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Abstract

Purely irrotational theories of the flow of a viscous liquid are applied to model the effect of
viscosity on the decay and oscillation of capillary-gravity waves. In particular, the dissipation
approximation used in this analysis gives rise to a viscous correction of the frequency of the
oscillations which was not obtained by Lamb’s (1932) dissipation calculation. Moreover, our
dissipation method goes beyond Lamb’s in the sense that it yields an eigenvalue relation valid
for the entire continuous spectrum of wave numbers. Comparisons are presented between the
purely irrotational theories and Lamb’s exact solution, showing good to reasonable agreement
for long, progressive waves and for short, standing waves, even for very viscous liquids. The
performance of the irrotational approximations deteriorates within an interval of wave-numbers

containing the cut-off where traveling waves become standing ones.

1 Introduction

Stokes' introduced the idea of the dissipation method ‘in which the decay of the energy of
the wave is computed from the viscous dissipation integral where the dissipation is evaluated
on potential flow’?. This method was implemented by Lamb?® (§348) to study the effect of
viscosity on the dynamics of free oscillatory waves on deep liquid. The waves are considered
small departures about a plane free surface. The result of his analysis was an estimate of the

decay rate of the traveling waves. He also conducted the solution of the linearized Navier—Stokes



equations for this problem using normal modes (§349; hereinafter ‘exact solution’), in which
the zero-shear-stress condition at the free surface is satisfied. Independently, Basset* obtained
the same dispersion relation as Lamb for the exact solution. Furthermore, Lamb? applied his
dissipation method to study viscous effects on small oscillations about the spherical shape of
a liquid globule in a vacuum or a bubble surrounded by liquid (§355). Whereas the effect of
viscosity in both the decay rate and frequency of the oscillations can be examined through the
exact solution, Lamb’s dissipation approximation does not give rise to a viscous correction of
the frequency.

In this work, we carry out the integration of the mechanical energy equation assuming irrota-
tional flow to obtain a relation for the effects of viscosity on the decay rate and frequency of the
oscillations of small capillary-gravity waves. Viscosity is explicitly considered in the dissipation
term of the mechanical energy balance and the shear stress is put to zero at the free surface.
This purely irrotational formulation is referred to as the dissipation method (DM) here. Our
irrotational method is similar to Lamb’s? in the sense that it is an irrotational approximation,
but, unlike Lamb, we do not assume that the potential energy equals the kinetic energy and
gravity is thus explicitly considered in our formulation. Unlike Lamb, our method of calculation
yields a complex eigenvalue for progressive waves with the same growth rate as Lamb’s but a
different frequency which depends on viscosity. Lamb?® advertises his method as valid to esti-
mate ‘the effect of viscosity on free oscillatory waves on deep water’. However, his analysis did
not yield viscous effects on the frequency of these waves. In fact, when the dissipation method
is carried out as presented here, it gives rise to progressive and standing waves just like the
exact solution. The progressive waves are associated with long waves and the standing waves
with short waves where the cut-off wavenumber is a decreasing function of the viscosity. For
standing waves, DM predicts effects of surface tension and gravity on the decay rate. Another
purely irrotational theory of the motion of a viscous liquid is used in this study, namely, the
theory of viscous potential flow (VPF). In this approach, the viscous normal stress at the free
surface enters the potential flow analysis.

Joseph and Wang® applied both VPF and the viscous correction of VPF (labeled as VCVPF)
theories to the problem of free gravity waves in which capillary effects are neglected. In the

latter approach, VPF theory is modified by adding a viscous pressure correction to the irro-



