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Abstract

Two purely irrotational theories of the motion of viscous fluids, viscous potential flow (VPF)
and a viscous correction of viscous potential flow (VCVPF), have recently been applied to study
capillary instability and to obtain the rate of decay of free gravity waves. The results from these
analyses are, in general, in good to excellent agreement with exact solutions. Furthermore, the
application of the dissipation method to these problems gives the same results as VCVPF. In this
paper, we apply the VPF and VCVPF approximations as well as the dissipation method to the
problem of the decay of waves on spheres. We treat the problem of the decay of small disturbances
on a viscous drop surrounded by gas of negligible density and viscosity and a bubble immersed in a
viscous liquid. The instantaneous velocity field in the viscous liquid is assumed to be irrotational.
The linearized governing equations are solved by normal modes. The dissipation method applied
to this problem gives rise to the same dispersion relation as VCVPF. Detailed comparisons of the
eigenvalues from VPF and VCVPF and the exact solution are presented. Good agreement with
the exact solution for the two purely irrotational solutions is demonstrated.

Keywords: drops, bubbles, potential flow, two-phase flow, gas-liquid flow, viscous potential flow.

1 Introduction

A viscous liquid drop surrounded by a quiescent gas or a gas bubble immersed in a viscous liquid tends
to an equilibrium spherical shape if the effects of surface tension are significantly large in comparison
with gravitational effects. When the spherical interface of the bubble or drop is slightly perturbed
by an external agent, the bubble or drop will recover their original spherical configuration through
an oscillatory motion of decreasing amplitude. In the case of the drop, depending upon its size and
physical properties, the return to the spherical shape may consist of monotonically decaying standing
waves. For a drop immersed in another viscous liquid, decaying oscillatory waves always occurs at the
liquid-liquid interface.

Early studies on the subject for inviscid liquids are due to Kelvin (1890) and Rayleigh (1896). The
former obtained an expression for the frequencies of small oscillations of an inviscid liquid globe that
tends to the spherical shape by the existence of an internal gravitational potential in the absence
of surface tension. The latter included surface tension instead of gravitation. Lamb (1881, 1932)
considered the effect of viscosity on the rate of decay of the oscillations of a liquid globe assuming an
irrotational velocity field using the dissipation method. Lamb’s result is independent of the nature of
the forces that drive the interface to the spherical shape. Chandrasekhar (1959) studied fully viscous
effects on the small oscillations of a liquid globe with self-gravitation forces neglecting surface tension.
The same form of the solution was also obtained by Reid (1960) when surface tension instead of self-
gravitation is the force that tends to maintain the spherical shape. A good account of both solutions
is presented in the treatise by Chandrasekhar (1961). Following Lamb’s reasoning, Valentine, Sather
& Heideger (1965) applied the dissipation method to the case of a drop surrounded by another viscous
liquid.

A comprehensive analysis of viscous effects in a drop embeded in liquid was presented by Miller &
Scriven (1968) who also included rheological properties of the interface. The limiting cases of a drop



in a vacuum or a bubble surrounded by a liquid were considered. However, no numerical results were
given. Prosperetti (1980a) presented numerical results for the eigenvalue problem for modes £ = 2 to
£ = 6. He showed that the spectrum is continuous when the liquid outside is unbounded. Previous
studies relied on normal-modes. Prosperetti (1977, 1980b) considered the initial-value fully-viscous
problem posed by small perturbations about the spherical shape of a drop or a bubble in which no ‘a
priori’ form of the time dependence is assumed. The solution showed that the normal-mode results
are recovered for large times.

Finite size disturbances have received some attention. Tsamopoulus & Brown (1983) considered the
small-to-moderate-amplitude inviscid oscillations using perturbations methods. Lundgren & Mansour
(1988) and Patzek et al. (1991) studied the inviscid problem posed by large oscillations applying the
boundary-integral and the finite-element methods, respectively. Lundgren & Mansour also investigated
the effect of a ‘small’ viscosity on drop oscillations. Basaran (1992) carried out the numerical analysis
of moderate-to-large-amplitude axisymmetric oscillations of a viscous liquid drop.

In this paper, approximate solutions of the linearized problem for small departures from the spherical
shape for a drop surrounded by a gas of negligible density and viscosity or a bubble embedded in a
liquid are sought using viscous potential flow (VPF) and viscous correction of viscous potential flow
(VCVPF). VPF is a purely-irrotational-flow theory in which viscosity enters through the viscous
normal stresses at the the interface (Joseph & Liao 1994a, 1994b, Joseph 2003). If the viscosities of
the fluids are neglected, and only the irrotational pressure and capillary forces are included in the
balance at the interface, the analysis reduces to inviscid potential flow (IPF). In general, the potential
flow cannot satisfy the zero-shear-stress condition at a gas-liquid interface or the continuity of the
tangential velocity and shear stress at a liquid-liquid interface. Joseph & Wang (2004) proposed
a formulation that adds a viscous pressure correction to VPF. This correction compensates for the
discrepancy between the non-zero irrotational shear stress and the actual zero-shear-stress condition
at the interface ‘in the mean. The pressure correction is induced in a boundary layer which is not
studied or needed in the analysis. Alternatively, a viscous correction of VPF can be obtained by
applying the dissipation method (Joseph & Wang 2004). In this approximation, which requires the
evaluation of the mechanical energy equation, no pressure correction is assumed and viscous effects
are accounted for through the computation of the viscous dissipation originated by the irrotational
flow. The dissipation method was used by Lamb (1932) in his analysis of the effect of viscosity on the
decay of free gravity waves.

Funada & Joseph (2002) used VPF to study the problem of capillary instability. Their results
were in much better agreement with Tomotika’s (1935) exact normal-mode solution than with inviscid
potential flow. Wang, Joseph & Funada (2005a) computed the growth rates for this configuration
from VCVPF, when either the interior or exterior fluid is a gas of negligible density and viscosity.
They found excellent agreement between their results and the exact solution. The case of capillary
instability of two viscous liquids was considered by Wang, Joseph & Funada (2005b), obtaining good
to reasonable conformity for the maximum growth rates whereas poor agreement for long waves. In
addition, Wang et al. (2005a, 2005b) obtained the same eigenvalue relations as VCVPF for standing
waves which decay monotonically using the dissipation method instead. The decay of free gravity
waves modeled as small disturbances about an infinite plane free surface was studied by Joseph &
Wang (2004) and Wang & Joseph (2006) using VPF and VCVPF. Their results were in remarkable
good agreement with Lamb’s exact solution for all wave numbers excluding a small interval around a
critical value where waves change from progressive waves to standing ones. Moreover, the damping rate
computed from VCVPF for long waves coincides with Lamb’s dissipation result and exact solution.
On the other hand, their result from VPF for the rate of decay agrees with Lamb’s exact solution
for short waves. A comprehensive review of the evolution of the theory of irrotational flow of viscous



fluids is provided in the historical notes by Joseph (2006).
Five analytical methods are thus used in this study to determine the rate of decay and frequency
of the oscillations on drops and bubbles, namely,

VPF or viscous potential flow, in which the viscosity enters the analysis through the viscous normal
stress at the interface.

VCVPF or viscous correction of viscous potential flow.
IPF or inviscid potential flow, in which the viscosity is set equal to zero.

Dissipation method, which requires the integration of the mechanical energy equation for irrota-
tional motion.

Exact solution of the linearized incompressible Navier—Stokes equations.

This paper is organized as follows: First, a VPF analysis of a drop is presented; then, the pressure
correction extension of VPF is described; The results of studies using VPF and VCVPF for a single
spherical bubble are summarized in §4. In §5, the exact solution of the linearized fully viscous problem
is reviewed. The dissipation method is applied to the spherical configuration in §6, followed by a brief
discussion on the decay of waves on a plane interface with surface tension effects in §7. Results are
discussed in §8 where several final remarks are presented.

2 VPF analysis of a single spherical drop immersed in another fluid
— More viscous fluid within the drop

Consider a single spherical drop of radius a filled with a fluid with density p; and viscosity p; immersed
in another fluid with density p, and viscosity u,. The coefficient of interfacial tension is denoted as
~. Both fluids are incompressible and Newtonian with gravity neglected. At the basic or undisturbed
state both fluids are at rest. For convenience, we shall first consider the case when drop is more
viscous, p; > pig-

When the basic state is disturbed with small-irrotational perturbations, the resulting velocity field
can be written in terms of a velocity potential u* = V¢*. Since V - u* = 0, we have

Vir =0 0<r<a+¢, (2.1)

Vip: =0 a+¢<r<oo, (2.2)

for the interior and exterior fluid motion, respectively. The disturbance of the spherical interface is
denoted by ¢ = ((¢,0, ¢); the interface position is r = a + (.

For irrotational flow the incompressible Navier—Stokes equations reduce to the Bernoulli equation.
For the fluid within the drop

od;  IVH® | P
ST I A I SR 0< 2.3
5 T g T o ! <r<a+¢, (2.3)
and, for the exterior fluid,
* *|2 *
%-I-M—I—&:Ba a+ (¢ <r<oo, (2.4)
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where ¢* is the velocity potential and p* is the pressure of the disturbed motion; B; and B, are
constants. The pressure disturbance p has been added to the pressure of the basic state P, such that
p* = P + p. Furthermore, we have ¢* = ¢. The boundary conditions at r = a 4+ ( are given by the
continuity of the normal velocity

[u” - n]] =0, (2.5)
and the balance of the normal stress discontinuity across the interface by the interfacial tension
[—p* +2un - Vu* -n]| =yV - n, (2.6)

where n is the outward unit normal from fluid . The notation [[-]] = (-),—p+ — (-),—p- is being used
to denote the jump across the generic interface located at » = b. The outward unit normal vector can
be obtained from
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at r = a + (. Moreover, the following kinematic condition must be satisfied at r = a + ¢
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With regard to the basic state, the undisturbed pressure must satisfy,

P

~ = B 0<r<a, (2.10)
Pl

P,
% =B, a<r < oo, (2.11)
Pa

while the normal stress jump at the interface is balance by the surface tension as
2
p-p =2 (2.12)
a

at r = a for the undisturbed state.

