mathieu-rk-apr30.tex 1

Solution of Mathieu’s equation by Runge-Kutta
integration

T.Funada,* J.Wang,” D.D.Joseph,™ N.Tashiro,* Y.Sonoda*

*Department of Digital Engineering, Numazu College of Technology, 3600 Ooka, Numazu, Shizuoka, 410-8501,
Japan "Department of Aerospace Engineering and Mechanics, University of Minnesota, 110 Union St. SE,
Minneapolis, MN 55455, USA

In this note we shall show that Mathieu’s equation for z(t)
&+ [p—2qcos(2t)]z =0
may be efficiently and accurately integrated by the Runge-Kutta (RK) method under the initial conditions
r=1, a=0
for the even Mathieu functions ce,(t,q) — cos (nt) as ¢ — 0 and
r=0, @=1

for the odd Mathieu functions se,,(¢,¢) — sin (nt) as ¢ — 0.

1 Some properties of the Mathieu functions

The properties of Mathieu’s functions which we shall generate by RK integration are very briefly described in

the caption of figure 1.
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Figure 1. Stability chart for the solutions of Mathieu’s equation. The shaded regions are unstable with
x(t) = e f(t), v >0, f(t) = f(t + 2m) in the half frequency region, f(t) = f(t + 7) in the isochronous region
and f(t) = f(¢t+ 2m) in the 3/2 frequency region. The marginal states are borders of stable-unstable regions

on which v = 0 and the characteristic value is given by p = p(¢q). The solutions in stable regions are oscillatory
though not regularly periodic.

fAuthor to whom correspondence should be addressed. Telephone: (612) 625-0309; fax (612) 626-1558; electronic mail:
joseph@aem.umn.edu
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2 Numerical method

In the fourth order RK integration, we may take the time difference At = /22 = /4096 for which time at n
steps is given by t = n x At and a periodic time T may be defined as

T = Hﬂ] (2.1)

with Gauss’ symbol [ ]. According to Floquet theory, we may represent the solutions of Mathieu’s equation in
the unstable region as

logz(t) =~vt+b=~21T +b (2.2)

where b = f(t) is periodic in ¢ but constant in T, and the growth rate ~y is positive. The growth rate v = 0 at
the marginal state. To check b = f(t), we may use Fourier series expressed as

f) = Z A, exp(int) (2.3)

n—=—oo

where the Fourier coefficient A_,, is the complex conjugate of A,. The coefficient is evaluated as

L e 1 8192 At
Ap= o F(@) exp(—imt)dt = 5 37 [£(t;) exp(—imt;) + f(tj-1) exp(—imt;1)] 5~ 24
t j=1

with the trapezoidal rule, t; =t 4 j x At.

In tables 1 and 2 we give the values of v and b in the Floquet formula (2.2) for the eight cases marked on
figure 2, where p = 2q is a representative function. Graphs of f(¢) for the eight cases are shown in figures in
the following sections.
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Figure 2. Points on stability diagrams computed by RK integration (see tables 1, 2 and figures in the
following sections). “u” denotes unstable region and “s” denotes stable region. p = 2¢. Points 1, 5, 8 are at
the marginal state with periodic solutions, which can be expressed by the Mathieu functions ce, (t, ¢) or
sen (t,q) on the borders; point 1 is on the Mathieu function se; (¢, ¢), point 5 is on the Mathieu function
cex(t,q) and point 8 is on ces(t,q). Points 2, 4, 7 are in unstable region with exponential growth. The
solutions at points 3, 6 in stable region are oscillatory though not regularly periodic.
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After an initial transient, the numerical solutions approach asymptotic states which are independent of initial
conditions. The data in table 1 are in the interval 10 < ¢ < 100w. The data in unstable regions and on the
borders are reproduced well in table; this table shows a very high computation accuracy. The data in the stable
region in table 1 is not the same as in table 2; this means the oscillatory solutions are not regularly periodic,
the growth rate takes some small positive values and a negative value, but the amplitude of oscillation does not
grow in time.

