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Purely irrotational theories of stability of
viscoelastic fluids

As in the case of viscous fluids, very good approximations to exact results for viscoelastic fluids can be obtained
from purely irrotational studies of stability. Here we consider RT instability (§21.1) and capillary instability
(§21.2) of an Oldroyd B fluid. Viscoelastic effects enter into the irrotational analysis of RT instability through
the normal stress at the free surface. For capillary instability, the short waves are stabilized by surface tension,
and an irrotational viscoelastic pressure must be added to achieve excellent agreements with the exact solution.
The extra pressure gives the same result as the dissipation as is true in viscous fluids where VPF works for
short waves and VCVPF and DM give the same results for capillary instability.

21.1 Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers

Movies of the breakup of viscous and viscoelastic drops in the high-speed airstream behind a shock wave in
a shock tube have been reported by Joseph, Belanger and Beavers (1999). They performed a Rayleigh-Taylor
stability analysis for the initial breakup of a drop of Newtonian liquid and found that the most unstable Rayleigh-
Taylor wave fits nearly perfectly with waves measured on enhanced images of drops from the movies, but the
effects of viscosity cannot be neglected. Here we construct a Rayleigh-Taylor stability analysis for an Oldroyd-B
fluid using measured data for acceleration, density, viscosity and relaxation time λ1. The most unstable wave
is a sensitive function of the retardation time λ2 which fits experiments when λ2/λ1 = O(10−3). The growth
rates for the most unstable wave are much larger than for the comparable viscous drop, which agrees with the
surprising fact that the breakup times for viscoelastic drops are shorter. We construct an approximate analysis
of Rayleigh-Taylor instability based on viscoelastic potential flow which gives rise to nearly the same dispersion
relation as the unapproximated analysis.

21.1.1 Introduction

Aitken and Wilson (1993) studied the problem of the stability to small disturbances of an incompressible elastic
fluid above a free surface. They derived dispersion relations for an Oldroyd fluid in the case where the fluid is
bounded below by a rigid surface. When the retardation time and inertia are neglected the analysis predicts
an unbounded growth rate at a certain Weissenberg number. The addition of inertia or retardation smooths
this singularity. The work presented here differs from that of Aitken and Wilson in the following ways; in our
work the two fluids are unbounded; we construct both an exact analysis and an approximate analysis based on
potential flow; we aim to apply the analysis of Rayleigh-Taylor instability of viscoelastic drops using measured
data; we compute and present dispersion relations emphasizing the role of the most dangerous wave associated
with the maximum growth rate, thereby emphasizing the role of the huge acceleration in the drop breakup
problem due to Rayleigh-Taylor instability; and we use the maximum growth rate to define a breakup time.
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Fig. 21.1. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm ) in the flow
behind a Mach 2 shock wave. Air velocity = 432 m s−1; dynamic pressure = 165.5 kPa; Weber number =15,200. Time
(µs): (a) 0, (b) 55, (c) 95, (d) 290, (e) 370, (f) 435.

Fig. 21.2. Stages in the breakup of a drop of 2% aqueous solution of polyox (WSR 301; diameter = 2.9 mm) in the flow
behind a Mach 3 shock wave. Air velocity = 755 m s−1; dynamic pressure = 587.2 kPa; Weber number =54,100. Time
(µs): (a) 0, (b) 30, (c) 45, (d) 170, (e) 195, (f) 235.

21.1.2 Experiments

21.1.2.1 Displacement-time graphs and accelerations

Displacement vs. time graphs for the Mach 3 experiments are shown in figure 21.5. The Mach 2 graphs are of
similar form. The distance refers to the slowest moving drop fragment (the windward stagnation point); other
parts of the fragmenting drop accelerate from rest even more rapidly. The graphs are nearly perfect parabolas
for about the first 200 µs of the motion, which allows the initial acceleration to be obtained by fitting a curve of
the form x− xo = α(t− to)2. Values of the parameters α, to, xo, and the initial acceleration are listed in table
21.2. It is noteworthy that in these graphs the acceleration is constant, independent of time for small times, and
about 104-105 times the acceleration due to gravity depending upon the shock wave Mach number. In general
there is a moderate decrease in acceleration with time over the course of the several hundred microseconds that
it takes to totally fragment the drop.
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Fig. 21.3. Stages in the breakup of a drop of 2% aqueous solution of polyacrylamide (Cyanamer N-300LMW; diameter
=3.2 mm) in the flow behind a Mach 3 shock wave. Air velocity = 771 m s−1; dynamic pressure = 578.1 kPa; Weber
number =82,200. Time (µs): (a) 0, (b) 45, (c) 60, (d) 90, (e) 145, (f) 185, (g) 225.