After subtracting the basic state in (2.10) and (2.11) from the disturbed fluid motion given in (2.1),
(2.2),(2.3) and (2.4) and performing standard linearization of the resulting expressions by neglecting
products of the small fluctuations and products of their derivatives, one obtains, for the interior motion
(0<r<a),

Vi, =0, (2.13)

oy
= —p— 2.14
PL=—pigr (2.14)
and, for the exterior motion (a < r < 00),

V2p, =0, (2.15)
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The boundary conditions (2.5), (2.6) and (2.9) are also linearized, yielding, at r = a,
Up| = Urgq (2.17)
Ouy 7 y2
|| = 2 - 2), (218)
or a
o¢
== 2.19
T (2.19)
with, u, = 0¢/0r. The operator L? is also known as the spherical Laplacian and emerges, for

instance, in the solution of the Laplace equation using spherical coordinates by applying the method
of separation of variables. It is defined as

X 10 (. 8¢ 1 8%
L% = =z S 2.2
L= Gnaae \"%%0 ) * sZ0 9,2 (2:20)

Solutions of (2.13) and (2.15) for the interior and exterior of a sphere, respectively, can be sought
in the form

(r,0,¢,t) ZAg ( ) et S,(8, ) + c.c. 0<r<a, (2.21)

—e-1
(r,0,p,1) Z Cy ( ) e~ Sy(0, ¢) + c.c. a<r < oo, (2.22)

such that ¢; is finite at 7 = 0 and ¢, vanishes in the limit r — oco; gy is an eigenvalue to be determined.
It will be shown that oy does not depend upon the index m. The symbol c.c. designates the complex
conjugate of the previous term. The functions Sy are the surface harmonics of integral order

e
52(07 (P) = Z Bémnm(ea (P); (2'23)

m=—¢
which, with the choice By, = By, _p,, are real functions. The functions Y;"(6, ¢) are known as the
spherical harmonics (Strauss, 1992)
Y0, ) = P, (cos 0)e™™, (2.24)
where P2m| are the associated Legendre functions. The spherical harmonics satisfy
L2Y{™(0,¢) = £(¢ + 1)Y{™(0, ), (2.25)

for £=10,1,2,...and m = —£,...,—1,0,1,...,£ The operator L? has been defined in (2.20). Expres-
sions for the radial components of the velocity can be obtained from (2.21) and (2.22) by applying
upr = 0¢/0r,

o

urg(1,0,¢,t) Z =gl g, + c.c., (2.26)
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After replacing expressions (2.21) and (2.22) for ¢; and ¢,, respectively, into (2.14) and (2.16), the
pressure disturbances become

(r,0,p,t) ZplUgAg ( ) e tS,(8, p) + c.c. 0<r<a, (2.28)

——1 ‘
(r,0,0,t) ZpaagCg ( ) e 7Sy(0,¢) + c.c. a<r<oo. (2.29)
Let us write the disturbance of the spherical shape of the interface as a series expansion,
o0
C(0,0,t) =Y (a0, 0)e " +c.c.. (2.30)
=0

Substitution of (2.26),(2.27) and (2.30) into the boundary conditions (2.17) and (2.19) yields

/ f+1
—oelp = (5> AgSe, opCe = ( . ) CySy. (2.31)

By considering (6, ¢) = (0eSe(0, ¢), where (o is a constant, expression (2.31) becomes

—0yCoe = (f) Ay, oeor = (ﬁ ha 1) C. (2.32)
a a
We have
(L2 - 2)¢ = Z{E(Z +1) — 2}¢oee 7Sy + c.c. = Z(e +2)(¢ — 1)Core 78Sy + c.c., (2.33)
£=0 £=0

by virtue of (2.25) and (2.30). Substitution of (2.26), (2.27), (2.28) and (2.29) into the R.H.S. of
(2.18), using the result (2.33) and replacing Ay and Cy with (2.32) yields the dispersion relation for
the eigenvalue oy, which after some manipulation, may be written as

(ot + 1) + pab) o? — (2’” (C+1)0L—1) + 2““ (04 9) (e + 1)4) o0
+ C;y—:,,(ﬁ +2)(0+1)0(0 — 1) =0, (2.34)

for £=0,1,2,.... This quadratic equation can be solved yielding,

(€ +1)2( — 1) + pa (€ + 2) (€ + 1)L
a? (p(£+1) + paf)

+ \/[’W TDU-D +palDEH DOy LD,

a? (pi(€ +1) + paf) a®  p(l+1)+pal



where the subscript £ has been dropped from o for convenience. Expressions (2.34) and (2.35) may
be written in dimensionless form with the following choices of dimensionless parameters (Funada &
Joseph, 2002),

i=le pte 562  with U=,/-L, (2.36)
P W U pia

In dimensionless form, expression (2.34) becomes,

((e +1)+ ie) 52 — \/lj ((C+ 10— 1)+l +2)(E+1)0) 6 + (L+2)(L+ 1)L - 1) =0 (2.37)

with a Reynolds number

X A T (2.38)

J )
i K

where p; and p; refers to the density and viscosity of the more viscous fluid and Oh is the Ohnesorge
number. Therefore, the eigenvalue & for viscous potential flow (VPF) can be computed from
5 = (L+1)e(l—1)+m(l+2)(£+1)¢
VI ((é +1) + ie)

L+ 1)el —1) +m(E+2)(t + 1))
VI((€+1) +10)

_ e+ nue-1) (239

+ =
(C+1) 410t

which has two different real roots or two complex roots can. In the former case, the interface does
not oscillate and the disturbances are damped. In the later case, &6 = 6 £ i6; where the real
part represents the damping coefficient while the imaginary part corresponds to the frequency of the
damped oscillations.

If the external fluid has negligible density and viscosity (I — 0 and 7 — 0), expression (2.39)
becomes,

. -1 e —1)77 ~
6== 7 :I:\/[ 77 ] —(£+2)e(t—1), (2.40)

which, in dimensional form, can be written as

o= a—VQe(e 1)+ \/[%e(e - 1)]2 - %(z +2)0L - 1). (2.41)

Moreover, for an inviscid drop v/J — oo and (2.40) reduces to

bp = +iV/ AT DUE=1) = 2ty  or  op= :I:z'\/ %(4 LU —1) = Hioh,  (242)

in dimensional form and the drop oscillates about the spherical form. The density of the drop is
denoted by p. This result was obtained by Lamb (1932), p. 475.
When both fluids are considered inviscid (IPF), expression (2.39) simplifies to (i — 0 and v/.J — 00)

&:ii\/(£+2)(£+1)£(€—1) o J:ﬂ_\/l(£+2)(£+1)é(£—1). (2.4

(C+1)+1¢ a3 p(+ 1)+ pat



Again, the same expression found by Lamb (1932).
From the expression obtained from VPF in (2.40), one can readily find two roots for the rate of
decay as J — 0 in the drop. The relevant root on physical grounds is given by

1 a2 1
5=V I =0 2.44
TN -y TTOP T - (244)
where the last expression is in dimensional form. In the case J — oo (low viscosity, say), the eigenvalues
are complex, and then one encounters progressive decaying waves. These eigenvalues behave as
L4 —1) v

5t i o o= —5l(t-1)Fio). (2.45)

o=

3 Pressure correction for VPF — Single spherical drop surrounded
by gas

Let us consider the case where the exterior fluid is a gas of negligible viscosity and density. Assuming
that the interior fluid is irrotational, the shear stress at the free surface of the sphere violates the
zero-shear-stress condition. Following Joseph and Wang (2004), a pressure correction p” can be added
to the irrotational pressure in order to compensate for this discontinuity. They showed that the power
of the pressure correction p” equals the power of the irrotational shear stress

/A(—p”)undAz/TsusdA (3.1)

A

and pY is a harmonic function, such that
V¥ = 0. (3.2)

For the interior of a sphere of radius a, the following expression solves (3.2)
00 Nk
' =5"D (—) —oitg, (0, .
p kZ_O k() €77 Sk(0,0) + e (3:3)

where Dy, are constants. The balance of the normal stress at the sphere’s interface r = a is modified
by adding p*

% _ (L2 - 2) ¢, (3.4)

v
_ A —" —
(p+p%) + 2055 "

where the subscript [ has been dropped for convenience. Substitution of the solution for p¥ (3.3) and
using (2.21), (2.28) and (2.33) yields,

2
pAgo? — [Dg + a—g‘z(e - 1)Ag] o0 = —%(é +2)6(0 — 1) Ay, (3.5)

where the orthogonality property of the spherical harmonics has been used. For a sphere of radius a
the integrals in (3.1) can be written in terms of the velocity and shear stress components

/ (—pv)’u,,,-dA = / (Trﬂua + Tmpucp) dA. (36)
A A



The velocity components can be computed from

9 104 1 8¢

Ur =3 Y= a0 e = 7sinf o’ (3.7
and the shear stress components from
g =Pt _uo | 10w _2u (09 109
=B T Tr ey ) v \oroe roe
_ 1 8ur Ouy Uy 20 ¢ 109
e = B (7" sin 6 3(;7 or r ) rsind (Br&p T Op (38)

Therefore, for the velocity potential defined in (2.21), the velocity components on the surface of the
sphere r = a become,

