and q̃ are specified in order to carry out
the numerical experiments. These values are Re = 200 with q̃ = 4 and 5; Re = 400
with q̃ = 4, 5 and 6, and Re = 1000 with q̃ = 3. In all these cases, gentle convergence
to fully developed steady state is reached. From the numerical vorticity distribution,
the position of the outer edge of the vortical region is determined as a function of the
angular coordinate. This position is found by means of a reasonable criterion set to
define the outmost curve around the cylinder where the vorticity magnitude reaches
a certain cut-off value. By considering the average value of this profile, a uniform
vortical region thickness is specified for every pair of Re and q̃ .

Next, the theoretical approach of Wang & Joseph (2006a; see the companion paper)
and the numerical results are used to determine two different values of the effective
vortical region thickness for every pair of Re and q̃ . One effective thickness δD/a

is obtained from the match between the additional drag on the outer edge of the
vortical region according to the viscous correction of viscous potential flow (VCVPF)
and the corresponding numerical profile while the other thickness δL/a is determined
from the match between the pressure lift on the cylinder obtained from Wang &
Joseph (2006a)’s simple modification of the boundary-layer analysis due to Glauert
(Proc. R. Soc. Lond. A, vol. 242, 1957, p. 108) and the numerical value of the pressure
lift coefficient. The values of δD/a and δL/a are used in the computation of various
parameters associated with the flow, namely, the torque on the rotating cylinder, the
circulatory velocity at the edge of the vortical region, which links the cylinder’s angular
velocity with the circulation of the irrotational flow of the viscous fluid outside this
region, and the viscous dissipation. Predictions from the approaches of Glauert (1957)
and Wang & Joseph (2006a) are also included for comparison. The values of both
effective thicknesses, δD/a and δL/a, are found to have the same order of magnitude.
Then, we show that choosing δD/a as a unique effective thickness, the modification of
Glauert’s boundary-layer analysis and the VCVPF approach as proposed by Wang &
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Joseph (2006a) produce results which are in better general agreement with the values
from numerical simulation than those from Glauert’s solution.

1. Introduction
A rapidly rotating circular cylinder immersed in a free stream generates a fluid

motion that has been the subject of research from the point of view of numerical
simulations, experiments and theoretical analysis. This flow field is equivalent to
the one obtained when a circular cylinder rotates and translates through a fluid
at rest at infinity as seen from a reference frame that translates with the centre
of the cylinder. This type of fluid motion is of major importance in aerodynamics,
since fundamental aspects of the flow past an airfoil can be enlightened through
conformal transformation from the flow past a rotating cylinder, under the appropriate
simplifications. It has also been the topic of research for boundary-layer control and
drag reduction over the years (Ece, Walker & Doligalski 1984; He et al. 2000).

Two aspects have drawn attention from researchers with respect to streaming flow
past a rotating circular cylinder. The first aspect is the observation that the spinning
action is able to suppress the separation of the boundary layer around the cylinder
as well as to avoid vortex shedding from the surface of the cylinder while reaching
steady state when a critical dimensionless velocity is achieved. This threshold has been
reported to be a function of the Reynolds number of the free stream. The second
aspect is the lift generated on the cylinder by the surrounding fluid, also known
as the Magnus effect. Prandtl’s famous limiting value of the lift force generated by
a rotating circular cylinder has encountered contradictory evidence from theoretical
studies, experiments and computations (e.g., Glauert 1957; Tokumaru & Dimotakis
1993; Mittal & Kumar 2003), thus making this problem even more attractive as the
subject for improved numerical methods and experimental techniques.

The literature reveals that two relevant parameters are usually specified to describe
the problem, namely, the Reynolds number Re = 2U0a/ν, based on the free-stream
velocity U0, the diameter of the cylinder 2a and fluid kinematic viscosity ν, and the
dimensionless peripheral velocity q̃ , defined as the ratio of the velocity magnitude at
the surface of the cylinder to the free-stream velocity. From the point of view of the
numerical simulations, setting the appropriate range for these parameters is a delicate
task on which part of the success of the numerical work relies. Another feature is
the choice of the form of the governing equations to solve. For a two-dimensional
problem, the vorticity and streamfunction form of the Navier–Stokes equations is
the preferred option. However, some numerical work has been carried out with
the equations of motion written in terms of the primitive variables, velocity and
pressure. Ingham (1983) obtained numerical solutions of the two-dimensional steady
incompressible Navier–Stokes equations in terms of vorticity and streamfunction
using finite differences for flow past a rotating circular cylinder for Reynolds numbers
Re = 5 and 20 and dimensionless peripheral velocity q̃ between 0 and 0.5. Solving the
same form of the governing equations, but expanding the range for q̃ , Ingham & Tang
(1990) showed numerical results for Re = 5 and 20 and 0 � q̃ � 3. With a substantial
increase in Re, Badr et al. (1990) studied the unsteady two-dimensional flow past
a circular cylinder which translates and rotates starting impulsively from rest both
numerically and experimentally for 103 � Re � 104 and 0.5 � q̃ � 3. They solved the
unsteady equations of motion in terms of vorticity and streamfunction. The agreement
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between numerical and experimental results was good except for the highest rotational
velocity where they observed three-dimensional and turbulence effects. Choosing a
moderate interval for Re, Tang & Ingham (1991) followed with numerical solutions
of the steady two-dimensional incompressible equations of motion for Re = 60 and
100 and 0 � q̃ � 1. They employed a scheme that avoids the difficulties regarding the
boundary conditions far from the cylinder.

Considering a moderate constant Re = 100, Chew, Cheng & Luo (1995) further
expanded the interval for the dimensionless peripheral velocity q̃ , such that 0 � q̃ �
6. They used a vorticity streamfunction formulation of the incompressible Navier–
Stokes equations. The numerical method consisted of a hybrid vortex scheme, where
the time integration is split into two fractional steps, namely, pure diffusion and
convection. They separated the domain into two regions: the region close to the
cylinder where viscous effects are important and the outer region where viscous
effects are neglected and potential flow is assumed. Using the expression for the
boundary-layer thickness for flow past a flat plate, they estimated the thickness
of the inner region. Their results indicated a critical value for q̃ about 2 where
vortex shedding ceases and the lift and the drag coefficients tend to asymptotic
values. Nair, Sengupta & Chauhan (1998) expanded their choices for the Reynolds
number by selecting a moderate Re = 200 with q̃ = 0.5 and 1 and two relatively
high values of Re = 1000 and Re = 3800, with q̃ = 3 and q̃ = 2, respectively.
They performed the numerical study of flow past a translating and rotating circular
cylinder solving the two-dimensional unsteady Navier–Stokes equations in terms of
vorticity and streamfunction using a third-order upwind scheme. Kang, Choi & Lee
(1999) followed with the numerical solution of the unsteady governing equations in
the primitive variables velocity and pressure for flows with Re = 60, 100 and 160 with
0 � q̃ � 2.5. Their results showed that vortex shedding vanishes when q̃ increases
beyond a critical value which follows a logarithmic dependence on the Reynolds
number (e.g., the critical dimensionless peripheral velocity q̃ = 1.9 for Re = 160).

Chou (2000) worked in the area of high Reynolds numbers by presenting a
numerical study that included computations falling into two categories: q̃ � 3
with Re = 103 and q̃ � 2 with Re = 104. Chou solved the unsteady two-
dimensional incompressible Navier–Stokes equations written in terms of vorticity
and streamfunction. In contrast, the work of Mittal & Kumar (2003) performed a
comprehensive numerical investigation by fixing a moderate value of Re = 200 while
considering a wide interval for the dimensionless peripheral velocity of 0 � q̃ � 5.
They used the finite-element method to solve the unsteady incompressible Navier–
Stokes equations in two-dimensions for the primitive variables velocity and pressure.
They observed vortex shedding for q̃ < 1.91. Steady-state fully developed flow was
achieved for higher rotation rates except for the narrow region 4.34 < q̃ < 4.8 where
vortex shedding was again reported, perhaps, for the first time. This literature survey
indicates that workers have favoured moderate Reynolds numbers Re � 200 in order
to keep the turbulence effects away and to prevent the appearance of non-physical
features in their numerical results. For similar reasons, the peripheral speeds have
been chosen such that q̃ � 3 in most of the cases, whereas few workers have simulated
beyond this value, with q̃ = 6 as an upper bound.

In comparison with the substantial number of studies devoted to the numerical
investigation of streaming flow past a rotating circular cylinder, fewer studies have
focused on the theoretical approach of this problem. Boundary-layer analysis, which
considers irrotational flow outside, has been the preferred strategy to theoretically
approximate the solution for this type of fluid motion. The celebrated work of Glauert
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(1957) developed an approximate solution of the boundary-layer equations as a power
series in terms of the ratio of the free-stream velocity to the peripheral velocity of
the cylinder’s surface. Outside the boundary layer, Glauert assumed irrotational
steady-state flow past a circular cylinder with circulation, whereas the thickness of
the boundary layer is considered very thin, and thus neglected to the order of his
approximation. Furthermore, he presented expressions for the lift and torque on
the cylinder. He did not account for the effects of friction in the lift. According to
Glauert’s results, the lift force on the cylinder increases indefinitely as the peripheral
velocity increases, which contradicts Prandtl’s classical limiting value. Moore (1957)
presented a solution for the flow past a rotating circular cylinder by considering
the effect of the uniform free stream as a small perturbation on the solution for
purely rotary flow created by the spinning cylinder. Moore’s solution gives rise to
a zero drag force on the cylinder while the lift force is expressed by the classical
formula as a function of the circulation. Ece et al. (1984) studied the boundary-layer
development for the flow past a circular cylinder impulsively started into translation
and rotation. They focused on the unsteady stage of the motion to address the effect
of the rotational speed on separation. They considered an expansion of the solution in
a power series in time and performed their calculations for various peripheral speeds
of the cylinder’s wall and the limit of Re going to infinity. They compared their results
with values computed from the numerical solutions of the governing equations and
excellent agreement was reported throughout the early phases of the motion.