Fig. 21.4. Stripping breakup of a drop of 1 kg m−1 s−1 silicone oil (diameter = 2.6 mm) in the flow behind a Mach 3
shock wave. Air velocity = 767 m s−1; dynamic pressure = 681.0 kPa Weber number =168,600. Time (µs): (a) 15, (b)
40, (c) 50, (d) 80, (e) 115, (f) 150.

The initial accelerations are an increasing function of the shock Mach number; the dynamic pressure which
accelerates the drop increases with the free-stream velocity. At a fixed free-stream dynamic pressure there
appears to be a tendency for the acceleration to decrease with drop size. If we take the drag on a spherical drop
to be proportional to the drop diameter squared and the mass to the diameter cubed, then the acceleration is
proportional to D−1 and decreases with increasing D.
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Table 21.1.

21.1.3 Theory

The fluid mechanics of RT instability in an Oldroyd B fluid is controlled by acceleration as is true for viscous
fluids discussed in chapter 9. The theoretical background discussed there works well for the problem here. Ortiz
et al. 2003 developed a correlation for the acceleration of a liquid drop suddenly exposed to a high speed air
stream. The correlation depends weakly on the viscosity through the Ohnesorge number and though it works
also very well for viscoelastic drops, no viscoelastic parameter enters.
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Liquid Silicone oil 2% Aqueous PO 2% Aqueous
PAA

Viscosity 1 1 35 35 0.96
(kg m−1 s−1)

Shock Mach no. 2 3 2 3 3
α (m s−2) 1.463× 105 5.561× 105 0.687× 105 3.240× 105 2.461× 105

x0 (m) −28.5× 10−5 7.45× 10−5 −17.7× 10−5 −0.046× 10−5 −6.16× 10−5

t0(s) −3.43× 10−5 0.21× 10−5 −5.07× 10−5 −0.12× 10−5 −1.49× 10−5

Initial acceleration 2.92× 105 11.12× 105 1.37× 105 6.48× 105 4.92× 105

(m s−2)
Max. accel. 1.07× 105 4.05× 105 0.86× 105 3.07× 105 2.74× 105

(c = 0) (m s−2)
Mean accel./ 2.7 2.7 1.6 2.1 1.8
max. accel.

Table 21.2. Curve-fitting parameters and initial accelerations for the liquid drops specified in table 21.1.

Fig. 21.5. Distance traveled vs. time. x− x0 = α(t− t0)
2 where x0 and t0 are the extrapolated starting values from the

curve fitting technique. The starting values x0 and t0 are uncertain within several pixels and several frames (5 µs per
frame).

21.1.3.1 Stability analysis

The undisturbed interface between two fluids is located at z = 0, with a system of Cartesian coordinates
x = (x, y, z) = (x1, x2, x3) moving with acceleration a:

a = g − V̇ =
(
0, −g, −V̇

)
= (0, −g, −a) . (21.1.1)

For the conditions of the experiments described in this paper the drop moves in a horizontal plane and we
may neglect g as at least four orders of magnitude smaller than V̇ . The undisturbed rest state is given by the
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pressure p̄(2) in the heavy non-Newtonian fluid (the Oldroyd-B fluid) in z > 0 and p̄(1) in the light Newtonian
fluid in z < 0:

p̄(2) = p0 − ρ2az, p̄(1) = p0 − ρ1az, (21.1.2)

where p0 is the pressure at the interface, ρ2 denotes the density of the heavy fluid, and ρ1 is the density of the
light fluid. Small disturbances are superimposed upon the undisturbed state to give rise to the Rayleigh-Taylor
instability, for which the equations in the heavy fluid (in 0 < z) are given by

ρ2
∂u(2)