00 [e's) o
{ _ Ay .08y A,  __ .08y
— A - U[tS .C. — ot b .C. = _ ot 778 .C. 3-9
E e e 1+ c.c., up Z e +cc., Uy Z e +cc., (3.9)

prd = a 00 —a sinf Oy

and the shear stress components are

o o0
_ Ae —oyt 35@ i A[ —oyt 8Se
Tro = E_ 20 = (£—1)e 50 + c.c., Trp = ZE_O 2ua2 sin0(£ e P +cec  (3.10)

The left hand side of (3.6) then becomes,

oo 00 2w ™
Z Z a’Dyeot (g) (Ake_akt + flke_&’“t) / / S¢Sy, sin 0d0d<p] ,(3.11)
=0 k= 0 0

where Re[z] delivers the real part of a complex number z. The equality in (3.11) follows from the
formula presented in the Appendix, which is also used in the integration of the right hand side of (3.6)
and similar integrals in §4 and §6. Using the definition of S, in (2.23), the double integral in (3.11)
can be written as

/ (—p")u,dA = 2Re
A

27 s £ k 27 T . . .
/ / S¢Sk sin0dOdy = Z Z BgmBkj/ / Pljm|(cos 0)P,|c]‘(cos 0)e'(m=9)% sin fdfd e, (3.12)
o Jo o Jo

m=—Lj=—k

since Sy, is real (i.e. Sy = Si). This integral is zero for all the different duplets (¢,m) # (k,5). Then,
we are left with,

2T ™
/ / [S¢(0, )] sin0dOdy = Z2mm / PP (cos 0)]? sin 0d
0 0

- dr (0+m)!
- T;)Ffm [2€+1(€—m)!]’ (3:-13)

using a standard result for the integral in the second term. Here, Fy,, represent real constants. Then,
from (3.11) the power of the pressure correction can be expressed as

o0
v — ot oyt ot (E + m)
/A( p)urdA =2Re ZE 0 mg 0F5m47raDge (Age™ " + Age™ )% FiE—my| (3.14)
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Similarly, the right hand side of (3.6) yields,

o0 o0
2 _ _
/ (regtip + Trgti) dAA=2Re| S 3 2 Ao ort(0 — 1) (Age M + Ape )
A =0 k=0 ¢

T 98, 08k 1 8S,08;

The integral in (3.15) gives rise to

o 89S, 9Sx | 1 98,95 L _

in6— = —— dody = Buy B

/0 /0 [Sm 90 00 ' s By aw] o= 2. 2. BBy
m=—Lj=—k

27 s |m| |71 mi .
/0 /0 [Sinadpgde(x) dP; (X)Jr jP|m‘(X)Pk‘;J|(X)

T T M=% d0dep, (3.16)

where x = cosf. This integral is also zero for all different duplets (n,m) # (k,j). Otherwise, this
integral reduces to (Bowman, Senior & Uslenghi 1987; Moriguchi, Udagawa & Hitotsumatsu 1999)

ol 08, \2 1 [0S,\?

L ™ m 2 m2
= Y et [ [sino () (me)f] a0
0

sin @
m

Sl

(3.17)

- [w(e F1) e+ m)!] _

20+1) (£—m)!

m=0
Therefore, we have found that the power of the shear stress can be expressed as

oo /L
Ay _
/A(Trg’lw + Troup)dA = 2Re [Z Z Fgm87r,u;e 7t (Age ot +
£=0 m=0
L+ 1) —-1) (L +m)!
Ageott .
AT ) Ty T m)

(3.18)
By virtue of (3.6), equating (3.14) and (3.18) yields the relation
Dy = 2;1?(6 +1)(¢ —1). (3.19)

Replacing Dy in (3.19) in (3.5) yields the dispersion relation for the complex eigenvalue o, arising from
VCVPF (again we drop the subscript £ for convenience),

o — z—’;(% 1)l =1)o + %(4 + 2l —1) =0, (3.20)

with roots,

o= %(2@4r D(E-1)+ \/[%(2“ 1) — 1)]2 - p—z3(£+2)£(6 —1). (3.21)
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In the case of progressive waves, the rate of decay (v/a?)(2¢+ 1)(¢ — 1) was obtained by Lamb (1932)
in §355 through the dissipation method. In the present calculations, the relation (3.21) gives the decay
rate of progressive waves (Im(o) # 0) as well as the wave velocity. For Im(o) = 0, the monotonically
decay rate for standing waves including the effect of surface tension is obtained. Expression (3.21) can
be compared with results in (2.41) and (2.42) from VPF and IPF, respectively.

In dimensionless form, the dispersion relation for VCVPF (3.21) can be written as,

. (20+1)(-1) (20+1)(¢-1)]?
o= + \/[T] —(L+2)0(0 1), (3.22)

where the dimensionless parameter & and the Reynolds number J have been defined in (2.36) and
(2.38), respectively. Expression (3.22) can be compared with (2.40) from VPF and (2.42) from IPF.

As J — 0, VCVPF produces two roots for the rate of decay from (3.21), the following giving the
lowest decay rate,

1 a? 1
A A%2 _ *2_
o=V * = s 1) (3.23)

In the case of J — oo the eigenvalues are complex,
(22+1)(¢—-1)
Vi

Hence, one finds progressive-decaying waves. The definitions of 67, and o7}, are given in (2.42).

Prosperetti (1977) studied the initial value problem posed by small departures from the spherical
shape of a viscous drop surrounded by another viscous liquid. In the limiting case of a drop in a
vacuum, he found (3.21) in the limit ¢ — 0 if an irrotational initial condition is assumed. We remark
that (3.21) was obtained here by a different method. Similarly, in the limiting case of a bubble,
Prosperetti’s initial-value-problem analysis with an irrotational initial condition yields, for ¢ —0, the
same dispersion relation as the one obtained from VCVPF in the next section.

&= +i6h  or o= —(2+1)(L—1) +ich (3.24)
a

4 Single spherical bubble immersed in a liquid — VPF and VCVPF
analyses

The dispersion equation (2.39) also holds when the exterior fluid has a higher viscosity than the interior
fluid (inverse problem). Nevertheless, in order to keep our convention p; > 4, we shall interchange
the subscripts [ and a in that expression. Then, the parameter m < 1 and the expression for the
dimensionless eigenvalue ¢ from VPF becomes

5 - MmADEE-1)+ (E+2)(E+1)0
\/j(i(£+1)+£)

| [ e -1 + @+ e+ L+ 2@+ )0 —1)
i Ik . (4.25)
VI +1) +2) I(L+1)+¢

If the sphere represents a bubble of negligible density and viscosity (I — 0 and 7 — 0), (4.25)
becomes

L (L+2)(t+1)7°
o_—i\/[T] —(U+2)(+1)(—1), (4.26)
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for VPF. In dimensional form, expression (4.26) can be written as

o= S =[S e+ ] - Ler e ne-. (.27

In the limit of an inviscid external fluid v/J — oo in (4.26) we obtain

6p=+i/(l+2) ¢+ 1)l —1)=4i6y  or

o = iz'\/%(e DU+l —1) = +ioh, (4.28)

where the last expression gives the dimensional form of the oscillation frequency and the bubble
oscillates about the spherical shape without damping. This expression was obtained by Lamb (1932).

The dispersion relation from VCVPF applied to a bubble immersed in a liquid can be determined
following the same steps described in the case of a drop surrounded by a fluid of negligible density
and viscosity. A pressure correction is added to the pressure corresponding to the irrotational flow of
a viscous fluid surrounding the bubble containing gas with zero density and viscosity. The velocity
potential defined in (2.22) is used in these calculations. The analysis yields the following dispersion
relation,

o2 — 2@12(2“ 1)(¢+2)o + %(zm)(u 1)(¢—1) =0, (4.29)
such that
v v 2 0%
o= 2+ 1)(E+2) £ \/[¥(2e+ 1)(e+2)] A E =), (4.30)

which, in dimensionless form can be written as,

Ee+1)E+2) , \/[(2e+ 1)(¢ +2)
Vi Vi

In the case of small oscillations, the rate of decay given in (4.30) as (v/a?)(2£+1)(£+2) is the same
as the rate computed by Lamb (1932) using the dissipation method without the explicit inclusion of
the surface tension effects in the formulation.

The dispersion relation obtained from VPF in (4.27) can be used to study the trend followed by
the disturbances when J — 0 (v — oo, say) in the case of the bubble. For this case, monotonically
decaying waves are predicted with decay rate

o=

2
] —(£+2)(+ 1)L —1). (4.31)

Q>

— 52 1 s 1
—03ﬁ2(£+2)(£+1) or J—UBU2(£+2)(6+1), (4.32)

while VCVPF expression (4.30) yields the following result as J — 0,

1 a® 1
A~ A %2 *2
o=V ETy * T8 @i Ut Y (433)
Expressions for 63 and oJ; are given in (4.28).
In the case of J — oo, VPF analysis for the bubble yields

(L+2)(£+1)
Vi

o=

+ish  or o= —c(l+2)(+1)Lich (4.34)
a
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Therefore, progressive-decaying waves are found. Similarly, VCVPF predicts

20+ 14+ 2
% tish or o= (0+1)(E+2) £idh (4.35)
In the next section it is shown that these results from VCVPF coincide with the results obtained

from the exact solution of the linearized problem as J — oo (v — 0, say) for both the drop and the
bubble.

o=

5 Exact solution of the linearized fully viscous problem

In this section we review the analysis of the effect of viscosity on small oscillations of a drop immersed
in a vacuum and a bubble of negligible density and viscosity embedded in a viscous liquid by solving
the linearized equations of motion without the assumption of irrotational flow. The procedure utilized
by Reid (1960) for the case of the drop is summarized. The solution for the bubble is obtained following
a similar path. In both cases, the dispersion relation shall coincide with the corresponding limiting
results presented by Miller and Scriven (1968) and Prosperetti (1980a), who posed and solved the
most general two-fluid problem.