In a companion paper, Wang & Joseph (2006a; hereinafter called WJa) applied their
viscous correction of viscous potential flow theory (VCVPF) to analyse the boundary-
layer problem for the flow past a rapidly rotating solid circular cylinder where
the separation is suppressed. They modified the boundary-layer analysis proposed
by Glauert (1957) to take into account the viscous irrotational rotary flow in the
boundary-layer solution. In their analysis, the boundary-layer thickness, which is
not completely neglected, must be prescribed. Using the results from their modified
boundary-layer analysis, WJa showed that there is a discrepancy at the outer edge
of the boundary layer between the shear stress given by their analysis and the shear
stress calculated from the irrotational flow theory. A viscous pressure correction is
then induced by this discrepancy. By equating the power of the pressure correction
to the power of the shear stress discrepancy, WJa determined an expression for the
drag force acting on the cylinder as a function of the boundary-layer thickness. The
VCVPF theory has been successfully applied to different problems in fluid mechanics
such as the drag on a spherical gas bubble, the drag on a liquid drop rising in another
liquid (Joseph & Wang 2004) and the capillary instability (Wang, Joseph & Funada
2005). In a second companion paper Wang & Joseph (2006b; hereinafter called
WJb) presented a new boundary-layer analysis for streaming flow past a rapidly
rotating circular cylinder. They assumed that a boundary layer is attached to the
surface of the rotating cylinder, while, outside the boundary layer, irrotational flow
of a viscous fluid is considered. In the interior of the boundary layer, the velocity
field is separated into a boundary-layer-flow component and an irrotational purely
rotary-flow component. Beyond the outer edge of the boundary layer, the flow is
decomposed into an irrotational flow past a fixed cylinder and an irrotational purely
rotary flow. Then, they inserted the velocity decomposition inside the boundary layer
into the governing equations without any approximation. They solved the resulting
new set of equations using Glauert’s series method, enforcing continuity of the shear
stress at the outer edge of the boundary layer. In their analysis, the pressure inside
the boundary layer cannot be assumed constant in the direction normal to the wall.
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Many studies have been devoted to the numerical simulation of this type of fluid
motion to address the problem of presence or suppression of separation and vortex
shedding. However, rather less attention has been paid to the application of numerical
results to delimit and describe the region around the cylinder where vorticity effects
are far from negligible. This fluid zone is named the vortical region. Once this region
is delimited, the evaluation of theoretical boundary-layer-type solutions is feasible.
When Re and q̃ are not so high, say Re < 1000 and q̃ < 5, the vortical region can
be relatively thick, so the classical thin boundary-layer analysis may not work with
acceptable accuracy; nevertheless, there is still an identifiable region where the effects
of vorticity are significant. Outside this region, the potential flow theory for flow past
a circular cylinder with circulation may be applied.

This study pursues two main objectives. The first objective is to simulate numerically
the steady-state limit of the flow past a rotating circular cylinder. The second objective
is to bound the region around the rotating cylinder where the vorticity effects are
mostly confined. The numerical results presented in this paper are intended to test
the validity of the theoretical approaches of WJa and WJb. A value for an effective,
uniform thickness of the vortical region must be prescribed in these models. The flow
field obtained from numerical analysis represents reliable data that can be used to
estimate the limits of the vortical region. The numerical simulations are performed by
solving the two-dimensional incompressible unsteady Navier–Stokes equations using
the commercial package Fluent R© 6.1 (2003). Tests of mesh refinement were used to
select the size of the computational domain and mesh structure. Validation of the
numerical set-up is performed comparing our results with those from the literature
for three cases.

Next, the velocity and pressure fields are computed for Reynolds numbers based
on the free-stream velocity Re = 200 and 400, with dimensionless peripheral velocity
q̃ = 4, 5 and 6. Results for Re = 1000 with q̃ = 3 are also considered. The drag and
lift coefficients on the rotating cylinder are presented. From the numerical vorticity
distribution in the fluid domain, the position of the outer edge of the vortical region is
determined as a function of the angular coordinate. This position is found by means
of a reasonable criterion set to define the outmost curve around the cylinder where the
vorticity magnitude reaches a certain cutoff value. By considering the average value
of this profile, a uniform vortical region thickness is specified for every pair of Re and
q̃ . The selection of this cutoff value is somewhat arbitrary, and moderate changes in
this parameter may yield significant changes in the extension of the vortical region.
This feature motivates the introduction of an effective vortical region thickness, which
represents an alternative approach to define the position of the outer edge of the
vortical region. The theoretical approach of WJa and the numerical results are used
to determine two different values of the effective vortical region thickness for every
pair of Re and q̃ . One effective thickness is obtained from the match between the
additional drag on the outer edge of the vortical region according to VCVPF and
the corresponding numerical profile, while the other thickness is determined from
the match between the pressure lift on the cylinder obtained from WJa’s simple
modification of Glauert’s boundary-layer analysis and the numerical value of the
pressure lift coefficient. The first effective vortical region thickness is employed in
the computation of the circulatory velocity at the edge of the vortical region and the
viscous dissipation inside and outside this region from the numerical velocity field.
These numerical results are compared with predictions from expressions by WJa
computed using this effective vortical region thickness. The second effective vortical
region thickness is used in the approach of WJa to predict the torque coefficient
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on the rotating body. This result is compared with the corresponding value from
the numerical simulations. In addition, predictions from the classical boundary-layer
analysis of Glauert (1957) are included and discussed along with the previous results.
Glauert’s approach does not require the thickness of the boundary layer to be
specified. Exhaustive comparisons are also presented and discussed in WJa and WJb.

2. Numerical features
The two-dimensional unsteady incompressible Navier–Stokes equations are the

governing expressions for the problem at hand. In dimensionless form, these equations
can be written as:

∂ ũ
∂t̃

+ ũ · ∇ũ = −∇p̃ +
1

Re
∇2ũ, (2.1)

and

∇ · ũ = 0, (2.2)

on a domain Φ with boundaries Λ and subject to appropriate boundary conditions.
The tilde designates dimensionless variables. Unless otherwise noted, the following
scales are considered to make the equations dimensionless:

[length, velocity, time, pressure] ≡
[
2a, U0,

2a

U0

, ρU 2
0

]
. (2.3)

Three relevant parameters computed from the velocity and pressure fields are the
drag, lift and torque coefficients, which represent dimensionless expressions of the
forces and torque that the fluid produces on the circular cylinder. These are defined,
respectively, as follows:

CD =
D

ρU 2
0 a

, CL =
L

ρU 2
0 a

, CT =
T

2ρU 2
0 a2

, (2.4)

where D is the drag force, L is the lift force and T is the torque with respect to the
centre of the cylinder.

The numerical solution of the governing system of partial differential equations
is carried out through the computational fluid dynamics package Fluent R© 6.1. This
computer program applies a control-volume method to integrate the equations of
motion, constructing a set of discrete algebraic equations with conservative properties.
The segregated numerical scheme, which solves the discretized governing equations
sequentially, is selected. An implicit scheme is applied to obtain the discretized system
of equations. The sequence updates the velocity field through the solution of the
momentum equations using known values for pressure and velocity. Then, it solves a
‘Poisson-type’ pressure correction equation obtained by combining the continuity and
momentum equations. A quadratic upwind interpolation for convective kinematics
(QUICK) scheme is used to discretize the convective term in the momentum equations.
Pressure-implicit with splitting of operators (PISO) is selected as the pressure-velocity
coupling scheme. Finally, the time integration of the unsteady momentum equations
is performed using a second-order approximation.

Although, from a mathematical point of view, the problem set-up imposes
boundary conditions at infinity, the numerical approach necessarily considers a finite
computational domain. Hence, there is an outer boundary where inflow and outflow
boundary conditions should be applied. Figure 1 shows the computational domain
and the reference frames selected for this study. We use a modified O-type mesh similar
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Figure 1. Scheme of the computational domain showing the Cartesian and polar reference
coordinate systems. The boundary conditions correspond to: Λ1, inflow; Λ2, outflow; Λ3,
zero-shear stress boundaries, and Λ4, wall with prescribed velocity and no-slip condition.

to that adopted by Kang et al. (1999). Other mesh types reported in the literature
are the C-type mesh referred to by Kang et al. (1999) and the square-type mesh used
by Mittal & Kumar (2003) in their finite-elements computations. An O-type mesh is
expected to save computational effort as compared with a C-type mesh or a square
mesh with sides of length H/a. In this study, the domain is partially delimited by two
arcs of a circle, one upstream of the cylinder and the other one downstream, and both
have the same radius H . The dimensionless radii of the upstream and downstream
arcs are determined as H̃ ≡ H/2a.

The boundary conditions applied in this investigation can be described as follows.
The left-hand arc Λ1 (figure 1) is the inflow section or upstream section, where a
Dirichlet-type boundary condition for the Cartesian velocity components, ũ = 1 and
ṽ = 0 is prescribed, i.e. the free-stream velocity is imposed. The right-hand arc Λ2

represents the outflow boundary, where it is considered that the diffusion flux in the
direction normal to the exit surface is zero for all variables. Therefore, extrapolation
from inside the computational domain is used to compute the flow variables at the
outflow plane, which do not influence the upstream conditions (see Fluent R© 6.1’s
User’s Guide for details about the numerical schemes and boundary conditions used
by the package). On the straight horizontal segments Λ+

3 and Λ−
3 , a zero normal

velocity and a zero normal gradient of all variables are prescribed. As a consequence,
a zero shear stress condition is imposed at these two boundaries. These relatively
short segments are two chords in a circle of radius H , parallel to the horizontal x-axis
and are symmetric with respect to the vertical y-axis. The sectors of the circle that
contain these segments have a span of 10◦ each. The inclusion of these segments
defines a transition region between the inlet and outlet sections, and can be thought
to be the adaptation to an O-type mesh of the zero-shear-stress upper and lower
boundaries, parallel to the free stream, that Mittal & Kumar (2003) used in their
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domain. Finally, the dimensionless pheripheral or tangential velocity q̃ is prescribed
on the surface of the rotating cylinder along with a no-slip boundary condition. The
cylinder rotates in the counterclockwise direction.