∂t
= −∇p(2) +∇ · τ (2), (21.1.3a)

∇ · u(2) = 0, (21.1.3b)

τ
(2)
ij + λ1

∂τ
(2)
ij

∂t
= 2µ2

(
e
(2)
ij + λ2

∂e
(2)
ij

∂t

)
, (21.1.3c)

e
(2)
ij =

1
2

(
∂u

(2)
i

∂xj
+

∂u
(2)
j

∂xi

)
, (21.1.3d)

where u(2) =
(
u(2), v(2), w(2)

)
=

(
u

(2)
1 , u

(2)
2 , u

(2)
3

)
is the velocity disturbance, the viscous stress tensor τ

(2)
ij of the

Oldroyd-B fluid is expressed as the constitutive equation (21.1.3c) with the strain tensor e
(2)
ij and the viscosity

µ2; λ1 is the relaxation time and λ2 the retardation time; the conventional tensor notation is used here. Then,
equations for disturbances in the light fluid (in z < 0) are given by

ρ1
∂u(1)

∂t
= −∇p(1) +∇ · τ (1), (21.1.4a)

∇ · u(1) = 0, (21.1.4b)

τ
(1)
ij = 2µ1e

(1)
ij , (21.1.4c)

e
(1)
ij =

1
2

(
∂u

(1)
i

∂xj
+

∂u
(1)
j

∂xi

)
, (21.1.4d)

where the viscous stress tensor τ
(1)
ij of the Newtonian fluid is expressed as (21.1.4c) with the strain tensor e

(1)
ij

and the viscosity µ1.

Boundary conditions at the interface with its displacement h (at z = h ≈ 0) are given by the continuity of
velocity, the kinetic condition and the continuity of the stress:

u(1) = u(2), (21.1.5a)
∂h

∂t
= w(1) = w(2), (21.1.5b)

τ
(1)
13 = τ

(2)
13 , (21.1.5c)

τ
(1)
23 = τ

(2)
23 , (21.1.5d)

−p(2) + τ
(2)
33 + ρ2ah−

(
−p(1) + τ

(1)
33 + ρ1ah

)
= −γ∆h, (21.1.5e)

where γ is the surface tension and ∆ is the horizontal Laplacian:

∆ =
∂2

∂x2
+

∂2

∂y2
. (21.1.6)

Further, the boundary conditions require that the disturbances vanish, respectively, as z → ±∞.

The solution to the system of the disturbances may take the following form:
[
u(2), p(2), h, u(1), p(1)

]
=

[
û(2)(z), p̂(2)(z), ĥ, û(1)(z), p̂(1)(z)

]
exp (nt + ıkxx + ıkyy)

+c.c., (21.1.7)

where n denotes the complex growth rate, (kx, ky, 0) is the wavenumber vector of magnitude k =
√

k2
x + k2

y,
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and c.c. stands for the complex conjugate of the preceding expression. Using (21.1.7), the constitutive equation
(21.1.3c) is now written as

τ
(2)
ij = 2α̂e

(2)
ij , (21.1.8a)

with α̂ defined by

α̂ = µ2
1 + λ2n

1 + λ1n
. (21.1.8b)

Taking this into account and taking rotation of (21.1.3a) and (21.1.4a) with using ∇ × ∇ × u = −∇2u for
incompressible fluid, we get the following equations:

(
∇2 − nρ1

µ1

)
∇2w(1) = 0 in z < 0,

(
∇2 − nρ2

α̂

)
∇2w(2) = 0 in z > 0, (21.1.9)

for which the boundary conditions at the disturbed interface are written in terms of w(1) and w(2) as

∂w(1)

∂z
=

∂w(2)

∂z
, (21.1.10a)

∂h

∂t
= w(1) = w(2), (21.1.10b)

µ1

(
∆− ∂2

∂z2

)
w(1) = α̂

(
∆− ∂2

∂z2

)
w(2), (21.1.10c)

−
(

ρ2
∂2w(2)

∂t∂z
− α̂∇2 ∂w(2)

∂z

)
+ 2α̂∆

∂w(2)

∂z
+

(
ρ1

∂2w(1)

∂t∂z
− µ1∇2 ∂w(1)