tational pressure to compensate the difference between the non-zero irrotational shear stress
and the zero-shear stress at the free surface. Viscous effects in both the decay rate and the
frequency were considered. The same decay rate obtained by Lamb’s dissipation method was
found from VOVPF. Wang and Joseph® performed a thorough comparison showing good agree-
ment between the viscous irrotational theories, VPF and VCVPF, with Lamb’s exact solution
for short and long gravity waves, respectively, even for liquids with viscosity 10* times that
of water. The theories of irrotational flow of a viscous fluid (VPF, VCVPF and DM) are ap-
plied by Wang, Joseph and Funada’™?® to the problem of capillary instability and by Padrino,
Funada and Joseph? to study capillary-driven oscillations about the spherical shape of a drop
or bubble. In these works, VCVPF and DM produced equivalent results. Here, we compare
and discuss predictions from the purely irrotational theories with the exact solution of the lin-
earized problem. Our method of calculating the dissipation leads to an excellent to reasonable
approximation to the dispersion relation of the exact solution for long waves. For short waves,
VPF gives the best approximation.

Neither Ref. 5 nor Ref. 6 applied the DM to waves on a plane free surface, although the
former did review Lamb’s dissipation approximation. The VPF calculation presented in this
paper in §2 expands the procedure outlined in Ref. 5 to include surface tension effects. More
importantly, it gives rise to intermediate results which are required by the DM in §3. To the
best of our knowledge, for the first time, viscous effects in both the rate of decay and frequency
of oscillations of ‘small’ capillary-gravity waves about a plane free surface are obtained through

the dissipation approximation.

2 Viscous potential flow analysis (VPF)

Consider two-dimensional small irrotational disturbances of the basic state of rest of an incom-
pressible fluid occupying half of the space, —oco < y < 0, where y is a Cartesian coordinate
such that the plane y = 0 corresponds to the free surface for the basic state. The fluid in the
upper half is dynamically inactive. The basic state is given by dP/dy = —pg where P is the
pressure, p is the liquid density and g is the acceleration of gravity. We set, with no loss of

generality, P = 0 at the free surface of the undisturbed state y = 0.



In the perturbed state, we look for functions which are periodic in the Cartesian coordinate
x with period A. The perturbed free surface has elevation y = n(z,t). For irrotational flow,
the velocity field is u = V¢, such that the incompressibility condition implies the Laplace’s
equation V2¢ = 0 for the velocity potential ¢.

Dynamical effects enter the analysis through the Bernoulli equation, which can be written as

o6 p R
po T3 VO +p+py=0, at  y=u, (2.1)
where p is the pressure in the disturbed state. The balance of the normal stress at the free

surface yields
2
—p+ 2#% = -7V -n, at  y=nm, (2:2)
where Vi1 = V — n(n - V). In this expression, p is the liquid dynamic viscosity and v is the
surface tension; the symbol n denotes the unit outward normal vector from the fluid at the
free surface, which determines the n direction, and the second term in the left-hand side of
(2.2) accounts for the viscous normal stress at the interface. At the free surface, the kinematic

condition can be written as

%:%Z:%—%U-Vn, at  y=1. (2.3)
The pressure in the disturbed state is now decomposed into small disturbances about the basic
state, such that p = P + p with P = —pgy. The system of equations (2.1)-(2.3) is linearized
assuming that the free-surface displacement is ‘small’ in comparison with the wavelength and

has ‘small’ slopes, 0n/0x < 1. This process yields, at y = 0,

ap
0%¢ 0%n
—p + pgn + 2“a_y2 = V552 (2.5)
dp _ On
5 = Bt (2.6)

Solutions of the Laplace’s equation for ¢ in the domain 0 < z < )\, —oo < y < 0 with periodic

boundary conditions for x = 0 and x = A can be written under the form

¢ = Ae?tTkRY L c e (2.7)



with £ = 27j/X and j = 1,2,3, ..., and c.c. denotes complex conjugate of the previous term.
The time dependence has been separated to obtain normal-mode solutions. We assume that

the shape of the disturbed interface is also given by a normal-mode expression
n = nee” Tk L cc., (2.8)

where 7 is a constant. Combining (2.4) and (2.5) to eliminate the pressure disturbance and

using (2.7) and (2.8) gives rise to the expression
(po A+ 2uAk* + pgno + vk*ng)e™ % £ cc. =0 at y=0. (2.9)