As initial condition in this numerical investigation, the values given to the velocity
components at the inflow section are extended over the interior of the computational
domain. Since we are focused on the fully developed flow, as Kang et al. (1999)
pointed out, the simulations may be started with arbitrary initial conditions. They
performed a numerical study with different initial conditions, including the impulsive
start-up, for Re = 100 and q̃ = 1.0 and the same fully developed response of the flow
motion was eventually reached in all cases. In contrast, solving the steady version
of the Navier–Stokes equations may yield multiple numerical solutions, depending
on the given Re and q̃ and the initial guess used to start the computations, as
was demonstrated from simulations carried out by Mittal & Kumar (2003). Keeping
the unsteady term in the equations of motion prevents the occurrence of unrealistic
predictions and permits us to acknowledge and describe the unsteady behaviour,
which is a major feature of the process of vortex shedding, when it occurs. For
instance, Tang & Ingham (1991) dropped the unsteady term of the Navier–Stokes
equations and found steady-state solutions for Re = 60 and 100 and 0 � q̃ � 1 where
experimental and numerical evidence indicates that unsteady periodic flow takes place
(e.g. Kang et al. 1999). The study of fully developed flows, where a periodic unsteady
state prevails, lies beyond the scope of this work. Here, the numerical experiments
are focused on the steady state (i.e. fully developed non-periodic) flow motion.

In order to find a suitable position for the outer boundary, such that it appropriately
approximates the real condition far from the surface of the rotating cylinder, different
values of the H̃ parameter are considered ranging from 50 to 175 with increments
of 25 units. For these grid sizes, a numerical study is performed for Re = 400 and
q̃ = 5 and Re = 1000 and q̃ = 3 to determine the variation of the lift, drag and
torque coefficients with the parameter H̃ (figure 2). From this figure, it is clear that
beyond H̃ = 75 the coefficients show an asymptotic behaviour; then, H̃ = 125 is
selected as the fixed radial position of the upstream and downstream arcs of the
circular outer boundary. This analysis is carried out with a dimensionless time step
of �t̃=0.02. This time step was chosen in agreement with Kang et al. (1999), while
Mittal & Kumar (2003) used a dimensionless time step of 0.0125. Since the segregated
method selected from the solver is implicit, no dependency on the time step occurs
in terms of numerical stability. With respect to the spatial step size, we assign the
value recommended by Mittal & Kumar (2003) for the thickness or radial step size
of the first layer of cells (i.e. cells attached to the wall), h̃a = 0.0025. A very fine
mesh is used around the cylinder, with the size of the cells gradually increasing as the
distance from the wall becomes larger. Following the approach of Chew et al. (1995),
a rough calculation using the Blasius solution for the boundary-layer thickness δ̃ for
flow past a flat plate, but with the Reynolds number based on the peripheral velocity
of the cylinder (i.e. δ̃ ∼ (π/q̃Re)1/2) indicates that this choice of the radial-spatial
step size provides a good resolution of the boundary-layer thickness. Table 1 gives
the parameters defining the various meshes considered in this analysis; Na is the
number of nodes in the circumferential direction. Tests of the sensitivity of simulation
results to mesh refinement were carried out using the meshes designated as M125
(lower �t̃) and M125b in table 1 for Re = 400 and q̃ = 5 and Re =1000 and q̃ =3.
The lift and torque coefficients do not change much under mesh refinement, but the
drag coefficient does change. The changes in the drag coefficient seem relatively large
because the coefficients are small, one or more orders of magnitude lower than the
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Figure 2. Influence of the dimensionless position of the outer boundaries (inlet and outlet)
H̃ on the lift, drag and torque coefficients for Re = 400 and q̃ = 5.0 (solid line with �) and
Re = 1000 and q̃ = 3.0 (dashed line with •).

Mesh Nodes Cells Na H̃ h̃a (×10−3) �t̃

M50 22 080 21 920 160 50 2.50 0.02
M75 24 160 24 000 160 75 2.50 0.02
M100 25 760 25 600 160 100 2.50 0.02
M125 26 880 26 720 160 125 2.50 0.01/0.02
M150 28 000 27 840 160 150 2.50 0.02
M175 29 120 28 960 160 175 2.50 0.02
M125b 50 820 50 600 220 125 1.25 0.01

Table 1. Properties of the meshes considered in the numerical simulations.

lift and torque coefficients (see tables 4 and 9). This issue is also addressed in the
next section. As a result of this systematic study, the mesh M125 from table 1 with
�t̃ = 0.02 was selected for our numerical experiments. All the results presented in the
forthcoming sections are computed using this mesh and time step. Figure 3 shows the
structure of a typical mesh (for H̃ = 125, mesh M125) which is more refined near
the wall.

3. Results and dicussion
In this section, we present the numerical results for streaming flow past a rotating

circular cylinder for various Re and q̃ . First, we validate our numerical set-up by
comparing results for selected cases with those from a previous publication. Then,
the streamlines and vorticity contours are plotted and discussed. Next, the shape and
extension of the vortical region around the rotating cylinder is addressed based on
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(a) (b)

Figure 3. O-type mesh used in the numerical simulations (M125). (a) Extended mesh.
(b) Close-up of the mesh around the cylinder.

the vorticity field obtained from the numerical experiments. The prediction of the
outer edge of the vortical region is accomplished imposing a cutoff value such that
the magnitude of the vorticity at this position approximates this critical value. The
outermost curve that satisfies this criterion is found. We also present the drag and
lift coefficients on the rotating cylinder as computed from the numerical simulations.
Since different positions of the outer edge of the vortical region can be obtained
by simply prescribing a different (and still reasonable) cutoff value, two alternative
effective values of the thickness of the vortical region are proposed for every pair of
Re and q̃ based on the agreement between the theoretical predictions by WJa and
the numerical results. The first effective thickness comes from matching the pressure
drag at the edge of the vortical region proposed by WJa with the corresponding
numerical profile, whereas the second effective thickness results from matching WJa’s
pressure lift on the surface of the cylinder with the respective numerical value. Each of
these two values of the effective vortical region thickness is used to compute various
parameters relevant to this type of fluid motion. For some of these parameters,
predictions from the theoretical approaches of Glauert (1957) and WJa are presented
for comparison.

3.1. Validation of the numerical approach

The first step is to validate the problem set-up, the choice of numerical methods
and mesh attributes by comparing results from our numerical simulations with
results obtained from the literature, provided the same conditions are imposed. This
comparison is performed with the numerical results of Mittal & Kumar (2003) for
Re = 200 with q̃ = 4 and 5 under the steady-state condition. The outcomes included
in the comparison are the lift and drag coefficients as defined in (2.4) as well as the
dimensionless vorticity and pressure coefficient on the surface of the rotating circular
cylinder. The dimensionless form of the vorticity is ω̃ = 2aω/U0, while the pressure
coefficient is defined as:

cp =
p − p∞

1
2
ρU 2

0

, (3.1)

where p∞ represents the pressure as the radial coordinate r goes to infinity and
p represents the pressure on the surface of the circular cylinder. In the numerical
simulations, the reference pressure p∞ is taken to be zero at the point where the axis
y = 0 intercepts the upstream boundary. In our simulations, it is verified that the
pressure tends closely to zero everywhere along the outer boundary of the domain.
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Present study Mittal & Kumar

Re q̃ CL CD CL CD

200 3 −10.3400 0.0123 −10.3660 0.0350
200 4 −17.5820 −0.1240 −17.5980 −0.0550
200 5 −27.0287 0.0107 −27.0550 0.1680

Table 2. Comparison between the lift and drag coefficients acting on the surface of the rotating
cylinder, CL and CD , computed in the present study with the results of Mittal & Kumar (2003).
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Figure 4. Dimensionless vorticity profiles on the surface of the rotating cylinder for Re = 200.
Present computations: solid line, q̃ = 3; dashed line, q̃ = 4; dash-dotted line, q̃ = 5. Results of
Mittal & Kumar (2003): �, q̃ = 3; �, q̃ = 4; �, q̃ = 5.

This result prevails since the free-stream conditions are approached on the outer
boundary.

Table 2 compares the lift and drag coefficients computed here with values given
by Mittal & Kumar (2003). We have already noted that the agreement for the lift
coefficient is good, but discrepancies in the values of the drag coefficient are larger;
the drag coefficients are so small that the relative errors are magnified. Figures 4 and 5
show that the dimensionless vorticity and pressure coefficient for Re = 200 with q̃ = 4
and 5 are in good agreement with slightly less good agreement for Re = 200 and
q̃ = 5 where the pressure coefficient on the upper surface of the cylinder (0◦ � θ �
180◦) is slightly disturbed. This behaviour may be related to the differences between
our results and those of Mittal & Kumar for the drag coefficient. The pressure
distribution around the surface of the cylinder contributes to the drag and the larger
discrepancies are evident at large values of q̃ . For the largest value of q̃ (= 5) the
differences in the computational strategies used here and by Mittal & Kumar (2003)
in terms of mesh shape and numerical schemes are most evident in the values of the
drag. We do not know which computational approach is more accurate.
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Figure 5. Pressure coefficient profiles on the surface of the rotating cylinder for Re = 200.
Present computations: solid line, q̃ = 3; dashed line, q̃ = 4; dash-dotted line, q̃ = 5. Results of
Mittal & Kumar (2003): �, q̃ = 3; �, q̃ = 4; �, q̃ = 5.

We have also solved the steady-state Navier–Stokes equations for the cases of
Re = 200 with q̃ = 4 and 5. The former case produces a stable solution that
converges to the same values obtained with the unsteady version of the equations
of motion. In contrast, the latter case does not converge to steady state. Mittal &
Kumar (2003) showed through a global non-parallel stability analysis of the solutions
of the steady-state Navier–Stokes equations that, depending on the initial guess,
instability of the solutions with respect to small disturbances occur for q̃ � 4.8 when
Re = 200. Hence, multiple solutions take place in this region. In our computations,
we monitor the trends of the lift, drag and momentum coefficients as functions of
time to determine the convergence of the solution to steady state.