5.1 Spherical drop

The linearized equation of motion for a liquid drop in 0 < r < @ in the disturbed state is given by

ou

P = —Vp+ nViu, (5.1)

with V. u = 0.
Taking the divergence of (5.1), we have the equation for p

for which we may express the pressure disturbance as

p = pA(r/a) Y["(0,9)c = pAz'Y[™ (0, )e, (5.3)

ot

with € = ege™?" and = = r/a. For the disturbance of the spherical shape (, using normal modes, we

set

(0, ¢) = acY;™(0, ¢), (5.4)

In particular, since Vp is a solenoidal vector for which V - Vp = V?p = 0, we may write,

%Vp = VXV x [P(r)Y(0, p)eer] (5.5)
such that the radial component is
%(vp), = P(r)ee(%l)yzm = ea%%m = Aﬁxf—lygﬂe, (5.6)
which gives rise to the following relation,
(z) = %x”l =Tzt Ty = %, (5.7)
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with Vp being a purely poloidal vector field. Since the velocity field u is solenoidal and Vp is purely
poloidal, it follows that w must be also purely poloidal (Reid, 1960). Thus, u can be expressed in
terms of a single scalar function. By doing so, the radial component of the velocity may be written as

L(L+1) or
u = U Dy = Ty, (53)
and for r - u = ru,, we have
0 9 1
- _ U= ——7- 5.9
(Bt I/V)ru pr Vp, (5.9)
Using (5.6) and (5.8) in (5.9), a differential equation for U(z) can be written
d’U s L(£+1) 9
— - = q¢“II 5.10
de +-[ $2 U q ($), ( )
with ¢ = %aQ. The solution is
U(z) = C1v/qxJpy1/2(qx) + (x) = Ur(z) + Hozt™! (5.11)

The linearized kinematic condition at = 1 is given in (2.19). Using (5.4), (5.8) and (5.11), this
condition yields

Civades1y2(q) +1lg = —1. (5.12)

The continuity of tangential and binormal stresses at the gas—liquid interface demands 7,9 = 0 and
Trp = 0 since the gas has negligible density and viscosity. The shear stresses can be computed from
the velocity distribution in the drop. This condition at x = 1 leads to

Ci[val[2 (@ -1) - ¢ Jos1/2(9) + 2av/qTo13/2(q)] + 2 (¢* —1)10, =0, (5.13)

using expression (5.11) and a standard recursion relation for Bessel functions.
Expression (5.13) and the kinematic condition (5.12) give expressions for C; and Il

_ o 2e-0) [ 2, ]
%= gy [ %) (519
2 (02 -1 2
My = —1+ %/ [1 - gQgﬂ/Q] : (5.15)
with
Qg+1/2(¢1) = Jey372(0)/ Jev1/2(a)- (5.16)

The normal stress balance at © = 1 for a drop surrounded by a gas of negligible density and viscosity
can be derived from the more general expression in (2.18). Using (5.4), this condition becomes

Ouy m
-Gt = a—l (£+2) (£ — 1) aeYy™. (5.17)

Applying previous results for p and u, given in (5.3) and (5.8), we obtain

v 1 EU] =Lo@+2)(-1). (5.18)
=1 pa

2 2
IIyo“a —2ua€[dx 7 3
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Setting the parameters

* 2 2
o? =02 —sry, L2 -2 (5.19)

14 (0%

where o7, is the frequency of oscillations from inviscid potential flow (IPF) given in (2.42). The normal
stress balance is then arranged as

dU
4_o 2, QY _ 4
Ioq™ — 2¢°¢ [( d$>z:1 + 2] « (5.20)

From the solution for U(z) in (5.11), one can compute dU/dz such that,

dU 9 0
(a)zzl +2=—(£—1)+ (2 -1) EQZH/Q/ [1 - gQgﬂ/Q] : (5.21)

where we have used the expressions for C; and IIj from (5.14) and (5.15).
Finally, replacing (5.15) and (5.21) into (5.20), the dispersion relation for the eigenvalue ¢ is obtained

ot =242 -1) [e +(€41) (5.22)

q- 2Qg—|—1/2

A through discussion on the solution of (5.22) is presented by Chandrasekhar (1959, 1961) when ¢
is real. Considering / fixed, the R.H.S. of (5.22) is a function of ¢, ®(q) say. The graph of this function
on the axis of positive ¢ reveals that there is an infinite number of intervals where ®(g) is positive.
The first of these intervals, which contains ¢ = 0, encloses a maximum (a2, ). For o? < o2, this first
interval gives two real roots of (5.22), which determine the slowest rates of decay. Since o = 5p+v/J,
for every mode /¢, the magnitude of the Reynolds number J defines the roots. In the other intervals,
one has 0 < ®(q) < co. When o? > o2,,,, (5.22) admits complex-conjugate eigenvalues with positive
real parts which give the lowest rate of decay; these waves oscillate as they decay. Results from this
dispersion relation are presented and discussed in §8.

As J — 0, the rate of decay from the exact solution of a drop surrounded by gas behaves as

20+ 1 2 20+1
6:6}‘)2\/3 + or Uzaga_ s

2(¢ —1)(202 + 40 + 3) v 20— 1)(22 1 40+ 3)" (5.23)

From the exact solution given above the behavior of the complex eigenvalue o for the drop as J — oo
is

o

~1
%iwg or a:%(2€+1)(€—1)ii0’{). (5.24)

These expressions were also obtained by Chandrasekhar (1959, 1961) and Miller & Scriven (1968).
The result given in (3.24) from VCVPF is the same as the expression obtained in (5.24) from the
exact solution.

5.2 Spherical bubble

To determine the eigenvalue relation for a bubble using normal modes, we follow closely the procedure
described for a drop. The equation of motion for a liquid outside a bubble with small disturbances
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at the interface r = a is again (5.1) in the infinite region a < r < oo. The pressure disturbance is
harmonic and may be expressed as

p=pB (r/a) " Y8, 0)e = pBr Y0, p)e (5.25)

for the liquid domain. The radial component of Vp can be written as

Lwp, = Pyt Dy = 2™y = sy BT (5.26)
giving rise to
(z) = —%x—‘ =Tz, TIp= —%. (5.27)
The radial component of the velocity is
Uy = U(r)e%%nnm = G%U(m)m. (5.28)

A differential equation can be obtained for U(z) which is exactly as (5.10) with solution
U(z) = Cor/qzH e+1 /Q(q:v) +1(z) = Us(z) + Moz ¥, (5.29)

where H 2_)1 /2 is the Hankel function of the first kind of half integer order and we choose Im(o) > 0.
The kinematic condition at z = 1 yields

Cgfﬂéim( )+ Iy = —1. (5.30)

The continuity of tangential and binormal stresses at z = 1 leads to

Co [Va [2(2 = 1) = ] HLY, p(0) + 20v/aHL, 1 (0)| +26(+2) T = 0. (5.31)

Expressions (5.30) and (5.31) give Cy and IIy. The normal stress balance at z = 1 obtained from
(2.18) when the density and viscosity of the inner fluid are put to zero yields

duU
og* +2¢° (£ + 1) K@) + 2] =at (5.32)
=1

using the relations (5.19). In these relations, the eigenvalue op given in (4.28) for a bubble is used
instead of op. From the solution U(z) in (5.29) an expression for dU/dz can be computed and
evaluated at £ = 1. Substitution of this result and the expression for Il in the normal stress balance
(5.32) leads to the dispersion relation for the eigenvalue o in the case of the bubble,

(20 +1)g?=2(L+1)(¢-1) [(% +1) - QQﬁ—lﬂ]

4
—q*, 5.33
(20+1) +¢2/2 — quﬂ/z (5:33)

=(£+2)¢°

with

QZ—I/Z e+3/2( a)/ e+1/2( q)- (5.34)
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The same dispersion relation found by Miller & Scriven (1968). Prosperetti (1980a) indicates that
this dispersion relation only admits complex roots as a consequence of the character of the Hankel
funtions. Therefore, for a bubble, only progressive-decaying waves are predicted. For a drop, we
recall that real eigenvalues can be found. On physical grounds, Prosperetti (1980a) argues that the
complex nature of the eigenvalues for a bubble is related to the unboundedness of the fluid domain
— in contrast with the finite amount of fluid require for a drop—, since an infinite domain provides
an efficient mechanism for smoothing out the velocity gradients. Another feature of the dispersion
relation is that the solutions occur in conjugate pairs, as in the drop case, since, for Im(o) < 0, one
can choose the Hankel function of the second kind in (5.29), and (5.33) is satisfied.

For a gas bubble in a viscous liquid, a real o can be approximated as J — 0,

20+ 1 a? 20 +1
A A%2 _ *2_
7= ‘/32(242 T+ 4 TTBL et (5:35)

For J — oo, damped-progressive waves take place with eigenvalues

o=

20+ 1 2
% +i6h or o= %(26 +1)(£+2) +io}. (5.36)

Both results presented by Miller & Scriven (1968). As in the case of the drop, the result obtained
from VCVPF in (4.35) is the same as the expression given in (5.36) from the exact solution.

6 Dissipation approximation

Viscous effects can be included for irrotational motion through the dissipation method; neither vortical
layers nor viscous corrections enter into the analysis. This method stems from the evaluation of the
mechanical energy equation on the fluid domain. In this equation, the viscous dissipation in the bulk
of the liquid is approximated by potential flow, while the continuity of tangential stress is enforced at
the gas-liquid interface; the shear stress is put to zero (the gas being considered of negligible density
and viscosity). Lamb (1932) found the exact solution for the decay rate of free gravity waves in
complete agreement with the decay rate from the dissipation method. Lamb (1881, 1932) also used
the dissipation method to compute the decay rate for small progressive waves in the free surface of
a liquid spherical drop immersed in gas and a spherical bubble surrounded by liquid. For several
problems involving free surfaces, Joseph & Wang (2004) showed that the dissipation method and
VCVPF give the same result. This set of problems includes the drag force on a spherical or oblate
ellipsoidal gas bubble and the decay rate of free gravity waves. The same conclusion was reached by
Wang et al. (2005a, 2005b) for the decay rate of capillary instability. Here, the procedure described
in their work is applied to the spherical geometry. We show that the dissipation method gives rise
to the same dispersion relation as VCVPF. Our result goes further than Lamb‘s, since the effect of
viscosity in the frequency of the oscillations is predicted in the analysis that follows.
In the case of a liquid drop surrounded by a vacuum, the mechanical energy equation can be written

as

d [ |ul?