The linearized kinematic condition (2.6) is then used to find Ak = ony. Applying this relation
to eliminate 7y in (2.9) yields the dispersion relation for VPF

o + 2vk*c + gk ++v'k* = 0, (2.10)

which can be solved for the eigenvalues

o= —vk? + \/v2k* — (gk +v'k3), (2.11)

with 4" = 7/p and the kinematic viscosity v = p/p. This result can be obtained as a special case
from the more general expression derived by Funada and Joseph!! from the Kelvin-Helmholtz
stability analysis of two viscous fluids. For v = 0 in (2.10), our result agrees with the eigenvalue
relation presented by Joseph and Wang® using the theory of VPF for free gravity waves with
no capillary effects.

In the case of vk? > \/m we have two real roots from (2.11) and the waves decay mono-
tonically. The highest value gives the slowest rate of decay. In the case of vk? < \/m

we obtain the complex conjugate pair of roots

o= —vk*+ik\/(g/k + k) — v2k2, (2.12)

giving rise to progressive decaying waves. The decay rate is —vk? which is half of the value

computed by Lamb using energy dissipation arguments. The speed of the traveling waves is

c=+/(g/k+~k) — 2k2, (2.13)



and the speed is slower than the inviscid result y/g/k + 7'k, as noticed by Joseph and Wang®
in the absence of surface tension.

For short waves or high viscosity, i.e. vk? > \/gk + 7'k?, the eigenvalues from (2.11) follow
o=-2vk? and o=-———— " (2.14)

and the latter gives the slowest decay rate for the standing waves. For zero surface tension, the
damping of the waves follows the rate —g/(2vk), which decreases for shorter waves. This rate of
decay was found by Lamb?® from the exact solution for large viscosity. For vk? < +/gk + +'k3,

traveling decaying waves are obtained and the eigenvalues behave as

o= —vk® tik\/g/k + 'k, (2.15)

such that the wave speed reaches the inviscid result.

3 Dissipation method (DM)

The dissipation method relies on the integration of the mechanical energy equation. To apply
DM to capillary-gravity waves, the working equation is obtained after subtracting the basic
state of rest VP = pg from the incompressible Navier-Stokes equation and then taking the
scalar (‘dot’) product with the velocity vector. Integration over the region of interest yields the

mechanical energy balance for the flow disturbances in integral form

d P2 _ .

o V§|u| dV—/Sn-T-udS—/VQMD.DdV, (3.1)
where T is the stress tensor for an incompressible Newtonian fluid in terms of pressure and
velocity disturbances (see 3.2 below); D is the strain-rate tensor and n is the outward normal
vector from the fluid. The symbol V' denotes the volume of integration enclosed by the surface
S. The last term in (3.1) gives the viscous dissipation.

The region of integration is defined by 0 < z < X and —oo < y < 0. Periodic boundary
conditions at z = 0 and x = A and disturbances (both velocity and pressure) that vanish as

y — —oo are considered. Therefore, the surface integral is reduced to an integral at y = 0.

The first integral in the right-hand side of (3.1) can be expanded by considering

n-T u=(—p+7y)v+ ryu. (3.2)



The analysis follows with the assumption that the zero-shear-stress condition and the normal-

stress balance are satisfied at the free surface. Therefore, we have, at y = 0,
0n
Tmy =0  and TP Ty = P9t 55 (33)
Integrals in (3.1) are computed assuming that the fluid motion can be approximated as
irrotational. The discontinuity of the zero shear stress at the free surface with the irrotational
shear stress is resolved in a vorticity layer which is neglected in the analysis. For irrotational