3.2. Vortical region thickness from the numerical flow field

After the evaluation of the numerical set-up with results from the literature have been
accomplished, we compute the flow field for flow past a rotating circular cylinder for
Re = 400 with q̃ = 4, q̃ = 5 and q̃ = 6 and for Re = 1000 and q̃ = 3. In addition, the
computations for Re = 200 with q̃ = 4 and q̃ = 5, already used for comparison with
results presented in a previous publication, are also included in this data set. The
choice of this set of Reynolds number Re and peripheral speed q̃ for the numerical
simulations renders a gentle convergence to steady-state fully developed flow when the
unsteady incompressible Navier–Stokes equations are solved. For flow past a rotating
circular cylinder, the boundary layer remains attached to the surface of the cylinder
if the dimensionless peripheral velocity q̃ lies beyond a certain threshold so that
separation is avoided and vortex shedding is suppressed. As mentioned above, this
critical value of q̃ is a function of Re. Furthermore, the selected range of parameters
Re and q̃ is likely to avoid large inertia effects that yield transition to turbulence and
three-dimensional effects. A reasonable assumption, based on literature review and
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(a)  Re = 200, q~ = 4

(c)  Re = 400, q~ = 4

(e)  Re = 400, q~ = 6 ( f )  Re = 1000, q~ = 3

(d )  Re = 400, q~ = 5

(b)  Re = 200, q~ = 5

Figure 6. Streamlines for various pairs of Re and q̃ . The rotation of the cylinder is
counterclockwise while the streaming flow is from left to right. The stagnation point lies
above the cylinder. The stagnation point moves upwards as the peripheral speed q̃ increases
for a fixed Re.

previous computations (Chew et al. 1995), indicates taking q̃ � 6 as a limiting value.
However, this upper limit may be expected to be also a function of Re.

Figure 6 shows the streamline patterns for the various pairs of Re and q̃ considered
in this investigation. Notice that the stagnation point lies above the cylinder, in the
region where the direction of the free stream opposes the motion induced by the
rotating cylinder. As the dimensionless peripheral speed at the surface of the cylinder
increases, for a fixed Re, the region of close streamlines around the cylinder extends
far from the wall and, as a consequence, the stagnation point moves upwards. For
the lowest q̃ = 3, the region of close streamlines becomes narrow and the stagnation
point lies near the upper surface of the cylinder. The contours of positive and negative
vorticity are presented in figure 7. The positive vorticity is generated mostly in the
lower half of the surface of the cylinder while the negative vorticity is generated
mostly in the upper half. For the dimensionless peripheral speeds of q̃ = 3 and 4,
a zone of relatively high vorticity stretches out beyond the region neighbouring the
rotating cylinder for 0◦ � θ � 90◦, resembling ‘tongues’ of vorticity. Increasing q̃ , the
rotating cylinder drags the vorticity so the ‘tongues’ disappear and the contours of
positive and negative vorticity appear wrapped around each other within a narrow
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(a) Re = 200, q~   = 4

(c) Re = 400, q~  = 4

(e) Re = 400, q~  = 6 ( f ) Re = 1000, q~  = 3

 (d) Re = 400, q~  = 5

(b) Re = 200, q~  = 5

Figure 7. Vorticity contours for various pairs of Re and q̃ . The negative vorticity is shown as
dashed lines. The rotation of the cylinder is counterclockwise while the streaming flow is from
left to right.

region close to the surface. Based on the velocity and pressure fields obtained from
the simulations for the various Re and q̃ considered, the next step in this numerical
study is to identify the region where the vorticity effects are mostly confined. In a
classical sense, the term boundary layer has been reserved for a narrow or thin region,
attached to a solid surface, where the vorticity is non-negligible. The concept of a
boundary layer attached to a wall is linked to the idea of potential flow. Once the
boundary layer has been delimited, the analysis follows by applying the relatively
simple, but still powerful, theory of potential flow to approximate the external fluid
motion. Nevertheless, this approximation may become inadequate when separation
occurs. For flow past a stationary cylinder, separation is present near the downstream
end of the cylinder even at Re as low as 5 (Panton 1984). In contrast, for flow past
a rapidly rotating cylinder, the separation of the boundary layer can be suppressed
for a critical q̃ given Re. The Reynolds number based on the free-stream velocity
also plays an important role in the boundary-layer analysis. In this investigation, a
more general term, vortical region, is used to designate the region where the effects
of viscosity are mostly restricted. The vortical region may extend relatively far from
the surface where it is attached in opposition to the thinness implied in the classical
boundary-layer concept. A boundary layer is certainly a vortical region; however, a
relatively thick vortical region may or may not be regarded as a boundary layer.
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For the type of fluid motion considered in this investigation, the vortical region
lies in the fluid zone enclosed between the surface of the rotating circular cylinder
and a contour surrounding this solid cylinder, named the outer edge of the vortical
region. Beyond this surface, the effect of vorticity is regarded as negligible. As a first
approximation, we propose that the radial position of the outer edge of the vortical
region is determined such that, for a given angular position, the vorticity magnitude
is approximately 1% of the maximum value of the vorticity magnitude field. This
ad hoc 1% criterion is then applied to a set of discrete angular positions around the
rotating cylinder (0◦ � θ � 360◦), with a constant incremental angular step, using
the flow field obtained from the numerical simulations. Therefore, the radial position
of the outer edge of the vortical region as a discrete function of the azimuthal
coordinate θ can be determined for every pair of Re and q̃ . Since the 1% of the
maximum vorticity magnitude criterion may be satisfied at multiple radial positions,
for any given azimuthal position, the point with the largest r̃ among them is chosen
to determine the outer edge of the vortical region. The radial position of the outer
edge of the vortical region as a function of θ determines a non-constant thickness
of the vortical region. Hence, a profile of this thickness as a function of the angular
position can be generated.

For practical reasons, it is convenient to deal with a constant value of the radial
position of the outer edge of the vortical region and then with a constant vortical
region thickness. To find this uniform value, r̃δ , a straightforward choice is the average
of the discrete set of radial positions that defined the edge of the vortical region as
a function of θ from the previous methodology. Then, a uniform vortical region
thickness, δ1%/a, expressed in dimensionless fashion, is easily computed from the
simple geometric formula:

δ1%/a = 2r̃δ − 1. (3.2)

Figure 8 shows the thickness of the vortical region as a function of the azimuthal
coordinate as well as its average value for different pairs of Re and q̃ . In all the cases
considered, the vortical region is thick in the upper half of the cylinder (0◦ � θ �
180◦), where the fluid is retarded and the viscous effects are emphasized, while its
thickness decreases in the lower half (180◦ � θ � 360◦), where the fluid is accelerated.
For Re = 200 and 400 and q̃ = 4 and Re = 1000 and q̃ = 3, the graphs show
a prominent peak in the region 45◦ � θ � 90◦. This trend indicates that a region
of vorticity magnitude higher than 1% of the maximum vorticity magnitude in the
whole domain lies relatively far from the wall. For Re = 200 and q̃ = 5 and Re =
400 and q̃ = 5 and 6, the peak is replaced by a hump that reaches its maximum
by θ = 90◦. This result indicates that the region of high vorticity has been wrapped
around the cylinder as a consequence of the higher rotational speed. This is verified
in figure 7. In addition, the constant radial position of the vortical region edge r̃δ and
its corresponding vortical region thickness δ1%/a for various Re and q̃ are given in
table 3. These results reveal that the vortical region thickness is far from negligible for
all the cases. Moreover, it is shown in table 3 that, as q̃ increases for a fixed Re, the
average vortical region thickness δ1%/a decreases. By increasing the rotational speed
of the cylinder, the local Reynolds number near its wall also increases and the inertia
effects then become even more dominant than the viscosity effects, which turn out to
be confined to a smaller region. A similar reasoning applies to the trend observed for
a fixed q̃ , where δ1%/a decreases as Re increases.

The outer edge of the vortical region from the 1% criterion as a function of the
angular position θ for various pairs of Re and q̃ is presented in figure 9 along with
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Figure 8. Variable vortical region thickness as a function of the angular position θ (solid line)
for various pairs of Re and q̃ obtained applying the 1% criterion. In addition, the uniform
vortical region thickness δ1%/a (dashed line) computed as the average of the profile is included.
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Re q̃ r̃δ δ1%/a

200 4 0.771 0.541
200 5 0.685 0.369
400 4 0.695 0.390
400 5 0.630 0.260
400 6 0.605 0.210

1000 3 0.638 0.277

Table 3. Radial position of the outer edge of the vortical region r̃δ and thickness of the vortical
region δ1%/a based on the 1% of the maximum vorticity magnitude criterion for various pairs
of Re and q̃ .

Re = 200, q~ = 4 Re = 200, q~ = 5 Re = 400, q~ = 4

Re = 400, q~ = 5 Re = 400, q~ = 6 Re = 1000, q~ = 8

(a) (b) (c)

(d) (e) ( f )

Figure 9. Position of the outer edge of the vortical region based on the 1% criterion. The
thick-solid line represents the edge of the vortical region with variable thickness. The thick
dash-dotted line represents the edge of the vortical region with uniform thickness δ1%/a. The
thin-solid lines represent contours of positive vorticity while the thin-dashed lines represent
contours of negative vorticity. The contours show only levels of vorticity with magnitude
greater than or equal to 1% of the maximum vorticity magnitude in the fluid domain. The
rotation of the cylinder is counterclockwise while the streaming flow is from left to right.

the vorticity contours. The corresponding outer edge of the vortical region for a
uniform thickness δ1%/a is also included. Only levels of vorticity whose magnitude is
greater than or equal to 1% of the maximum vorticity magnitude in the fluid domain
are shown. Since the position of the outer edge of the vortical region is obtained
from a discrete set of angular positions, short sections of some iso-vorticity lines may
lie outside the non-constant thickness vortical region. The large spikes presented in
figure 8 are also represented here, corresponding to the regions of vorticity magnitude
greater than 1% that extend far from the cylinder in the interval 0◦ � θ � 90◦.