Table 1. ~, b for point 1-8 in 107 < ¢ < 1007.

point q P ¥ b t

1 (figure 3) | 3.290E—01 | 6.580E—01 | —4.265E—10 | 2.844E—08 | 107w <t < 1007
2 (figure 8) | 6.094E—01 | 1.219E+00 | 0.2520 —0.6931 10 <t < 1007
3 (figure 6) | 1.374E400 | 2.748E+00 | 4.150E—04 —0.7527 107 <t <1007
4 (figure 9) | 2.449E+00 | 4.897E+00 | 0.2663 —0.6931 10w <t <1007
5 (figure 4) | 3.039E400 | 6.078E+00 | —2.891E—10 | 1.928E—08 | 107 < ¢ < 1007
6 (figure 7) | 4.000E400 | 8.000E+00 | 2.894E—04 —0.7612 10w <t < 1007
7 (figure 10) | 4.807E+00 | 9.614E400 | 0.1687 —0.6931 107 <t <1007
8 (figure 5) | 6.426E400 | 1.285E+01 | —1.164E—10 | 7.759E—09 | 107 <t < 1007

Table 2. v, b for point 1-8 in 1007 < ¢ < 10007. The argument in exponential function used in the
computations should be less than 709.782 in double precision.

point q P 5y b t

1 3.290E—-01 | 6.580E—01 | —4.265E—09 | 2.861E—06 | 1007w <t < 10007
2 6.094E—01 | 1.219E+00 | 0.2520 —0.6931 1007 <t < 8007
3 (figure 6) | 1.374E+00 | 2.748E+400 | 1.710E—06 —0.6987 1007 < ¢t < 10007
4 2.449E400 | 4.897E+400 | 0.2663 —0.6892 1007 <t < 8007
5 3.039E+00 | 6.078E4+00 | —2.891E—09 | 1.939E—-06 | 1007w <t < 10007
6 (figure 7) | 4.000E+00 | 8.000E400 | —5.887E—06 | —0.6821 1007 < ¢ < 10007
7 4.807TE4+00 | 9.614E+00 | 0.1687 —0.6931 1007 < ¢t < 10007
8 6.426E+00 | 1.285E+01 | —1.164E—09 | 7.805E—07 | 1007w <t < 10007

3 Periodic solutions

The oscillation patterns for the periodic solutions for points 1, 5 and 8 in figure 2 are shown in figures 3, 4,
5. Values of the largest Fourier components > 10~4 are presented in tables 3, 4 and 5. The number of active
Fourier modes increases with ¢. The aim of these tables is to show the accuracy of our computations.
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Figure 3. f(¢) versus t/7 for ¢ = 3.290E—01,
p = 6.580E—01 (point 1, periodic se; (¢, q)),
907 <t < 1007.

Table 3. Spectrum for the stable point 1 in the

interval 307 < t < 1007.

1] — —5.654e—01
3 2.231e—02
5 —3.016e—04
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Figure 4. f(t) versus t/7 for ¢ = 3.039, p = 6.078
(point 5, periodic ces(t, q)), 90m < ¢ < 1007

Table 4. Spectrum for point 5 in 307 < ¢ < 1007.
4.117e—01
4.117e—01
—1.302e—01
1.329e—02
—6.986e—04
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4 Stable solutions
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Figure 5. f(t) versus t/m for ¢ = 6.426,
p = 1.285E+401 (point 8, periodic ces(t, q)),
907 <t < 1007.

Table 5. Spectrum for point 8 in 307w < ¢ < 1007.
k | Re(Ag) Im (Ag)
3.492e—01 —
2.949e—01 —
—1.725e—01 | —
3.118e—02 —
—2.957e—03 | —
1| 1.761e—04 —

| O | O W+~

The stable solutions at point 3, 6 are displayed in figures 6, 7 and decomposed into the spectra Ay-Asg in tables
6, 7; A, for n > 20 has been cut off, though it still takes values of order 10~%. These provide the evidence that

the solutions are not periodic.
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Figure 6a. f(t) versus ¢/m for ¢ = 1.374, p = 2.748
(point 3, stable), 907 <t < 1007.
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Figure 6b. f(t) versus t/m for ¢ = 1.374, p = 2.748
(point 3, stable), 9907 < ¢t < 10007.
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Table 6. Spectrum for point 3 in 9907 < ¢ < 10007. Figure 7. f(t) versus t/m for ¢ = 4.000, p = 8.000