flow, the following identity holds,

/ 2uD : DAV = / n- 24D - udS, (3.4)
14 s

Substitution of (3.2) and (3.4) into (3.1), using (3.3), yields

4 B\u\QdV——/A vdx+/)‘ @vdx—/n-Q D -udS (3.5)
i )3 == | pan V5 2 : :

Next, the integrals in (3.5) are carried out with the aid of the formula in the Appendix and
using expressions (2.7) and (2.8) for ¢ and 7 together with the relation Ak = o7, which stems
from the irrotational assumption. With |u/*> = u® + v> and writing the components of the
strain-rate tensor D in Cartesian coordinates, such that n-2uD-u = 7,,v + 7,,u from potential

flow, this series of integrals gives rise to

d - _
il g ul? dV = pkAA(0 + &)+, (3.6)
A (1 1 ;
/ pgnu dx = pgszA(— + —> elota)t), (3.7)
0 c 0
* P aaifl LY (o4or
VoY de = —vk"AA| — + = ]e A (3.8)
0 x o 0
/S n-2uD - udS = 8ukdAAe), (3.9)

Substitution of (3.6)-(3.9) into (3.5) yields the expression

1
o+ 4vk* + (gk +7'k*)= + c.c. =0, (3.10)
o



which is satisfied if the following eigenvalue relation holds
o’ + ko + gk ++'k* = 0. (3.11)

with roots

o= —2wk? + \/42k* — (gk + 'k3). (3.12)

Putting 7' = 0 in (3.12) yields the same relation obtained in Ref. 5 using the viscous correction
of VPF, which is a different method than the one described above. We regard (3.12) as an
irrotational approximation for the exact solution.

For 2vk? > \/m, expression (3.12) gives two real roots and monotonically-decaying
waves are obtained. On the contrary, if 2vk? < \/m, progressive decaying waves occur.

In this case, it is convenient to write (3.12) in the form

o= —2wk? +ik+/(g/k +v'k) — 4v2k2, (3.13)

and the traveling waves decay with rate —2vk?, which is the same value obtained by Lamb? via
the dissipation method. However, Lamb’s approach did not account for the effects of viscosity

in the wave speed of traveling decaying waves. The wave speed is extracted from (3.13) as

c=+/(g/k ++'k) — 42k2, (3.14)

which is slower than the inviscid result 1/g/k + +'k. Prosperetti'? finds (3.13) for small times
and an irrotational initial condition from the solution of the initial-value problem for standing,
capillary-gravity waves. He notes that this solution can apply to large viscosity. He also obtains
Lamb’s normal-mode solution (labeled ‘exact solution’ here) as the asymptotic limit for large
times, pointing out that validity of Lamb’s solution for all times is restricted to small viscosity.

For 2vk? > +/gk + 7'k3 (e.g., short waves or high viscosity), relation (3.12) yields the trend

for the rates of decay
o = —4vk? and o=——— (3.15)

and the second root, which is governed by surface tension, gives the slowest decay rate of the

standing waves. If 2vk? < \/gk + +'k3, as for long waves or low viscosity, the eigenvalues from



(3.13) behave as

o= —2vk®> +ik+/g/k + 'k (3.16)

and the progressive decaying waves travel with the inviscid speed. Lamb?® found that the exact

solution reaches (3.16) in the case of ‘small’ viscosity.

4 Discussion

Lamb? (§349) analyzed the viscous problem of small waves on the free surface of a deep liquid
with capillary and gravity effects. The approach considers the solution of the linearized Navier-
Stokes equations of an incompressible flow where the zero shear stress condition is satisfied at
the free surface. Hence, vorticity is not set to zero. Lamb obtained the following eigenvalue

relation, designated here as the exact solution,
[(0 + 2vk%)* + 03]2 = 160°k% (0 + vE?), op = gk + 7'k, (4.1)

with Re[(o + 2vk?)? 4+ 03] > 0.

In this section we compare the predictions from the exact solution with results from the
purely irrotational theories, namely, VPF, DM and IPF, the inviscid irrotational theory. The
latter is reached by setting v = 0 in either VPF or DM eigenvalue relations (2.12) and (3.13),
respectively; hence, the eigenvalues are purely imaginary with zero decay rate.