It is recognized that the criterion set to define the outer edge of the vortical
region is somewhat arbitrary. A new reasonable cutoff value can be prescribed and
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Re q̃ CL CLp
CLf

CD CDp
CDf

200 4 −17.5820 −16.9612 −0.6208 −0.1240 −0.7278 0.6038
200 5 −27.0287 −26.1826 −0.8460 0.0107 −0.8245 0.8352
400 4 −18.0567 −17.6095 −0.4472 −0.0836 −0.5341 0.4505
400 5 −27.0112 −26.4147 −0.5965 0.0100 −0.5912 0.6012
400 6 −33.7691 −33.0868 −0.6823 0.0136 −0.6677 0.6813

1000 3 −10.6005 −10.4085 −0.1920 −0.0155 −0.2129 0.1974

Table 4. Numerical results for the lift and drag coefficients, CL and CD , corresponding to
the forces acting on the cylinder. The decomposition of these values in their corresponding
components from pressure (CLp

and CDp
) and viscous shear stress (CLf

and CDf
) are included.

substantial differences may be found in terms of the position of the outer edge of
the vortical region, its thickness and its shape. Here, this preliminary criterion has
been introduced to show that a region can be delimited where the effects of vorticity
are circumscribed. This region is found to be attached to the rotating cylinder and
its outer edge varies with the polar angle, for a sufficiently large rotational speed.
In forthcoming sections, we motivate and establish new conditions that prescribe
the thickness of the vortical region founded on the agreement between theoretical
predictions and numerical results.

3.3. Drag and lift coefficients and pressure distribution from the numerical solution

The analysis of the forces that the fluid motion produces on the rotating cylinder
has been a topic of major importance in aerodynamics. For streaming flow past a
rotating cylinder, these forces have usually been presented in terms of two mutually
perpendicular components, a component aligned with the free-stream velocity vector,
the drag force, and a component perpendicular to this direction, the lift force. In
addition, the rotation of the cylinder induces a torque with respect to its centre
that deserves attention. It is also customary to express these forces and torque in
dimensionless form as coefficients. The form for the drag, lift and torque coefficients
adopted in this work were presented in (2.4). The results and discussion for the torque
coefficient will be given in a later section.

The numerical results for the total lift and drag coefficients corresponding to the
forces that the fluid motion produces on the rotating circular cylinder are presented
in table 4. The contributions to these values from the pressure and the viscous
shear stress are shown as well. The results for Re = 200 and q̃ = 4 and 5 from
table 2 are included for completeness. The results in table 4 indicate that the pressure
lift coefficient CLp

represents by far the largest contribution to the total lift CL, in
comparison with the shear stress lift coefficient CLf

. The pressure and shear stress
components of the lift force have the same direction as the total lift force, pointing
toward the negative direction of the y-axis in the current reference frame. By contrast,
the pressure drag coefficient CDp

and the shear stress drag coefficient CDf
show a

similar order of magnitude; however, these components of the total drag force point
in opposite directions, with the pressure drag force pointing toward the upstream
boundary (i.e. opposite to the direction of the free-stream velocity). The net effect of
the pressure and shear stress drag is a relatively small total drag coefficient whose
magnitude is, in all the cases considered, within 1% of the magnitude of the total
lift coefficient. For a constant value of Re, by increasing the peripheral velocity q̃
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the magnitude of the total lift coefficient, as well as the pressure and shear stress lift
coefficients increase. The same trend is observed with the magnitude of the pressure
and shear stress drag coefficients. By keeping q̃ constant, the increase of Re yields
an increase of the magnitude of the pressure lift coefficient, but a decrease in the
magnitude of the shear stress components of the lift and drag and the pressure drag
coefficients. It is also of interest to observe and analyse the trend followed by the
pressure distribution in the fluid domain, especially in the neighbourhood of the
rotating cylinder. Figure 10 shows the profiles of the pressure coefficient cp as defined
in (3.1) as a function of the radial coordinate for various Re and q̃ . For every pair of
Re and q̃ , the cp profiles for different angular positions are presented. The pressure
coefficient has been computed from the pressure field obtained from the numerical
simulations. The pressure coefficient as a result of the exact solution of the equations
of motion for purely rotary flow due to the spinning cylinder embedded in an infinite
fluid domain is presented as a reference level. The corresponding expression is

cp = − q̃2

4r̃2
, (3.3)

independent of the angular position θ . In all the cases considered, this solution for
cp always lies inside the extreme profiles corresponding to θ = 90◦ and θ = 270◦.
The graphs demonstrate that the pressure coefficient changes strongly near the wall,
inside the vortical region, resembling the tendency described by the purely rotary flow
solution, while becoming flat and tending slowly to zero as the radial coordinate r̃

approaches the outer boundaries. For a fixed peripheral speed q̃ , it is observed that
increasing Re has little effect on the pressure coefficient profiles. In contrast, for a
fixed Re, increasing q̃ expands the range of values that the pressure coefficient takes
for a given radial position. For instance, this trend can be monitored on the surface
of the rotating cylinder, r̃ = 0.5, and at the outer edge of the vortical region, r̃ = r̃δ ,
in figure 10. This tendency may be addressed in the frame of the irrotational flow
theory. The expression for the pressure coefficient distribution for potential flow past
a circular cylinder with circulation (dimensionless) Γ̃ (= Γ/2aU0) is recalled here:

cp =
cos2θ

2r̃2
− 1

16r̃4
− Γ̃ 2

4π2r̃2
+

Γ̃

π
sinθ

(
1

r̃
+

1

4r̃3

)
. (3.4)

It is clear from this expression that, for a fixed radial position, the amplitude of the
(sin θ) term increases when the circulation increases. Also, this theory predicts the
decrease of the mean value of cp when the circulation rises. It will be shown later
that the circulation increases when the peripheral speed q̃ increases. The tendencies
described by the classical irrotational theory for the pressure coefficient distribution
are followed by the numerical solution obtained in this investigation.

3.4. Effective vortical region thickness from the viscous correction of viscous
potential flow

The results from the numerical experiments carried out in this investigation as well as
from previous publications represent reliable information that can be used to evaluate
the prediction capabilities of theoretical approaches. In addition, theoretical models
can be used to achieve a better understanding of the numerical results and to extract
relevant information from the computations, which is not evident at first sight. For
these purposes, we focus on the work of WJa, who introduced a simple modification
of the boundary-layer solution proposed by Glauert (1957) to find new expressions
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Figure 10. For caption see facing page.
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for the pressure lift and torque on the cylinder and also applied their VCVPF theory
to find an expression for the pressure drag at the outer edge of the vortical region.

The viscous correction of viscous potential flow (VCVPF) theory adds an extra-
pressure term to the irrotational pressure at the edge of the boundary layer to
compensate the irrotational shear stress. Outside the boundary layer, the irrotational
flow of a viscous fluid is considered. WJa’s pressure correction is a 2π-periodic function
on a circle; they proposed to expand this pressure correction as a Fourier series. They
found an expression for the coefficient of the cos θ term of the Fourier series using
the VCVPF theory. The Fourier series expansion for the pressure correction can be
inserted in the definition of the drag due to pressure that the fluid outside the vortical
region produces on the outer edge of this zone. Then, an expression for the drag due
to pressure can be obtained as a function of the coefficient of the cos θ term of the
Fourier series. A brief review of this procedure is presented next.

The total drag force can be decomposed into its pressure and viscous shear stress
components. Let Dp denote the component of the drag force due to pressure. From
(2.3) and (2.4), we can express Dp as a drag coefficient:

CDp
=

Dp

ρU 2
0 a

. (3.5)

The pressure drag can be determined with direct integration from the pressure
distribution. Then, using (3.5), the pressure drag coefficient can be written as

CDp
= −

∫ 2π

0

2 p̃ cos θ r̃δ dθ. (3.6)

WJa decomposed the pressure as the summation of the irrotational pressure and a
pressure correction, p = pi +pv. Because the irrotational pressure does not contribute
to drag, (3.6) can be written in terms of the pressure correction only. The Fourier
series for the dimensionless pressure correction can be written as

−p̃v =

∞∑
k=0

(
C̃k cos k θ + D̃k sin k θ

)
. (3.7)

Inserting the Fourier series expansion on the azimuthal coordinate θ of the
dimensionless pressure correction (3.7) into (3.6), the drag coefficient due to pressure
becomes

CDp
=

∫ 2π

0

2 C̃1 cos2 θ r̃δ dθ, (3.8)

Figure 10. Pressure coefficient cp as a function of the radial position r̃ from the surface of
the rotating cylinder for various pairs of Re and q̃ for a fixed angle θ : 0◦, thin solid line; 45◦,
solid line with �; 90◦, dashed line; 135◦, dashed line with �; 180◦, dashed line with ◦; 225◦,
solid line with �; 270◦, dashed-dotted line; 315◦, dashed line with ×. The pressure coefficient
profile given in (3.3) from the exact solution of the equations of motion for a purely rotary
flow due to the spinning of the cylinder under the absence of the free stream is also presented
(thick solid line). This pressure profile is independent of θ . The average position of the outer
edge of the vortical region r̃δ corresponding to the 1% criterion is included (vertical dashed
line).
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where the orthogonality property of sines and cosines has been applied. Integrating
(3.8) we obtain

CDp
= 2 π r̃δ C̃1. (3.9)

By equating the power of the pressure correction with the power of the shear stress
discrepancy, WJa found an expression for the coefficient C̃1. Substitution into (3.9)
yields an expression for the pressure drag coefficient

CDp
=

8π

Re
. (3.10)

Notice that (3.10) is independent of the tangential velocity q̃ .
The outer edge of the vortical region was identified such that the vorticity magnitude

at this position is approximately 1% of the maximum vorticity magnitude. The choice
of this cutoff value was rather arbitrary and it is acknowledged that moderate changes
on this percentage may produce large variations in the thickness and shape of the
vortical region. The introduction in this section of the expression for the pressure
drag coefficient by WJa motivates an alternative way of specifying the thickness of
the vortical region δ/a. This approach is explained in the oncoming paragraphs.