— p—dV:/ n-T-udA—/ 2uD : DAV, (6.1)

dt Jy~ 2 A v
where, T is taken as the stress tensor for Newtonian incompressible flow and D is the strain rate
tensor. The last term in (6.1) represents the viscous dissipation. For potential flow, the following
identity holds,
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/ 2uD : DAV = / n-2uD - udA. (6.2)
14 A
Therefore, (6.1) becomes,
d \UI2
@), "2 ——dV = [ [(—p + Tpr)ur + Troug + Trpuy|dA — A n-2uD - udA. (6.3)
At the free surface r = a, we recall that the normal stress balance gives rise to
—p+ T = — (L - 2)C. (6.4)
The shear stresses are zero at the free surface
Tr9 = 0, Trp = 0. (6.5)
With these boundary conditions, the mechanical energy equation (6.3) can be expressed as
(6.6)

d |u[? Y 12 /
— —dV =— | (L -2 dA — -2uD - udA.
dt / /A a2t ) Pl
With |u|? = u2 + ug + u2 and the components of D expressed in spherical coordinates, the integrals

in (6.6) can be evaluated (see Appendix)

oo £
% |u‘ dV = Z Z F€m47ra/p (Aee—O'[t + Aee_a—zt)
/=0 m=0

— = / (E + m)!
_ ot oety &\ T T8
( opAge apAge ) 2+ 1 )!, (6.7)

o0
/ (L - 2)CudA = ZZFM@T— (Age 7t + Age )
AQ £=0 m=0
i 209 |
oy Oy 20+1 (£ —m)!
and
—oyt —ogt)2 (£ +m)!
n-2uD - -uddA = ZZFM (Age™ " + Age0t) E(é—l)(e Tk (6.9)
A =0 m=0 -

Substitution into (6.6) yields (dropping the subscript £),

- A A
_ A—Ut —A—Ut — l o —ot _—Jt /42000 —1
(cAe™" + 5 Ae™") pa3(ae +-e (£ +2)¢( )
2 o
—a—'; (e~ + Ae™7%) (20 + 1) (£ — 1), (6.10)
which has the form,
(6.11)

v —ot
-0 —I— (2€ +1)(£—-1)— pa—?’a(e +2)4(L — 1)] Ae™ " +cc. =0.
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Therefore, the same dispersion relation (3.20) obtained from VCVPF is recovered from the dissipation
approximation

2
02 — 22+ 1)( - 1)o + —L- (0 + 2)8(6 — 1) = 0. (6.12)
a2 pa®
Following the same steps, the dispersion relation (4.29) from VCVPF can also be obtained from the
dissipation method for the case of a spherical bubble immersed in liquid.

7 VPF and VCVPF analyses for waves acting on a plane interface
considering surface tension — Comparison with Lamb’s solution

The problem of the viscous effects on free gravity waves was solved exactly by Lamb (1932). In his
analysis, surface tension effects were included. Joseph & Wang (2004) gave a solution to this problem
using viscous potential flow (VPF). They also added a viscous correction to the irrotational pressure
and obtained another dispersion relation for the complex eigenvalue ¢. In their analysis they neglected
the surface tension effects and considered gravity effects. Here we find the rate of decay and wave
velocity for free waves on an otherwise plane interface neglecting gravity effects and including surface
tension. These expressions are found as limiting results from our VPF and VCVPF analyses of waves
on the surface of a liquid drop surrounded by gas. This procedure considers taking the limits £ — oo
and a — oo such that £/a — k in the expressions for the complex eigenvalue o (Miller& Scriven 1968).
For VPF, in the case of k > k. = y/pv?, the decay rate is

o = vk? £/ (vk2)2 — vk3/p. (7.1)
If k < k. = 7/pv? then we have
o = vk? +ik\/vk/p — v2k2, (7.2)

such that the wave-velocity is ¢ = \/vk/p — v2k? and the rate of decay is vk2.
Studying the asymptotic behavior for k& >> k. = v/pv?, the rate of decay goes as

_ Ik
g1 = 2[)1/’ (73)
oy = 20k, (7.4)

Then, o1 gives the slowest rate of decay for large k.
On the other hand, the asymptotic behavior as k << k. = v/pv? can be expressed as

o = vk?® £ ik+/vk/p, (7.5)

such that the wave velocity is given by ¢ = y/vk/p; this is the same result from IPF as shown below.
The rate of decay goes as vk?.
For VCVPF, in the case of k > k. = v/4pv?, the rate of decay is

o = 2Uk* + \/(2vk?2)2 — vk3 /p. (7.6)
If k < k. = y/4pv? then we have

o = 20k? +ik/vk/p — 42k2, (7.7)
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such that the wave-velocity is ¢ = v/vk/p — 4v2k? and the rate of decay is 2vk?.
Studying the asymptotic behavior for k& >> k. = /4pv? the rate of decay goes as

_k
g1 = 4p1/7 (78)
and
o9 = 4vk?, (7.9)

and o1 gives the slowest rate of decay for large k.
On the other hand, the asymptotic behavior as k << k. = v/4pv? can be expressed as

o = 2vk? + ik\/~k/p, (7.10)

such that the wave velocity is given by ¢ = /vk/p, which is the same result from inviscid potential
flow (IPF) as shown below. In this case the rate of decay goes as 2vk?. It can be verified that the same
results are found if one starts from the VPF and VCVPF solutions obtained for a bubble surrounded
by a viscous liquid.

Lamb (1932) solved the problem of free gravity waves exactly considering the effects of surface
tension (art. 349, pp. 625). Lamb’s dispersion relation, neglecting gravitational effects, is

(o — 2vk*)? + g3 = 4%k m, (7.11)
p
with
m? =k —o/v.

Therefore, the dispersion relation is biquadratic. As the viscosity goes to zero, Lamb found that the
complex eigenvalue o behaves as

o = 2vk? + ik\/~k/p, (7.12)

which is exactly the result from VCVPF in the case of k << k. = y/4pv?. In the limit v — 0 Lamb’s
exact solution reduces to

0% = 7k*/p, (7.13)

corresponding to IPF analysis. Then, the wave-velocity for inviscid flow is ¢ = \/vk/p, as mentioned
above.

For the case of v — 0o, Lamb (1932) found two real roots from his exact solution neglecting surface
tension. Following the same procedure but neglecting gravity effects and keeping surface tension, we
find that the relevant root on physical grounds is

— (7.14)
2pv

which is the same result obtained from VPF in (7.3). Using asymptotic formulas for Bessel functions
of large order and large variable such that a — oo and £ — oo for fixed k, Prosperetti (1980a) showed
that the dispersion relation for the bubble (5.33) reduces to Lamb’s result (7.11). Prosperetti (1976)
posed and solved the initial value problem for small disturbances of the infinite plane without assuming
an exponential decay with time. For an irrotational initial condition and neglecting gravity, in the
limit ¢ — 0, his dispersion relation is the same as (7.7), obtained here by a different method.
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Figure 1: Critical Reynolds number J, as a function of the mode number £ for a drop. At a given £,
for J > J. progressive decaying waves (oscillations) are predicted (i.e. the eigenvalues & are complex),
whereas for J < J, monotonically decaying waves are obtained (i.e. the eigenvalues & are real): (a)
for 2< 1 < 100 and (b) zoom for 2 <[ < 25. The results are presented for VPF, VCVPF and the

exact solution.

8 Results and Discussion

In this section, a detailed comparison of the results for the decay rate and frequency of the waves
according to VPF and VCVPF with the exact solutions of the fully viscous linear problem are presented
for a drop and a bubble. A wide interval is selected for the mode number £ ranging from ¢ = 2 up
to £ = 100. The smallest value of £ = 2 is chosen since lower values yield compressive or expansive
motions of the drop interface which are not compatible with the incompressibility assumption or a
non-physical static disturbed interface. For higher values of ¢ the exact fully viscous solution for the
drop predicts oscillations that decay faster (Miller & Scriven, 1968). The same lowest value of £ = 2
is selected for the bubble case.

Figure 1 shows the critical Reynolds number J, as a function of £ for a drop. The critical Reynolds
number is defined as the value of J at a given ¢ for which transition from monotonically decaying waves
to progressive waves (oscillations) occurs. For J < J, the eigenvalues & are real and monotonically
decaying waves take place, whereas for J > J. the eigenvalues are complex and the waves decay
through oscillations. Notice that when J > J, from VCVPF all the three theories predicts progressive
waves. On the other hand, for J < J, from the exact solution all the theories predict monotonically
decaying waves except for the lower interval ¢ < 8 where VPF gives rise to lower values of J.. In
between, at least one approach (VCVPF) will predict standing waves. For ¢ > 8, VPF predicts a
J. value bounded by the critical values resulting from the other two theories. Figure 2 presents the
trends of J, with £ for VPF and VCVPF for a bubble. Recall that the exact solution always predicts
decaying oscillations (i.e. complex eigenvalues) in the bubble case. Therefore, the exact solution does
not give rise to a critical J. If VCVPF predicts progressive decaying waves, then VPF gives the same
prediction. If VPF predicts standing waves, then the same behavior is obtained from VCVPF.