The dispersion relations (2.12), (3.13) and (4.1) can be conveniently written in dimensionless

form as follows

VPF &=—0+iy/I— 02 (4.2)
DM & =—20+iy/1— 402 (4.3)

Exact solution [(6 +260)* + 1}2 = 160%(5 + 0) (4.4)

and & = i for IPF. In these expressions, we have set & = o/0y and 0 = vk*/oy, a factor
introduced by Lamb in his ‘exact solution’. The analysis of (4.2), (4.3) and (4.4) reveals that a
threshold 6, can be obtained that separates progressive waves (6 < 6., Im[5] # 0) from standing

waves (0 > 6., Im[6] = 0) from each theory. We obtain . = 1 for VPF and 6. = 0.5 for DM.
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Table I: Properties of the liquids used in this study.

Property Water Glycerin ~ SO10000 oil

v (m?s!) 1.00x107% 6.21x107* 1.03x10°2
p (kg m~3) 1.00x10%> 1.26x10%>  9.69x10?
v (Nm™) 7.28x1072 6.34x1072 2.10x1072

For the exact solution, (4.4) gives rise to, nearly, . = 1.3115 (also reported in Ref. 12). We
notice that the first order approximation in 6 of (4.3) for the dissipation method is equivalent
to the first order approximation in this parameter of the exact solution presented by Lamb?
and Basset?.

From the definition of #, we have that the respective cutoff wavenumber k. can be obtained
for each theory using the corresponding value of 6. given above. When k < k., progressive
waves decay, whereas for k£ > k., the waves decay monotonically.

To investigate the cross-over from progressive to standing waves according to the exact so-
lution and the irrotational approximations, we choose three different liquids, namely, a highly
mobile one as water, glycerin and SO10000, a very viscous oil at ambient temperature. The
properties of these liquids used in the computations are indicated in Table I. The kinematic
viscosity varies several orders of magnitude from one fluid to another. The cutoff wave-number
k. from the exact solution, VPF and DM is shown in Table II for the three liquids. For the same
liquid, DM gives the lowest k. and the exact solution gives the largest. Therefore, traveling
waves of certain length according to the exact solution may be predicted as standing waves
by the irrotational approximations. Table II reveals that the cutoff wave-number decreases as
the viscosity increases. Thus, the region of progressive decaying waves 0 < k < k. shrinks
with increasing viscosity. Waves for which £ < k. oscillate with a finite period whereas waves
with k£ > k. can be though of as having an infinitely long period. This latter feature is clearly
associated with the low mobility of highly viscous liquids.

Fig. 1 shows the dimensionless decay rate —Re[&]| and frequency of the oscillations Im|[5] as

a function of the dimensionless parameter 6 from (4.2), (4.3) and (4.4) for VPF, DM and the
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Table II: Cutoff wavenumber k. (m~!) computed for DM, VPF and the exact solution for three
different liquids: Water, glycerin and SO10000 oil.

Theory  Water  Glycerin SO10000 oil

DM 1.82x107  196.81 28.50
VPF 7.28%107  344.64 45.29
Exact  1.25%x10%  445.18 54.30

exact solution, respectively. IPF predictions for the frequency, Im[5] = 1, are also included.
For 6 > 6. only the slowest decay rate, given by the smallest real eigenvalue, is plotted. In these
figures, only the cutoff 6, given by the exact solution is presented, which hereinafter is refered to
as #.. An important feature of the dimensionless representation of the dispersion relations (4.2)-
(4.4) is that their graphs of & versus  are equally applicable to any incompressible Newtonian
fluid, and no individual plots have to be presented for every liquid chosen.