Using the flow field obtained from the numerical simulations, the numerical value of
the pressure drag coefficient CDp

can be computed on a cylindrical surface concentric
with the rotating circular cylinder integrating numerically the pressure field at this
radial position. In other words, we propose to compute the following integral

CDp
= −

∫ 2π

0

2 p̃ cos θ r̃ dθ, (3.11)

for several radial positions r̃ , based on the pressure distribution determined in the
numerical solution. The radial position of the outer edge of the vortical region r̃δ is
thus determined by the value of r̃ for which the numerical pressure drag coefficient
CDp

integrated from (3.11) matches the theoretical value obtained in (3.10) for the
pressure drag coefficient at the outer edge of the vortical region as obtained from
the VCVPF theory of WJa. The value predicted in (3.10) actually determines two
interceptions with the numerical profile, one close to the wall and one far from the
wall. In all cases, the interception close to the wall was chosen to set the position of
the outer edge of the vortical region, r̃δ . Hence, an effective value of the thickness
of the vortical region δD/a is defined (designated as δD1

/a in WJa). Nevertheless, the
outer interception determines drag due to pressure on that large circle. In the region
close to the second interception, the numerical profile CDp

versus r̃ flattens out (see
figure 11) and the value defined in (3.10) fairly describes the numerical results.
This second interception is discussed in more detail by WJa, who designate the
corresponding thickness of the vortical region as δD2

/a in their work.
The pressure drag coefficient CDp

computed from the numerical solution using (3.11)
as a function of r̃ is presented in figure 11 for various Re and q̃ . Its magnitude tends
to zero slowly as r̃ goes to the outer boundaries. For the pressure drag coefficient,
the graphs reach a maximum close to the wall. Then, the drag coefficient starts
decreasing as r̃ increases. Also, it is remarkable that the pressure drag force changes
its direction when r̃ changes. Close to the wall, the drag force points in the opposite
direction of the free-stream velocity vector. By increasing r̃ , the drag force reaches
a magnitude of zero and then changes its direction. In addition, figure 11 shows the
radial position (symbol •) closest to the wall where the predictions by the model of
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Figure 11. Pressure drag coefficient CDp
as a function of the radial position r̃ (solid line)

as computed from the numerical solution using (3.11) for various Re and q̃ . The symbol •
indicates the theoretical value of CDp

as predicted from (3.10) proposed by WJa for the radial
position of the outer edge of the vortical region where their theory and the numerical results
coincide.

WJa for the pressure drag coefficient at the edge of the vortical region (3.10) intercept
the numerical profiles.

Table 5 shows the results for the radial position r̃δ and the thickness of the vortical
region δD/a corresponding to the described interception. As observed previously with
the results from the 1% criterion, for a fixed Re, increasing the peripheral speed q̃

yields the decrease of the radial position r̃δ and the corresponding thickness of the
vortical region δD/a. Moreover, for a fixed q̃ , the increase of Re also decreases r̃δ and,
hence, δD/a. In addition, table 5 includes the results for the pressure drag coefficient
from (3.10) by WJa at the edge of the vortical region r̃δ , which are the same as the
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ω̃ magnitude CDp
by WJa and from

Re q̃ r̃δ δD/a ratio (%) numerical simulations

200 4 0.580 0.161 13.05 0.1257
200 5 0.542 0.084 14.61 0.1257
400 4 0.542 0.083 18.15 0.0628
400 5 0.528 0.055 20.82 0.0628
400 6 0.524 0.047 20.66 0.0628

1000 3 0.528 0.055 20.43 0.0251

Table 5. Radial position of the outer edge of the vortical region r̃δ and corresponding effective
vortical region thickness δD/a for which the pressure drag coefficient CDp

at the edge of the
vortical region by WJa given in (3.10) matches the numerical profile obtained with (3.11) for
various pairs of Re and q̃ . These values of r̃δ represent the interception close to the wall. The
respective values of CDp

are presented as well. In addition, the percentages of the maximum
vorticity magnitude corresponding to the values of r̃δ and δD/a according to the procedure
described in the previous section to define the edge of the vortical region are included.

values determined through numerical integration of (3.11) for r̃δ . Figure 11 indicates
the interceptions estimated for every pair of Re and q̃ . In the case of the analysis due
to Glauert (1957), it predicts a zero pressure drag coefficient, which is the outcome
from the classical irrotational flow past a circular cylinder with circulation. Table 5
also presents the percentage of the maximum vorticity magnitude corresponding to
the value of δD/a for the respective pair of Re and q̃ according to the procedure
set in the previous section to define the edge of the vortical region. In other words,
if the former criterion were used, the percentages indicated in table 5 would have
to be prescribed in order to obtain the same uniform (average) radial position and
uniform (average) vortical region thickness. In each case, the percentage is greater
than 1% and, therefore, the uniform vortical region thickness δD/a is thinner than
the corresponding thickness attained with the former 1% criterion (see table 3) since,
roughly speaking, the vorticity magnitude declines as the distance from the surface of
the cylinder increases. For the second interception, the respective percentages of the
maximum vorticity magnitude (not shown in table 5) lie within the interval 0.003%
and 1%. The effect of the rotation of the cylinder on the irrotational flow of a viscous
fluid outside the vortical region can be rendered through the circulatory velocity at
the edge of the vortical region. For potential flow past a circular cylinder of radius a

with circulation Γ (= 2aU0Γ̃ ), the circulatory velocity Q̃ at any radial position r � a

is obtained directly from the corresponding expression for the tangential velocity field.
It is defined as,

Q̃ ≡ Γ

2πrU0

=
Γ̃

2πr̃
, (3.12)

in dimensionless form. If the existence of a vortical region attached to the surface
of the cylinder comes into play, outside this region, irrotational flow of a viscous
fluid can be assumed and (3.12) holds in this external zone. In particular, at the
outer edge of the vortical region r̃δ , the circulatory velocity is designated as Q̃δ . From
the numerical solution, the tangential velocity field can be specified for the whole
domain. Knowing a set of discrete values for the dimensionless tangential velocity
profile on the edge of the vortical region r̃δ , the dimensionless circulatory velocity Q̃δ

is obtained applying a discrete Fourier transform. The term in the discrete Fourier
series independent of θ approximates Q̃δ (i.e. the arithmetic average of the set of
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Q̃δ from
numerical Q̃δ by

Re q̃ simulations Q̃δ by WJa Glauert (1957)

200 4 2.6383 2.6543 3.1994
200 5 4.1270 3.9884 4.3741
400 4 2.9873 2.8930 3.1994
400 5 4.2768 4.1102 4.3741
400 6 5.3669 5.2108 5.4850

1000 3 2.1941 1.7267 1.8800

Table 6. Comparison between the circulatory velocity Q̃δ at the edge of the vortical region
from the numerical simulation with predictions from (3.14) proposed by WJa and from
(3.13) presented by Glauert (1957) for various Re and q̃ . The value of Q̃δ from the numerical
simulations is obtained as the average of a set of discrete values of the dimensionless tangential
velocity field at the outer edge of the vortical region, r̃δ . The radial position of the outer edge
of the vortical region r̃δ is determined by matching the value of CDp

by WJa in (3.10) with the
corresponding numerical profile from (3.11). These values of r̃δ and the respective thicknesses
δD/a are given in table 5 and correspond to the interception close to the wall.

discrete values for the tangential velocity). The reason is that the tangential velocity
profile for potential flow past a circular cylinder with circulation is a constant minus
a term proportional to sin θ for a fixed radial position. By definition, this constant
term represents Q̃δ and, hence, the circulatory velocity may be approximated by the
constant term of the Fourier series for the tangential velocity.

Glauert (1957) proposed a series solution that relates the circulatory velocity Q̃δ

with the cylinder tangential velocity q̃:

Q̃δ

q̃
= 1 − 3

q̃2
− 3.24

q̃4
. . . . (3.13)

Through his analysis, Glauert considered a very thin boundary layer, thus neglecting
its thickness. Therefore, the circulatory velocity Q̃δ is required at the surface of the
rotating cylinder in the context of Glauert’s formulation.

WJa presented an expression for Q̃δ as a result of the simple modification of
Glauert’s boundary-layer analysis to account for the effect of the irrotational rotary
component of the flow of a viscous fluid in the interior of the vortical region.

Q̃δ

q̃
=

1

1 + δ/a
− 3

q̃2
− 3.23

q̃4

(
1 − 0.803

δ

a

)
. . . . (3.14)

This expression takes into account a non-zero vortical region thickness, δ/a. Then,
an appropriate value for this parameter is required. The expressions (3.13) and (3.14)
by Glauert (1957) and WJa, respectively, represent two different ways of linking the
circulatory velocity at the edge of the vortical region and thus the circulation of the
irrotational flow of a viscous fluid with the actual peripheral speed at the surface of
the rotating cylinder. These expressions stem from the analysis of the boundary layer
around the rotating body.