For a drop, the decay rate and wave frequency as a function of the Reynolds number J are presented
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Figure 2: Critical Reynolds number J, as a function of the mode number ¢ for a bubble. At a given £,
for J > J. progressive decaying waves (oscillations) are predicted (i.e. the eigenvalues & are complex),
whereas for J < J, monotonically decaying waves are obtained (i.e. the eigenvalues & are real): (a)
for 2< 1 < 100 and (b) zoom for 2 <! < 25. The results are presented for VPF and VCVPF. Notice
that the exact solution given by the fully viscous flow approach does not provide a crossover value,
since the imaginary part is never identically zero.

in Figure 3 (a) and (b), respectively, for £ = 2 as predicted by VPF, VCVPF and the exact solution.
The wave frequency given by IPF is also included for comparison. Recall that IPF yields zero decay
rate. For large J, VCVPF and the exact solution show excellent agreement, whereas VPF is off the
mark by -60%. The wave frequencies from the three viscous theories tend to the inviscid solution for
large J. As J decreases (below J = 10, say), transition from the progressive waves regime to the
standing waves regime occurs. In the point of transition, the frequency becomes identically zero, the
eigenvalue & becomes purely real and the curve of Re(d) bifurcates yielding two real and different
roots. In Figure 3 (a), the lowest root, representing the least damped mode of decay, is presented.
With decreasing J, from the asymptotic behavior of the different theories, one can readily find that
VPF and VCVPF show a relative discrepancy of 90% and -24%, respectively, with respect to the exact
solution for £ = 2.

For a bubble, the rate of decay is presented in Figure 4 (a) whereas the wave frequency is shown in
Figure 4 (b). Notice that the results follow similar trends as those described above for the drop. An
important difference, however, is that the exact solution does not predict transition to the standing
waves regime, but the wave frequency tends smoothly to zero as J decreases (the viscosity increases,
say). Thus, no critical cross-over value J, exists according to the exact theory and the oscillations are
never completely damped, though the frequency can reach very small magnitudes (see Figure 4 b).
We do not have a satisfactory argument to explain, on physical grounds, this difference between the
drop and the bubble on the response of the exact solution. On the other hand, the irrotational viscous
theories, VPF and VCVPF do render a cross-over J. for which transition to monotonically decaying
waves occurs. Also notice that as J — 0 the relative error with respect to the exact solution remains
as -40% for VPF and -64% for VCVPF using the asymptotic expressions for £ = 2. For large J, VPF
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Figure 3: Decay rate and wave frequency for the fundamental mode £ = 2 as function of the Reynolds
number J for a drop from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by
IPF is identically zero for all 2.

is off the mark by -40% for the bubble.

For large values of J, if one of the fluids has negligible density and viscosity, a thin boundary layer
results (Miller & Scriven 1968). Thus, an irrotational velocity field works as a good approximation
with a pressure correction arising within the boundary layer and resolving the discrepancy between
the non-zero irrotational shear stress and the actual zero shear stress at the interface. These consid-
erations explain the excellent agreement of VOVPF and the exact solution for large J. In terms of
the dissipation approximation, such a thin boundary layer yields a negligible contribution to the total
viscous dissipation, which is thus determined by the irrotational flow. By contrast, as J decreases
(e.g., the liquid viscosity increases), the boundary layer becomes thicker and the performance of the
irrotational approximations (VPF and VCVPF) deteriorates. A non-negligible boundary layer flow
contributes substantially to the rate of viscous dissipation. The motion for small J, as discussed by
Prosperetti (1980a), is restrained in such a drastic way that the energy dissipation per unit time, and
thus the decay rate, decrease with the Reynolds number J.

The sharp cross-over from the progressive waves regime to the standing waves regime can be readily
obtained from the dispersion relations (Figure 3). For a bubble, oscillatory decaying waves are always
predicted by the exact linearized theory yet the smooth region where the decay-rate graph reaches a
maximum as a function of the Reynolds number J (Figure 4) suggests a transition in the structure of
the flow. This was associated by Prosperetti (1980a) with the two length scales characteristic of the
problem, namely, the sphere’s radius a and the vorticity diffusion length of order (l//wB)l/ 2. where
wp is the frequency of the oscillations for the inviscid case given in (4.28). For a >> (v/wp)'/? a thin
vorticity layer at the interface occurs, having a minute effect on the rate of viscous dissipation. In
dimensionless form, this inequality can be written as

1>> (V)2 (8.1)

which represents the right branch of the exact solution in Figure 4 (a). As J increases, the frequency
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Figure 4: Decay rate and wave frequency for the fundamental mode £ = 2 as function of the Reynolds
number J for a bubble from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by
IPF is identically zero for all 2.

of the oscillations approaches closely the inviscid frequency asymptote (see Figure 4 b). For an almost
constant frequency, increasing J (i.e. decreasing v, say) also reduces the rate of viscous dissipation
and, as a consequence, the rate of decay of the oscillations. On the other hand, the left branch in Figure
4 (a), for which the rate of decay is reduced with decreasing J, as explained above, is associated with
a relatively thicker vorticity layer such that a << (v/wg)'/?. In dimensionless form, this condition
becomes,

1 << (@pVJ)~V2. (8.2)

Figures 5 and 7 show results for the rate of decay of waves on the spherical interface for a drop and
a bubble, respectively, from the three theories, VPF, VCVPF and the exact solution, for four mode
numbers (¢ = 2, 3, 4 and 10). The features commented for the fundamental mode ¢ = 2 are also
observed for the other modes. Notice that as £ increases the rate of decay increases. Hence, the waves
are more effectively damped for larger £. From the approximate solutions VPF and VCVPF for the
drop case, one can note that there is a very short interval of J at the cross-over peak (Figures 5 a and
b) for which £ = 2 has a decay rate larger than £ = 3 and 4. A similar trend in a different J interval
is observed for the pair of curves £ = 3 and £ = 4 on the same figures.

Figures 6 and 8 present the frequency of oscillations for the same four modes for a drop and a
bubble, respectively. As J increases, the curves tend asymptotically to the inviscid frequency, which
increases with £. The analysis of the predictions from the exact solution indicates that the change-over
from progressive waves to standing waves takes place for a larger critical J as £ increases for a drop
(Figure 6 ¢). Even though no transition to standing waves occur, a somewhat similar behavior is
observed for the bubble, since the frequency graph seems to lie close to the zero axis within a narrow
tolerance for larger values of J as £ increases (Figure 8 c). These results for the drop and bubble show
that viscosity damps the motion (either oscillatory or standing) more effectively for shorter waves, as
expected.
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Figure 5: Decay rate Re(d) as a function of the Reynolds number J for four modes numbers £ = 2,
3, 4 and 10, for a drop: (a) VPF, (b) VCVPF and (c) exact solution. The left branches of the curves
that increase with J correspond to the lowest real eigenvalue &1 (i.e. standing decaying waves). The
branches of the curves that decrease with J refer to progressive decaying waves where the complex
eigenvalues 61 and &9 are a conjugate pair. Recall that IPF predicts progressive waves with constant
amplitude such that Re(6)=0 for every £.
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Figure 6: Frequency Im(6) as a function of the Reynolds number J for four modes numbers ¢ = 2, 3,
4 and 10, for a drop: (a) VPF, (b) VCVPF and (c) exact solution. For every /, there is a critical value
of J for which Im(&) vanishes. These critical values of J are presented in Figure 1 for VPF, VCVPF
and the exact solution. For large J, the curves of Im(5) approach IPF’s solutions asymptotically in

all the cases.
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Figure 7: Decay rate Re(d) as a function of the Reynolds number J for four modes numbers ¢ = 2, 3,

4 and 10, for a bubble: (a) VPF, (b) VCVPF and (c) exact solution. For VPF and VCVPF, the left

branches of the curves that increase with J correspond to the lowest real eigenvalue &1 (i.e. standing

decaying waves). The branches of the curves that decrease with J refer to progressive decaying waves

where the complex eigenvalues 61 and 69 are a conjugate pair. According to the exact solution , the
eigenvalues are complex with non—zero imaginary part (i.e. progressive decaying waves). Recall that
IPF predicts progressive waves with constant amplitude such that Re(é)=0 for every /.
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of J for which Im(&) vanishes according to VPF and VCVPF approaches. These critical values of .J
are presented in Figure 2 for VPF, VCVPF. Notice that for the exact solution all the curves approach
Im(6) = 0 asymptotically through the smallest values of J. The imaginary part of the eigenvalue &
for the exact solution is only identically zero in the limit J — 0. For large J, the curves of Im(&)
approach IPF’s solutions asymptotically in all the cases.
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For a drop, Figures 9 through 18 present predictions from VPF, VCOVPF and the exact solution
for the rate of decay and frequency of the oscillations for a bubble for several values of the Reynolds
number .J, namely, J =1073, 10, 40, 500 and 10%. The results are presented as function of the mode
number £. The odd-numbered figures show the rate of decay, while the even-numbered figures show
the frequency of the oscillations. For small J, in the standing waves regime, VCVPF gives a better
approximation to the exact solution than VPF for the fundamental mode £ = 2, as can be observed in
Figure 9 for J = 10~3. By contrast, for larger £ (i.e. shorter waves), VPF shows a better performance.
Recall that the inviscid theory, IPF, gives zero decay rate for all £. As J increases, the waves start to
oscillate for low values of . For instance, in the case of J = 10, the cross-over values of ¢ according to
every viscous theory enters the analysis (see Figure 11). In the cases considered in this study for which
J > 10, the critical values of £ follows the trend fvcovpr < £yvpr < Lexact- 1 herefore, progressive waves
are fully inhibited according to the viscous theories for £ < ¢ycypr, whereas these theories agree and
predict standing waves for £ > fexact- This tendency was also described in Figure 1. The transition
values ¢, from the three theories become larger with increasing J as can be noted in Figure 13 for
J = 40. In Figures 15 and 17 for J = 500 and J = 10~ %, respectively, the cross-over £, obtained from
each viscous theory is larger than 100 and lie out of the figures. At least for values of £ << fexact in
the neighborhood of ¢/ = 2, VCVPF provides the better approximation of the decay rate. For large
J, in the regime of progressive waves, the region of good agreement between VCVPF and the exact
solution extends to higher values of £ (e.g., 2 < £ < 100 for J = 1076 in Figure 17), while VPF shows
poor agreement in comparison.