Both viscous irrotational theories follow the trend described by the exact solution as shown
in Fig. 1. With respect to the rate of decay, this figure indicates that DM approaches the exact
solution in the progressive waves regime (6 < 6.) for § < 1. In particular, for # < 0.02 we found
that the relative error for DM in absolute value remains below 10% and the agreement becomes
outstanding as 0 decreases since Re[6] = —26 as indicated by (3.16). On the other hand, VPF is
off the mark by 50% as can be anticipated from (2.15). In the standing waves regime (6 > 6.),
VPF shows excellent agreement with the exact solution; for § > 2 this irrotational theory
predicts values of the rate of decay with relative errors within 5% in absolute value and the
agreement with the exact solution improves substantially following & = —1/(26) as # increases
as predicted by (2.14). By contrast, DM underpredict the rate of decay by 50% in this regime
in accord with (3.15). In the transition region (0.02 < § < 2, say), both viscous irrotational
theories compute values of the rate of decay that poorly approach the exact solution. However,
each of these approximations gives rise to a critical value 6. that qualitatively resembles the
cross-over from progressives to standing waves depicted by the exact solution.

Regarding the frequency of the oscillations, Im[5], Fig. 1 reveals that viscous effects are
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Figure 1: Dimensionless decay rate —Re[&] and frequency of the oscillations Im[5] as a function
of the dimensionless parameter § = vk? /o, from the exact solution and the irrotational theories
VPF, DM and IPF: Solid line, exact solution; A, VPF; [0, DM; dashed-dotted line, IPF. In the
latter case, the eigenvalues & are purely imaginary. The dimensionless eigenvalue is & = o /0q
where ¢ is the inviscid frequency. For 6 > 6., the solutions are purely real; in this case, only the
slowest decay rate, given by the lowest real eigenvalue, is presented. The cutoff ¢, corresponds

to the exact solution.
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significant when 6 > 0.1, for which the exact solution deviates from the inviscid result. The
frequency becomes damped and, for § > ¢, the oscillations are suppressed. These features in
the dynamics of the waves are also described, on qualitative grounds, by the viscous irrotational
approximations. This figure also illustrates what was computed above, namely, the lowest cross-
over f. is given by DM and the highest is obtained from the exact solution; the cut-off from
VPF lies in between. This cut-off between progressive and standing waves cannot be obtained
from the dissipation calculation implemented by Lamb based on Stokes’ idea.

An aspect that is worth mentioning and which may not be evident from the graph —Re(5)
versus @ is the effect of surface tension in the decay of the waves. The slowest rate of decay for the
exact solution and VPF goes as —v'k/(2v) as k — oo, whereas for DM, it goes as —'k/(4v).
Thus, as the waves become shorter, they are more rapidly damped by capillary effects. By
contrast, the suppression of the regularizing effect of surface tension yields a decrease in the
rate of decay of the gravity waves as k increases as shown by Wang and Joseph® (see 2.14 and
3.15). In the case of the inviscid theory, the frequency continues increasing as k — oo and the
waves oscillate undamped. The shortest the wave, the highest the frequency, which contradicts
the viscous theories. By taking into account viscous effects in the irrotational theories, the
cross-over from the traveling-wave regime to the standing-wave regime is predicted by these
approximations, in a similar fashion as the exact solution.

In this analysis, we have shown that the effect of viscosity on the frequency of capillary-gravity
waves which Lamb?® assumed to be the same as in an inviscid fluid, can be obtained from the
dissipation integral in the mechanical energy balance. Moreover, results from this dissipation
method are not restricted to oscillatory waves, as it is the case with Lamb’s dissipation calcu-
lation, but they also predict values for the decay rate of standing waves that follows the trend
described by the exact solution. In sum, our dissipation method yields an eigenvalue relation
for the entire spectrum of wave numbers and is in good agreement with the exact solution for

sufficiently large waves. VPF is the best approximation for sufficiently short waves.
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A Integration formula

In the analysis presented in §3 and §4, the following formula is used,

/S(B+B)(C+C)dS:2/

S

Re [BC + BC] dS = 2Re [/S (BC + BC) dS] , (A1)

where S denotes the region of integration and B and C are complex fields. The bar indicates

complex conjugate and Re [-] is a linear operator that returns the real part of a complex number.
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