k| Re(Ak) Im (Ag) (point 6, stable), 9907 < ¢ < 10007.
0 | —1.076e—02 | —
1 | 6.497e—02 —3.205e—03 Spectrum for point 6 in 9907 < ¢ < 10007.
2 | —3.099e—02 | 4.007e—02 k| Re(Ag) Im (Ay)
3 | —2.251e—02 | 1.282e—02 0 | —4.847e—03 | —
4 | —4.251e—04 | 3.696e—03 1 | 1.618e—03 | —3.183e—03
5 | —6.614e—04 | 5.171e—03 2 | —3.832e—03 | 2.937e—04
6 | —1.250e—03 | 4.688¢—03 3 | 3.258e—03 | —1.043e—02
7 | —7.977e—04 | 3.934e—03 4 | 3.105e—03 | —3.069e—03
8 | —5.054e—04 | 3.438¢—03 5 | —2.659e—04 | 7.484e—04
9 | —3.285¢—04 | 3.061e—03 6 | —1.056e—04 | —8.807e—04
10 | —2.005e—04 | 2.756e—03 7 | 2.808e—04 | —1.149e—03
11 | —1.043e—04 | 2.506e—03 8 | 2.115e—04 | —8.487e—04
12 | — 2.9076—03 9 | 1.564e—04 —7.322e—04
13 | — 2119¢—03 10 | 1.394e—04 —6.691e—04
14 | — 1.966e—03 11 | 1.276e—04 —6.092e—04
15 | 1.062e—04 | 1.837e—03 12 | 1.154e—04 | —5.584e—04
16 | 1.369e—04 | 1.719¢—03 13 | 1.098e—04 | —5.147e—04
17 [ 1.613e—04 | 1.621e—03 14 | 1.029e—04 | —4.785¢—04
18 [ 1.803¢—04 | 1.529¢—03 15 | — —4.466e—04
19 | 2.017e—04 | 1.447e—03 16 | — —4.185e—04
20 | 2.138¢—04 | 1.375e—03 17 ] — —3.926e—04
18 — —3.744e—04
e 'HARMONIC-006.dat’ using 1:2 19 —_— —3.523e—04
oo . . 20 | — —3.355e—04
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5 Unstable solutions

Unstable solutions are periodic with increasing amplitude; the oscillation patterns are exhibited in figures 8, 9,
10 and in tables 8, 9, 10.
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Figure 8. f(t) versus t/m for ¢ = 6.094E—01,
p = 1.219 (point 2, unstable), 907 < ¢ < 1007.
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Table 8. Spectrum for point 2 in 307 < ¢ < 1007.
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% | Re(Ap) Tm (A7)
1 | 2.724e—01 —1.490e—01
3 | —2.2030—02 | 7.271e—03

5 | 6.046e—04 —1.227e—04
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Figure 9. f(t) versus t/7 for ¢ = 2.449, p = 4.897

(point 4, unstable), 907w < ¢ < 1007.

Table 9.

Spectrum for point 4 in 307 < t < 1007.
k | Re(Ag) Im (Ag)

0 | 1.952e—01 —

2 | 1.980e—01 —1.545e—01

4 | —4.970e—02 | 2.504e—02

6 | 4.097e—03 —1.559e—03

8 | —1.730e—04 | —

6 Dissipation
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Figure 10. f(t) versus t/m for ¢ = 4.807, p = 9.614

(point 7, unstable), 90 < ¢ < 1007.

Table 10. Spectrum for point 7 in 307 < ¢ < 1007.

1| 1.623e—01 —1.464e—01
3 | 1.398e—01 —3.982e—01
5 | —5.981e—02 | 1.226e—01
7 | 8.255e—03 —1.460e—02
9 | —5.978e—04 | 9.608e—04

In many applications, the oscillations associated with Mathieu’s equation are damped with a dissipative term
ex. The equation for z(t)

Z+et+ [p—2qcos(2t)]x =0 with (0) =1, #(0) =0,

may be transformed, using

to a Mathieu equation for y(t)

where

i+ [P —2qcos(2t)]y =0 with y(0) =1, H(0)= -

p=p——.

€
T = Yy exp <_§t) ,

Another problem (Problem 2) may be given by replacing the initial conditions by

2(0)=0, #(0)=1 — y(0)=0, H(0)=1.

(6.1)

(6.5)

For both positive and negative values of €, p is shifted to p’ and the initial condition is the same in the
latter Problem 2. The type of solutions y(t) is determined by ¢ and p’. In the former Problem 1, the initial
condition also includes €. The problem is different for positive or negative value of e.
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If a point (g, p) is given by the characteristic value p = p(q) corresponding to ce,(t,¢q) (Problem 1 when
e = 0), the shifted point (g, p’) is in unstable region. Thus we have the solution y(¢) such as

Infy| = 't +V, (6.6)

where for 4/ > 0, f(t) = y(t)e~ 7't is periodic. Then z(t) = y(t) exp (—£t) = f(t)exp [(v — 5) ]
If a point (g, p) is given by the characteristic value p = p(q) correspondlng to sen(t, q) (P oblem 2 when
€ = 0), the shifted point (g, p — €2/4) is in stable region. Thus we have the solution y(¢) such a

In|y| =1t + V', (6.7)

by which y(t) looks like “beat” due to the tuning o’; a long period may arise against the fundamental period 7
or 2m.