Good agreement with the exact solution for the frequency of the oscillations is observed for low
values of £ from the three approaches (i.e. VPF, VCVPF and IPF). For moderate to large values of
J, the oscillatory regime appears for a certain £ interval starting with £ = 2. This interval becomes
wider as J increases. As J increases, the cross-over /. moves to the right and the agreement in terms
of the frequency becomes much better in particular for low values of £, for which VCVPF has the
best performance. These results can be observed in Figures 14 and Figures 16 for J = 40 and J =
500, respectively. On the other hand, since the cross over value £y pp is larger than fyoypr, VPF
follows the trend of the exact solution in the oscillatory regime for a wider interval. In Figures 12
and 14, the graph of frequency versus mode number depicts a maximum. This maximum lies beyond
the interval of £ used in the figures for J > 500. For very large values of J, the three approximations
cannot be distinguished from the predictions given by the exact solution for a wide £ interval (e.g.,
2 < ¢ <100 for J = 105 in Figure 18). Therefore, one can expect a good approximation inasmuch as
¢ << {,. For very small values of J, as in the case of J = 1073, the exact solution, VPF and VCVPF
predict monotonically decaying waves and thus zero frequency, while IPF is off the mark giving rise
to a non-zero frequency for non-decaying waves (see Figure 10).

For a bubble, Figures 19 through 28 show results for the decay rate and frequency for several values
of J ranging from J = 1073 to J = 10%. To some extend, similar trends as those described for the
drop are observed for the bubble. However, two noteworthy differences can be mentioned. Firstly, for
low to moderate J (from 102 to 500), VPF predicts decay rates closer to the values from the exact
solution than VCVPF (for instance, see Figures19 and 23). This trend is reversed for large J (e.g.,
see Figure 27). Secondly, the agreement in terms of the frequency between either VPF or IPF and
the exact solution is not as good for low values of £ as in the case of the drop, for low and moderate
values of J. Notice that when VPF predicts standing waves, this theory approaches very well the
decay rate given by the exact solution for progressive waves with very low frequencies (Figures 19 and
21). Presumably, this trend is kept for greater values of J and large values of £ > /ypp.
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10°

10°
Im(6y)

T
.

10

L

Ll

Ll

Lol

10°=—

Figure 10: Wave frequency Im(é,) for J = 103 versus the mode number £ for a drop. For the interval
of £ considered, the three theories VPF, VCVPF and the exact solution predict real eigenvalues.
Therefore, the trend exhibited by Im(41) is only shown for IPF, which predicts oscillatory waves with

constant amplitude.



31

. T T T 1 T T T T 1 T
2 2
10 [ = S I I E
oo P ‘ ‘ .
b [ | s ]
Hooouf + I I E
| | _
ReG) [ 4 R(O) [ : . 1
10t H [ - 0k | i ‘ E
Flo [ I | | | ]
[l [ I \D | | ]
I I I I I I ]
I h I | | 1
b Exact solution i t | | 1
I I . VPF | | |
10° ;r ) veveE e 10° = | \E/xpa:tsolutlun | | E
r [ F | VCVPF | | J
[ivevee| | N | | | 1
Ll 1] Y . o Hee R
(AP Y P R P . L1 I IR ST N N NR
20 40 | 60 80 100 2 4 6 8 10I 12 14 16 18 20
(a) wide spectrum (b) zoomed view

Figure 11: Decay rate Re(d1) for J = 10 versus the mode number ¢ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ < £. and they are real and different
for £ > £.. For the latter case, the lower decay rate is plotted. The symbol £; stands for the highest
value of ¢ for which a non-zero imaginary part is obtained, i.e. progressive waves occur. For instance,
Lexact = £ from fully viscous flow theory (exact solution); analogous definitions can be set for VPF
(¢yvpr) and VCVPF (¢ycvpr). In (a) the full spectrum considered in this work is presented whereas
in (b) the region of low values of £ is zoomed.
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Figure 12: Wave frequency Im(é1) for J = 10 versus the mode number £ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ < £. and they are real and different
for £ > 4.. The symbol £. stands for the highest value of ¢ for which a non-zero imaginary part is
obtained, i.e. progressive waves occur. For instance, lexact = £c from fully viscous flow theory (exact
solution); analogous definitions can be set for VPF (¢ypr) and VCVPF (4ycver). In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.
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Figure 13: Decay rate Re(d1) for J = 40 versus the mode number ¢ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ < £. and they are real and different
for £ > £.. For the latter case, the lower decay rate is plotted. The symbol £; stands for the highest
value of ¢ for which a non-zero imaginary part is obtained, i.e. progressive waves occur. For instance,
Lexact = £c from fully viscous flow theory (exact solution); analogous definitions can be set or VPF
(¢yvpr) and VCVPF (¢ycvpr). In (a) the full spectrum considered in this work is presented whereas
in (b) the region of low values of £ is zoomed.
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Figure 14: Wave frequency Im(61) for J = 40 versus the mode number £ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ < £. and they are real and different
for £ > 4.. The symbol £. stands for the highest value of ¢ for which a non-zero imaginary part is
obtained, i.e. progressive waves occur. For instance, lexact = £c from fully viscous flow theory (exact
solution); analogous definitions can be set for VPF (¢ypr) and VCVPF (4ycver). In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.



3
10 T T T T

10°

Re(6.
= 1)101

10° - Exact solution
E a VPF
H* s VCVPF

Ll Lol Ll

m

(a) wide spectrum

[y
o

0

33

2
10" T T T T T T T

10

Re(6)

Ll

Exact solution
VPE
VCVPF

Lol

10"

a

Ll

IN] =
IS
=
=
[~
o
™
N
2=
i
[
o
[~
©
N
o

(b) zoomed view

Figure 15: Decay rate Re(d1) for J = 500 versus the mode number £ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ considered in this study. In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.
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Figure 16: Wave frequency Im(41) for J = 500 versus the mode number £ for a drop. In this case,
the eigenvalues are a pair of complex conjugates for the interval of £ considered in this study. In (a)
the full spectrum considered in this work is presented whereas in (b) the region of low values of /£ is

zoomed.
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Figure 17: Decay rate Re(é1) for J = 108 versus the mode number £ for a drop. In this case, the
eigenvalues are a pair of complex conjugates for the interval of £ considered in this study. In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.
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Figure 18: Wave frequency Im(&1) for J = 108 versus the mode number £ for a drop. In this case,
the eigenvalues are a pair of complex conjugates for the interval of £ considered in this study. In (a)
the full spectrum considered in this work is presented whereas in (b) the region of low values of / is

zoomed.
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Figure 19: Decay rate Re(6;) for J = 1073 vs. the mode number /£ for a bubble. According to VPF
and VCVPF, for the interval of £ considered, the eigenvalues are real and different. Here, the lower
decay rate is plotted. From the exact solution, the eigenvalues are always complex, with non-zero
imaginary part (i.e. progressive decaying waves). In (a) the full spectrum considered in this work is
presented whereas in (b) the region of low values of £ is zoomed.
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Figure 20: Wave frequency Im(&y) for J = 1073 versus the mode number £ for a bubble. According
to VPF and VCVPF, for the interval of ¢ considered, the eigenvalues are real and different. From
the exact solution, the eigenvalues are always complex, with non-zero imaginary part (i.e. progressive
decaying waves with a very long period of oscillation). Notice that Im(41) is much smaller than the
corresponding value from IPF for any fixed #; therefore, the exact solution predictions do not appear
in the figure.
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Figure 21: Decay rate Re(61) for J = 10 versus the mode number £ for a bubble. According to VPF
and VCVPF, for the interval of £ considered, the eigenvalues are real and different. Here, the lower
decay rate is plotted. From the exact solution, the eigenvalues are always complex, with non-zero
imaginary part (i.e. progressive decaying waves). In (a) the full spectrum considered in this work is
presented whereas in (b) the region of low values of £ is zoomed.
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Figure 22: Wave frequency Im(6;) for J = 10 versus the mode number £ for a bubble. According to
VPF and VCVPF, for the interval of £ considered, the eigenvalues are real and different. From the
exact solution, the eigenvalues are always complex, with non-zero imaginary part (i.e. progressive
decaying waves). Notice that Im(G1) approaches zero asymptotically as £ increases. In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.
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Figure 23: Decay rate Re(61) for J = 60 versus the mode number £ for a bubble. According to VPF and
VCVPF, the eigenvalues are a pair of complex conjugates for the interval of £ < £, and they are real
and different for £ > ¢.. For the latter case, the lower decay rate is shown. From the exact solution,
the eigenvalues are always complex, with non-zero imaginary part (i.e. progressive decaying waves).
The symbol £, stands for the highest value of £ for which a non-zero imaginary part is obtained, i.e.
progressive waves occur. For instance, fyvpr = £, from VPF theory; analogous definitions can be set
for VCVPF (¢ycvpr). In (a) the full spectrum considered in this work is presented whereas in (b) the
region of low values of £ is zoomed.
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Figure 24: Wave frequency Im(6) for J = 60 versus the mode number £ for a bubble. According to
VPF and VCVPF, the eigenvalues are a pair of complex conjugates for the interval of ¢/ < £, and
they are real and different for £ > /.. From the exact solution, the eigenvalues are always complex,
with non-zero imaginary part (i.e. progressive decaying waves). The symbol £, stands for the highest
value of £ for which a non-zero imaginary part is obtained, i.e. progressive waves occur. For instance,
Lypr = L. from VPF theory; analogous definitions can be set for VCVPF (¢ycypr). In (a) the full
spectrum considered in this work is presented whereas in (b) the region of low values of £ is zoomed.
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Figure 25: Decay rate Re(d1) for J = 500 versus the mode number £ for a bubble. According to VPF
and VCVPF, the eigenvalues are a pair of complex conjugates for the interval of £ considered in this
study. From the exact solution, the eigenvalues are always complex, with non-zero imaginary part (i.e.
progressive decaying waves). In (a) the full spectrum considered in this work is presented whereas in
(b) the region of low values of £ is zoomed.
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Figure 26: Wave frequency Im(é;) for J = 500 versus the mode number ¢ for a bubble. According to
VPF and VCVPF, the eigenvalues are a pair of complex conjugates for the interval of £ considered
in this study. From the exact solution, the eigenvalues are always complex, with non-zero imaginary
part (i.e. progressive decaying waves). In (a) the full spectrum considered in this work is presented
whereas in (b) the region of low values of £ is zoomed.
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Figure 27: Decay rate Re(d1) for J = 10°% versus the mode number ¢ for a bubble. According to VPF
and VCVPF, the eigenvalues are a pair of complex conjugates for the interval of £ considered in this
study. From the exact solution, the eigenvalues are always complex, with non-zero imaginary part (i.e.
progressive decaying waves). In (a) the full spectrum considered in this work is presented whereas in