Table 6 shows the numerical results for Q̃δ at the edge of the vortical region and
the comparison with the predictions of (3.14) by WJa and also with Glauert’s solution
(3.13) for various Re and q̃ . The numerical results and the predictions from WJa
are determined using the vortical region thickness δD/a obtained from matching CDp

given in (3.10) with the corresponding numerical profile from (3.11). These values of
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δD/a were given in table 5 and represent the interception close to the wall. Table 6
indicates that the values predicted using (3.14) due to WJa and the values computed
from Glauert’s series reasonably approach the results obtained from the numerical
simulations for every pair of Re and q̃ . Notice that the greatest discrepancy between
the predictions of WJa and the numerical results occurs for Re = 1000 and q̃ = 3,
which is the lowest rotational speed considered. WJa point out that for this pair of Re

and q̃ , their model and the model of Glauert (1957) are not anticipated to approach
the true values for CLp

and CT since the predicted Q̃δ < 2 and separation is likely
to occur. In the case of Glauert’s predictions, the largest relative difference occurs
for the lowest Re, i.e. Re = 200, and q̃ = 4. This may be considered the case where
the vorticity effects become more accentuated. For the various pairs of Re and q̃ , the
observed discrepancies between the theoretical predictions and the numerical results
may be influenced by the fact that the vortical regions being considered are quite
thick, whereas the theoretical development proposed by Glauert (1957) neglects the
boundary-layer thickness. Similarly, the approach by WJa, even though introducing
the vortical region thickness δ/a in the expressions for Q̃δ and CDp

, still assumes δ/a 	
1. It is also noteworthy that for a fixed q̃ , the circulatory velocity at the edge of the
vortical region Q̃δ increases with the rise of Re. While this trend is followed by
the approach of WJa, the predictions of the model proposed by Glauert (1957)
are unaffected by the value of Re. For a fixed Re, the numerical results and both
theoretical results increase as q̃ increases.

3.5. Viscous dissipation

The dissipation represents the work done by the internal viscous stress. The dissipation
may be defined by the following expression

D ≡
∫

V

2µD: D dV. (3.15)

In dimensionless form, this expression becomes,

D̃ ≡
∫

Ṽ

2

Re
D̃: D̃ dṼ , (3.16)

where D̃ is the dimensionless rate of strain tensor.
The evaluation of (3.16) is performed numerically using the velocity field determined

from the numerical experiments. The domain is split into two zones: inside the vortical
region and outside the vortical region. The dissipation values computed in each region
add up to the total dissipation.

WJa showed that the dissipation for the irrotational flow of a viscous fluid past a
circular cylinder with circulation can be computed as

D̃ =
8π

Re

(
1 + 2r̃2

δ Q̃
2
δ

)
, (3.17)

in dimensionless form. The product r̃δQ̃δ is proportional to the dimensionless
circulation (see identity (3.12)), which, for potential flow, is constant over any contour
enclosing the rotating circular cylinder. Since WJa proposed expression (3.14) to
compute the circulatory velocity at the edge of the vortical region Q̃δ , the circulation
is determined from (3.12) using this value at the corresponding position r̃δ . In this
case, the radial position of the outer edge of the vortical region r̃δ is determined by
matching CDp

as proposed by WJa in (3.10) with the corresponding numerical results
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D̃ from numerical simulations

Re q̃ Inside VR Outside VR Total D̃ by WJa

200 4 1.1867 0.5594 1.7461 0.7213
200 5 1.2701 1.3000 2.5701 1.3001
400 4 0.6659 0.3881 1.0541 0.3718
400 5 0.7608 0.7191 1.4798 0.6547
400 6 0.8289 1.0533 1.8822 0.9997

1000 3 0.2322 0.1128 0.3451 0.0669

Table 7. Comparison between the numerical results for the dissipation D̃ determined through
numerical integration of (3.16) and the predictions from (3.17) proposed by WJa assuming
irrotational flow of a viscous fluid in the entire domain for various Re and q̃ . Computed
contributions from inside and outside the vortical region (VR) are included. The radial
position of the outer edge of the vortical region r̃δ is determined by matching CDp

given by
the approach of WJa in (3.10) and the corresponding numerical results computed from (3.11).
These values of r̃δ and their respective thicknesses δD/a represent the interception close to the
wall. Their magnitudes are given in table 5.

obtained from (3.11). These values of r̃δ correspond to the interception close to the
wall and give rise to the thickness δD/a.

Table 7 shows the computed results for the viscous dissipation obtained with (3.16)
for the whole computational domain along with the predictions of (3.17). For this
case, the dimensionless circulatory velocity Q̃δ on the edge of the vortical region is
specified from (3.14) as presented in the work of WJa. The results are presented for
various Re and q̃ . The contributions from inside and outside the vortical region to the
dissipation as computed through (3.16) are included as well. The theoretical results
included in table 7 are closer to the viscous dissipation computed numerically in the
region outside the vortical region than to the total numerical dissipation computed
in the whole fluid domain. Moreover, the numerical viscous dissipation computed in
the whole fluid domain is significantly greater than the theoretical prediction in all
the cases. This trend may be explained by the fact that (3.17) is obtained by WJa
considering irrotational flow of a viscous fluid in the whole domain, thus neglecting
the thickness of the vortical region. Then, the predicted values are anticipated to be
lower than the computed values for the total viscous dissipation, which incorporates
the contribution from the vortical region. Furthermore, for a fixed Re, the dissipation
values computed from the numerical simulations and the predicted ones increase
when q̃ increases. The trend is reversed for a fixed q̃ while increasing Re, yielding
attenuation of the viscous effects.

3.6. Pressure lift and torque on the rotating cylinder

One of the most important features regarding the streaming flow past a rotating
circular cylinder is the generation of lift on this body. This phenomenon is usually
known as the Magnus effect. As mentioned above, the total lift generated on
a body can be decomposed into its pressure and friction components. Glauert
(1957) calculated the pressure lift coefficient from the classical expression used in
aerodynamics:

CLp
=

ρU0Γ

ρU 2
0 a

= 2Γ̃ , (3.18)
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CLp
by WJa and from CLp

by
Re q̃ r̃δ δL/a numerical simulations Glauert (1957)

200 4 0.573 0.145 −16.9612 −20.1023
200 5 0.522 0.043 −26.1826 −27.4832
400 4 0.556 0.112 −17.6095 −20.1023
400 5 0.518 0.035 −26.4147 −27.4832
400 6 0.519 0.038 −33.0868 −34.4633

1000 3 0.542 0.084 −10.4085 −11.8124

Table 8. Radial position of the outer edge of the vortical region r̃δ and the corresponding
thickness of the vortical region δL/a determined by matching the numerical result for the
pressure lift coefficient CLp

on the cylinder with (3.20) proposed by WJa for various pairs
of Re and q̃ . The theoretical predictions from the analysis of Glauert (1957) for CLp

on the
cylinder according to (3.19) are also presented.

where Γ = 2aU0Γ̃ . Using identity (3.12), the dimensionless circulation Γ̃ can be
expressed as a function of Q̃δ . Since Glauert’s approach neglects the thickness of the
vortical region, the circulatory velocity Q̃δ given in (3.13) is determined on the surface
of the rotating cylinder. For this position, (3.18) becomes

CLp
= 2πQ̃δ, (3.19)

where Q̃δ is determined from (3.13) obtained by Glauert.
The simple modification of Glauert’s model by WJa yields the following expression

for the pressure lift coefficient on the surface of the circular cylinder:

CLp
= 2πq̃

[
1

1 + δ/a
− 3

q̃2
− 3.23

q̃4

(
1 − 0.803

δ

a

)]
. (3.20)

A new effective vortical region thickness can be determined from (3.20) using the
value of CLp

on the rotating cylinder from the numerical results. This approach is
also discussed by WJa. This new effective vortical region thickness is designated as
δL/a. Then, δL/a corresponds to the thickness for which the pressure lift on the
rotating cylinder predicted by WJa equals the corresponding numerical result (see
table 4). Table 8 presents the results for the vortical region thickness δL/a and the
respective radial positions r̃δ . As Re increases, δL/a decreases for a fixed q̃; as q̃

increases for a fixed Re, δL/a generally decreases. The values of δL/a given in table 8
show the same order of magnitude as the values of δD/a from table 5 which we
determined by matching the theoretical pressure drag coefficient CDp

at the edge of
the vortical region from WJa and the corresponding numerical results. Table 8 also
includes the predictions from Glauert’s model for CLp

on the rotating cylinder. The
results indicate that the value of CLp

determined numerically and the predictions
increase as the peripheral speed q̃ increases, for a fixed Re. Previous results have
shown that the circulatory velocity at the edge of the vortical region Q̃δ increases
with q̃ (table 6). Since the circulation Γ̃ is proportional to Q̃δ , as indicated in (3.12),
CLp

increases with q̃ . A similar trend is observed when q̃ is fixed and Re increases,
except for Glauert’s results. Although it is not explicit in (3.14) and (3.20), WJa’s
approach indeed takes into account the effect of Re in the pressure lift coefficient
through the vortical region thickness δ/a. In contrast, not only is Glauert’s expression
for the circulatory velocity at the edge of the vortical region Q̃δ explicitly independent
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CT from
numerical CT by

Re q̃ simulations CT by WJa Glauert (1957)

200 4 0.4527 0.3895 0.2149
200 5 0.5139 0.4655 0.1945
400 4 0.2750 0.2372 0.1520
400 5 0.2965 0.2724 0.1376
400 6 0.3156 0.2986 0.1264
1000 3 0.1182 0.0632 0.1081

Table 9. Comparison between the numerical results for the torque coefficient CT on the
rotating cylinder and the theoretical values obtained with (3.22) proposed by WJa and with
(3.21) presented by Glauert (1957) for various Re and q̃ .

of Re but also independent of δ/a; then, the pressure lift coefficient in (3.19) does
not change with Re.

In their new boundary-layer analysis, WJb calculate the friction drag and lift on
the rotating cylinder. These results are not presented in the work of Glauert (1957),
although they can be determined from his analysis with no trouble (WJa).

The torque coefficient on the rotating cylinder is determined computing the torque
with respect to the centre of the cylinder created on this body by the surrounding fluid
through numerical integration of the viscous shear stress at the surface of the cylinder.
The torque coefficient was defined in (2.4). The numerical results for the torque
coefficient are presented in table 9. Results from the dimensionless form of the expres-
sion given by Glauert (1957) for the torque are included as well. This expression can
be written as

CT =
2π√
Re

(
q̃−1/2 − 0.522q̃−5/2

)
. (3.21)

In addition, WJa obtained an expression for the torque in their simple modification
of Glauert’s analysis. In dimensionlees form, this expression becomes,

CT = 4π

(
1 +

δ

a

)
Q̃δ

Re
+

2π√
Re

(
Q̃

−1/2
δ − 2.022Q̃

−5/2
δ + . . .