In table 11, we compare damped solutions with different damping constants e = 0.01, 0.1, 0.3, 0.7 for points
1, 5. In figures 11, 12, the difference between Problems 1 and 2 and between positive and negative values of e
can be found.

Table 11. Growth rate 7/ for Problem 1 evaluated in the interval 1007 < ¢ < 10007. For € = 0.01, the
interval is taken as 8007 < ¢ < 10007 to remove the initial transient.
/ !

point | € q P ¥
seq 0.1 3.290e—01 | 6.555e—01 | —
seg 0.1 1.858e4-00 | 3.714e+00 | —
ses 0.1 4.627e4+00 | 9.251e+00 | —
cep 0.1 8.898e—01 | 1.777e+00 | 2.732e—02
ces 0.1 3.039e+00 | 6.076e+00 | 2.166e—02
ces 0.1 6.426e+00 | 1.285e+01 | 1.863e—02
se1 0.3 | 3.290e—01 | 6.355e—01 | —
Ses 0.3 1.858e+4-00 | 3.694e+00 | —
ses 0.3 4.627e+00 | 9.231e+00 | —
ceq 0.3 | 8.898¢—01 | 1.757e+00 | 8.173e—02
ces 0.3 | 3.039e+00 | 6.056e+00 | 6.483e—02
ces 0.3 | 6.426e+00 | 1.283e+01 | 5.578e—02
seq 0.7 | 3.290e—01 | 5.355e—01 | —
Seo 0.7 1.858¢+00 | 3.594e+00 | —
ses 0.7 | 4.627e400 | 9.131e+00 | —
ceq 0.7 | 8.898e—01 | 1.657e+00 | 1.879e—01
ces 0.7 | 3.039e+00 | 5.956e+00 | 1.496e—01
ces 0.7 | 6.426e+00 | 1.273e+01 | 1.290e—01
seq 0.01 | 3.290e—01 | 6.580e—01 | —
seg 0.01 | 1.858e+00 | 3.716e+00 | —
ses 0.01 | 4.627e+00 | 9.254e+00 | —
ceq 0.01 | 8.898e—01 | 1.780e+00 | 2.734e—03
ces 0.01 | 3.039e+00 | 6.078e+00 | 2.165e—03
ces 0.01 | 6.426e+00 | 1.285e+01 | 1.865e—03
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Figure 11a. z(t) versus t/x for Figure 11b. y(t) versus t/7 for
(g,p’) = (0.3290,0.6555) shifted from point 1 and (¢,p’) = (0.3290, 0.6555) shifted from point 1 and
€ = 0.1 in damped case, in 0 <t < 307. e=0.1,in 0 <t <1007.
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'y1/m/HARMONIC-001.dat’ using (1/3.14159): -------
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t) versus t/m for (q,p") = (0.3290,0.6555) shifted from point 1, in 0 < ¢ < 807. Problem 1 with
, Problem 1 with ¢ = —0.1 (green), Problem 2 with ¢ = 0.1 (blue), Problem 2 with e = —0.1
(magenta). Problem 2 is the same for ¢ = £0.1.

Figure 11c. y
e=0.1 (red
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Figure 12a. z(t) versus t/x for Figure 12b. y(t) versus t/7 for
(q,p’) = (3.039,6.076) shifted from point 5 and (¢,p’) = (3.039,6.076) shifted from point 5 and
€ = 0.1 in damped case, in 0 <t < 307. e=0.1,in 0 <t < 307.
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Figure 12c. y(t) versus t/7 for (¢,p") = (3.039,6.076) shifted from point 5, in 0 < ¢ < 307. Problem 1 with
€ = 0.1 (red), Problem 1 with e = —0.1 (green), Problem 2 with € = 0.1 (blue), Problem 2 with ¢ = —0.1
(magenta). Problem 2 is the same for e = £0.1.

The Runge-Kutta technique developed in this paper is a very fast and accurate method for solving problems
governed by Mathieu’s equation. Our work here was motivated by the need to develop an efficient method for
developing a comprehensive study of irrotational Faraday waves on a viscous fluid.

This work was supported in part by the NSF under grants from Chemical Transport Systems.
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