(b) the region of low values of £ is zoomed.
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Figure 28: Wave frequency Im(&1) for J = 10° versus the mode number £ for a bubble. According to
VPF and VCVPF, the eigenvalues are a pair of complex conjugates for the interval of £ considered
in this study. From the exact solution, the eigenvalues are always complex, with non-zero imaginary
part (i.e. progressive decaying waves). In (a) the full spectrum considered in this work is presented
whereas in (b) the region of low values of £ is zoomed.
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Several figures showing the relative error between the predictions from the irrotational viscous theo-
ries VPF and VCVPF and those from the exact solution are shown in Appendix B for various Reynolds
number J. The comparisons are carried out for the decay rate of the waves and the frequency of the
progressive decaying waves for varying /. In the latter case, IPF is also included in the compari-
son. The same performance and trends described in the previous paragraphs are appreciated in this
Appendix from a different perspective.

Concluding remarks

This is the first study in which the machinery of irrotational theories of viscous flows is applied
to the analysis of small perturbations of a spherical shape. The theory of viscous potential flow
incorporates the effects of viscosity through the normal viscous stress at the interface. Since continuity
of shear stresses and tangential velocities at the interface cannot be satisfied, in general, on a potential
flow, VPF actually provides satisfactory results for problems with a gas-liquid interface in which the
irrotational shear stress is zero or negligible. Examples of these problems are the Rayleigh-Poritsky
bubble,‘usually incorrectly attributed to Rayleigh-Plesset’ (Joseph 2006), the rise of a spherical cap
bubble and the Rayleigh-Taylor instability of either a viscous or viscoelastic fluid (Joseph, Belanger
& Beavers 1999 and Joseph, Beavers & Funada 2002, respectively). The analysis of viscous potential
flow is modified by adding a viscous pressure correction to the irrotational pressure that balances
the difference between the irrotational shear stress and the true vanishingly small shear stress at the
gas-liquid interface. This extra-pressure is determined by equating the power due to the pressure
correction with the power of the irrotational shear stress.

The results obtained from the viscous purely irrotational approximations for the decay rate and
frequency of the oscillations for a drop and a bubble are in good to reasonable agreement with the
exact solution of the linearized problem. The damping role of viscosity in the dynamics of the waves
is adequately described by the viscous irrotational theories through the modeling of the decay rate
and frequency of the oscillations, whereas the classical inviscid theory predicts undamped oscillations,
and thus, an identically-zero decay rate. Some features are noteworthy from the comparison carried
out in this study for the drop and the bubble:

e In the limit of short waves (i.e., large mode number ¢), VPF gives a very good approximation
of the decay rate for standing waves for both the drop and the bubble. On the other hand,
VCVPF gives rise to values of the decay rate in closer agreement with the exact solution within
a certain £ interval, including ¢ = 2, in the progressive waves regime (i.e. long waves) for
large values of the Reynolds number J. In particular, for the fundamental mode, £ = 2, and
J > 0(10%), the agreement is excellent in both cases, the drop and the bubble. This trend
resembles the tendencies obtained for free gravity waves perturbing a plane interface by Wang
& Joseph (2006). They found that VCVPF shows better agreement with the exact solution
for long progressive waves while VPF gives rise to very good approximations for short standing
waves. Nonetheless, a notable difference between their results and those given here is that surface
tension has a stronger regularizing effect on short waves than gravity.

e VPF also follows the trend described by the exact solution for the frequency of the oscillations,
since the transition from progressive to standing waves predicted by this irrotational theory
occurs at a higher critical value of £ than the threshold given by VCVPF.

e The viscous irrotational approximations predict effects of viscosity on the frequency of the os-
cillations. For every mode, there is a Reynolds number J for which transition from progressive
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waves to monotonically decaying waves occurs for either the drop or the bubble. Whereas a
transitional value of J is predicted by the exact solution for a drop, only progressive waves are
found by this theory for a bubble. In this case, very small frequencies are obtained as J — 0
(e.g., v = 00).

e The viscous irrotational theories do not give rise to a continuos spectrum of eigenvalues for the
bubble as has been found for the exact solution by Prosperetti (1980a).

In this study, we showed that the dissipation approximation yields the same dispersion relation
and, thus, the same rate of decay and frequency of oscillations as VCVPF, as one can anticipate from
previous works on different geometries. Indeed, the rate of decay of free gravity waves found by Lamb
(1932) with the dissipation method was also obtained by Joseph & Wang (2004) using VCVPF. For the
problem of capillary instability in which one of the fluids is of negligible density and viscosity and in
the case of capillary instability involving two viscous liquids, Wang et al. (2005a, 2005b), respectively,
found the same growth rate from the dissipation method and extra-pressure calculations. However, as
mentioned by Wang et al. (2005a), the equivalence of the dissipation approximation and VCVPF is
not guaranteed a priori, and so, it is verified after the calculation is carried out for a particular case.
A proof on the equivalence of the two methods under a somewhat general framework is a task yet to
be accomplished. Furthermore, the dissipation analysis presented by Lamb (1932) on the oscillations
of drops and bubbles predicted viscous effects only on the rate of decay of the oscillation, whereas,
the viscous irrotational theories used in the present study give rise to viscous effects in both the rate
of decay and the frequency.
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A Integration formula

In the analysis presented in §3, §4 and §6 the following formula is invoked,

/A(B+B) (C+é)dA:2/

Re [BC 4+ BC| dA = 2Re [ / (BC + BC)dA (A.3)
A A

where A represents either a surface or a volume and B and C' are complex fields. The bar indicates
complex conjugate and Re[-] is a linear operator that returns the real part of a complex number.

B Additional comparison of the irrotational approaches with the
linearized fully viscous solution.

Figures 1 and 3 present a through comparison of the predictions from VPF and VCVPF with those
from the exact solution for the rate of decay and frequency of the oscillatory waves, respectively, as
function of ¢ for a wide range of the mode number £ in the case of the drop. The comparisons are
carried out in terms of the relative error with respect to the exact solution results. In the case of the
bubble, the same comparisons are shown in Figures 2 and 4. These plots provide additional support to
the extensive comments presented in the discussion section analyzing and comparing the performance
of the various irrotational approaches with the exact solution of the linearized problem.
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Figure 1: Relative error between the rate of decay predicted by either VPF or VOVPF with that
predicted by the exact solution for a drop as a function of the mode number ¢ for four values of the

Reynolds number J: (a) J = 1073; (b) J = 40; (c) J = 500; (d) J = 10°. The relative error for a

scalar X is computed as A% = (Zvpr/Zexact — 1) 100; similar definitions stand for VCVPF and IPF.
For these diagrams, 3 is replaced by the rate of the decay.
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Figure 2: Relative error between the rate of decay predicted by either VPF or VCOVPF with that
predicted by the exact solution for a bubble as a function of the mode number £ for four values of the
Reynolds number J: (a) J = 1073; (b) J = 60; (c) J = 500; (d) J = 10°. The relative error for a
scalar X is computed as A% = (Zvpr/Zexact — 1) 100; similar definitions stand for VCVPF and IPF.
For these diagrams, 3 is replaced by the rate of the decay.
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Figure 3: Relative error between the oscillation frequency predicted by either VPF, VCVPF or IPF
with that predicted by the exact solution for a drop as a function of the mode number £ for three
values of the Reynolds number (a) J = 40; (b) J = 500; (c) J = 10%. The relative error for a scalar 3
is computed as A% = (Evypr/Zexact — 1) 100; similar definitions stand for VCVPF and IPF. For these
diagrams, Y. is replaced by the frequency. When either VPF or VCVPF predicts standing—decaying

waves and the exact solution predicts progressive-decaying waves, A = —100%, as in figure (a).
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Figure 4: Relative error between the oscillation frequency predicted by either VPF, VCVPF or IPF
with that predicted by the exact solution for a bubble as a function of the mode number £ for three
values of the Reynolds number (a) J = 60; (b) J = 500; (c) J = 10°. The relative error for a scalar ¥
is computed as A% = (Zypr/Zexact — 1) 100; similar definitions stand for VCVPF and IPF. For these
diagrams, Y. is replaced by the frequency. When either VPF or VCVPF predicts standing—-decaying
waves, A = —100%, as in figure (a), since the exact solution always predicts progressive-decaying
waves for the bubble.