)
. (3.22)

Results from (3.22) are also included in table 9 using the predicted value of the
circulatory velocity at the outer edge of the vortical region Q̃δ given by (3.14). WJa
indicate that the torque coefficient is not sensitive to the value of δ/a for δ/a 	 1. Here,
the value of the vortical region thickness δL/a as determined from the pressure lift co-
efficient CLp

on the cylinder is used to compute the torque coefficient CT from (3.22).
Table 9 indicates that both theoretical approaches underpredict the numerical

results for the torque coefficient on the cylinder in all the cases. However, the
results from the modified approach by WJa are closer to the numerical values
than the predictions from Glauert (1957) and, moreover, represent a fairly good
approximation, with the exception of Re = 1000 and q̃ = 3. This case corresponds
to the lower peripheral speed considered in this investigation. As mentioned above,
since the predicted Q̃δ < 2 for Re = 1000 and q̃ = 3, the models of Glauert
(1957) and WJa are not expected to approximate the true results for CLp

and CT

(see table 6) and separation is likely to occur (WJa). Differences between the results
from computations and the theoretical predictions may in part stem from the non-
negligible vortical region thickness rendered by the numerical solution. The vortical
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Re q̃ δD/a CLp
by WJa CT by WJa

200 4 0.161 −16.6636 0.3878
200 5 0.084 −25.0646 0.4658
400 4 0.083 −18.1886 0.2386
400 5 0.055 −25.8452 0.2728
400 6 0.047 −32.7638 0.2989
1000 3 0.055 −10.8624 0.0718

Table 10. Results for the pressure lift coefficient CLp
and the torque coefficient CT on the

cylinder computed from (3.20) and (3.22), respectively, using the effective vortical region
thickness δD/a determined by matching the pressure drag coefficient at the edge of the vortical
region from (3.10) with the corresponding numerical profile from (3.11). These results show
good agreement with the values of CLp

and CT shown in tables 8 and 9, respectively, obtained
using the effective thickness δL/a from table 8.

region thickness is neglected in Glauert’s analysis and is only taken into account in
the approximation proposed by WJa through the irrotational rotary component of
the velocity in the vortical region. Furthermore, for a fixed value of the dimensionless
peripheral speed q̃ the torque coefficient determined from the numerical solution
and the predictions from the models consistently decrease as Re increases. In this
case, the increase in Re indicates that the effects of viscosity are lessened and, as a
consequence, the torque produced by the viscous shear stress acting on the surface
of the cylinder decreases its magnitude. For a fixed Re, the increase of q̃ produces
the increase in the torque coefficient from the numerical results and the predictions
from the approach of WJa. Surprisingly, Glauert’s predictions follow a non-physical
opposite trend. Comparing the expressions for the torque coefficient by Glauert and
by WJa, (3.21) and (3.22), respectively, a term proportional to the product (1+δ/a)Q̃δ

emerges in the latter model. Since Q̃δ increases as q̃ rises, this term is responsible for
the correct tendency shown by the approach of WJa.

It was mentioned that the values of the effective vortical region thickness δD/a

(table 5), obtained by matching CDp
in (3.10) with the corresponding numerical

profile, and the values of δL/a (table 8), the vortical region thickness determined
by matching CLp

on the cylinder from (3.20) with the respective numerical result,
showed a similar order of magnitude. The latter effective thickness was used to
compute the values of the pressure lift coefficient CLp

and the torque coefficient
CT on the surface of the cylinder. Table 10 presents the values of CLp

and CT on
the rotating cylinder computed from (3.20) and (3.22), respectively, with the effective
thickness δD/a. Comparing these results with the values of CLp

and CT on the cylinder
obtained with δL/a shown in tables 8 and 9, respectively, fair agreement among them
is observed. Therefore, the pressure drag coefficient CDp

at the edge of the vortical
region, the pressure lift coefficient CLp

on the cylinder and the torque coefficient CT

on the cylinder can be computed using a unique effective thickness δD/a for every
pair of Re and q̃ . Then, it may be said that the two main contributions from the
work of WJa, to wit, the VCVPF calculation and the simple modification of Glauert’s
solution, are bridged by the effective thickness δD/a.

4. Concluding remarks
We presented results from the numerical simulations of the two-dimensional

incompressible Navier–Stokes equations for streaming flow past a rotating circular
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cylinder. The numerical solution of the governing equation was accomplished by
means of a commercial computational fluid dynamics package. The numerical
experiments were performed for various pairs of Reynolds numbers based on the
free-stream velocity Re and dimensionless peripheral speed q̃ , namely, Re = 200 with
q̃ = 4 and 5; Re = 400 with q̃ = 4, 5 and 6, and Re = 1000 with q̃ = 3. Based on
the literature review and previous computations, these values were selected to avoid
separation of the vortical region attached to the rotating cylinder, three-dimensional
effects and transition to turbulence. From the numerical solution, the vorticity field is
computed and used to estimate, through an ad hoc criterion, the annular region with
thickness δ1%/a around the cylinder where vorticity is significant.

Two alternative effective thicknesses of the vortical region are proposed based on
the agreement between two parameters presented in the approach of WJa and the
corresponding results for every pair of Re and q̃ . The first effective thickness δD/a

comes forward by matching the drag coefficient due to pressure CDp
at the outer

edge of the vortical region, determined from VCVPF, with the respective profile
computed by numerical integration of the pressure field for different radial positions.
The second effective thickness of the vortical region δL/a is attained by matching
the theoretical lift coefficient due to pressure CLp

on the rotating cylinder with the
respective numerical results. With either δD/a or δL/a, the vortical region is again
modelled as an annulus concentric with the rotating cylinder.

The effective thickness δD/a is used to compute the circulatory velocity at the
outer edge of the vortical region and the viscous dissipation inside and outside the
vortical region. These results are compared with predictions from WJa using δD/a.
The effective thickness δL/a is applied in the torque coefficient expression for the
cylinder presented by WJa and their results are compared with the numerical values.
Furthermore, predictions from the classical boundary-layer analysis of Glauert (1957)
are also considered for comparison. Glauert’s analysis does not depend upon the
thickness of the boundary layer. Some of these results are summarized below.

(i) The values of the effective thicknesses δD/a and δL/a share the same order of
magnitude for every pair of Re and q̃ . These two effective thicknesses are thinner
than the corresponding values of the uniform thickness δ1%/a obtained from the
former criterion for all the cases. The trends described by δD/a and δL/a when the
parameters Re and q̃ are varied in turn generally follow the tendencies shown by the
former uniform thickness δ1%/a. For a fixed Re, increasing the peripheral speed q̃

decreases the thickness of the vortical region. This trend is also observed when Re

increases for a fixed q̃ .
(ii) The predictions of the circulatory velocity at the outer edge of the vortical region

Q̃δ from WJa using δD/a and from Glauert’s analysis reasonably approximate the
numerical results. When Re is fixed and q̃ increases, Q̃δ increases in both, numerical
and theoretical results. For a fixed q̃ , the numerical value of Q̃δ increases as Re rises.
The approach of WJa follows this trend while Glauert’s solution does not change
with Re. Each of these approaches for Q̃δ represents two different links between the
circulation of the potential flow outside the vortical region and the peripheral speed
of the cylinder q̃ .

(iii) The viscous dissipation is predicted in the whole fluid domain by WJa assuming
irrotational flow of a viscous fluid. These results are fairly close to the numerical results
integrated over the subdomain outside the vortical region and substantially lower than
the numerical results for the entire fluid domain, which includes the numerical viscous
dissipation in the vortical region. The values of the viscous dissipation determined
either from the approach of WJa or from the numerical simulations increase as q̃
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increases for a fixed Re. The opposite tendency is followed when Re increases as q̃

remains fixed, hence, lessening the viscous effects.
(iv) The numerical results for the pressure lift coefficient CLp

, which, obviously,
coincide with the predictions of WJa computed with the effective thickness δL/a, and
the results from Glauert’s solution increase when q̃ rises for a fixed Re. This trend is
also followed by the circulation of the irrotational flow which explains the rise in CLp

.
The same tendency is observed on the numerical results and, thus, on the predictions
of WJa computed with δL/a when q̃ is fixed and Re increases, but it is not followed
by Glauert’s approach which is independent of Re. The dependency of WJa’s model
upon the vortical region thickness indirectly considers the effect of Re.

(v) The approaches of WJa, using the effective thickness δL/a, and Glauert (1957)
underpredict the values of the torque coefficient CT on the cylinder determined
numerically. Nevertheless, the results of the former model are fairly close to the
numerical values and represent better predictions than the results from the latter
one with the exception of Re = 1000 and q̃ = 3. For a fixed value of q̃ , increasing
Re decreases the numerical and theoretical values of CT . Increasing q̃ for a fixed
Re yields the increase of the numerical value of CT and that predicted by WJa. By
contrast, Glauert’s approach shows an opposite non-physical tendency. The simple
modification of Glauert’s solution in the work of WJa allows for their model to follow
the physical trend by taking into account the irrotational rotary component of the
flow inside the boundary layer.

(vi) Finally, the theoretical values of the pressure lift coefficient CLp
and the torque

coefficient CT on the cylinder by WJa’s approach, computed with the effective vortical
region thickness δD/a, are in close agreement with the former results obtained with
the effective thickness δL/a. Therefore, a unique effective thickness δD/a can be used
to compute the parameters CDp

at the edge of the vortical region, CLp
on the rotating

cylinder and CT on the rotating cylinder using the expressions proposed by WJa.
We have shown that, with the choice of the thickness δD/a as a unique effective

thickness, the simple modification of Glauert’s boundary-layer analysis and the viscous
correction of viscous potential flow (VCVPF) applied to balance the shear stress
discrepancy at the outer edge of the vortical region as proposed by WJa, lead to
expressions that exhibit better general agreement with the numerical results than
Glauert’s original solution. This work provides a novel approach for future studies
that attempt to focus on the analysis of boundary layers through computational fluid
dynamics.
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