∂z

)
− 2µ1∆

∂w(1)

∂z

+(ρ2 − ρ1) a∆h + γ∆2h = 0, (21.1.10d)

and the conditions away from the interface are

w(1) → 0 as z → −∞, w(2) → 0 as z →∞. (21.1.10e)

To satisfy (21.1.10e), the solutions to Eqs(21.1.9) are expressed as

w(1) = A(1) exp(kz) + B(1) exp(q1z), w(2) = A(2) exp(−kz) + B(2) exp(−q2z), (21.1.11)

with q1 and q2 defined by

q1 =
√

k2 +
nρ1

µ1
, q2 =

√
k2 +

nρ2

α̂
. (21.1.12)

After substituting (21.1.11) into the boundary conditions (21.1.10a)-(21.1.10d), we obtain an inhomogeneous
system of linear equations for A(1), B(1), A(2) and B(2) which is solvable if and only if the determinant of the
coefficient matrix vanishes. After a straightforward but tedious analysis we have the dispersion relation:

−
[
1 +

1
n2

(
(α1 − α2) ak +

γk3

ρ1 + ρ2

)]
(α2q1 + α1q2 − k)− 4kα1α2

+4
k2

n

µ1 − α̂

ρ1 + ρ2
[α2q1 − α1q2 + (α1 − α2) k] + 4

k3

n2

(
µ1 − α̂

ρ1 + ρ2

)2

(q1 − k) (q2 − k) = 0, (21.1.13)

where

α1 =
ρ1

ρ1 + ρ2
, α2 =

ρ2

ρ1 + ρ2
. (21.1.14)

Then the experiment shows ρ2 À ρ1, for which α2 → 1 and α1 → 0. Moreover µ1 ¿ α̂ in the experiment, so
that (21.1.13) reduces to

−
[
1 +

1
n2

(
−ak +

γk3

ρ2

)]
− 4

k2

n

α̂

ρ2
+ 4

k3

n2

(
α̂

ρ2

)2

(q2 − k) = 0. (21.1.15)

Equation (21.1.15) approximates (21.1.13) with only a small error; it is appropriate for Rayleigh-Taylor insta-
bility in a vacuum.
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The solution of (21.1.13) gives rise to a dispersion relation of the type shown in figure 9.2. The border of
stability is given by a critical wavenumber with stability only when

k > kc =

√
ρV̇

γ
(21.1.16)

independent of viscosity, relaxation or retardation time. Dispersion relations for our experiments are presented
in figures 21.6-21.8 of §21.1.3.3.

21.1.3.2 Viscoelastic potential flow analysis of stability

Rayleigh-Taylor instability at an air-liquid or vacuum-liquid surface is one of the many cases in which accurate
results may be obtained using potential flow. For viscous potential flow the viscosity enters only in the normal
component of the viscous stress. The dispersion relations for viscous flow and viscous potential flow derived
in JBB (see Chapter 17), though different, give values for the wavenumber and the growth rate of the most
dangerous wave that are in good agreement. Viscous potential theory yields values for the wavenumber that
are about 2% higher, and values for the growth rate that are about 8.8% higher, than the corresponding values
from fully viscous theory (JBB, table 3). This shows that the main physical effect of viscosity is on the normal
stress balance.

The results given in JBB carry over to viscoelastic potential flows as we now show. We now require for each
fluid that the potential φ gives the velocity disturbance (u = ∇φ) and satisfies the Laplace equation

∇2φ = 0, (21.1.17)

and the pressure disturbance is given by Bernoulli’s equation

ρ
∂φ

∂t
+ p + ρaz = −ρ

2
|∇φ|2 ≈ 0, (21.1.18)

for the same undisturbed state that was given in §21.1.3.3. Then the boundary conditions are given by (21.1.5a)
and (21.1.5c) at the disturbed interface and (21.1.10e) away from the interface. The normal stress balance
(21.1.10d) is now written, using (21.1.18), as

ρ2
∂φ(2)

∂t
+ τ

(2)
33 + ρ2ah−

(
ρ1

∂φ(1)

∂t
+ τ

(1)
33 + ρ1ah

)
= −γ∆h, (21.1.19)

where

τ33

2µ
= e33 =

∂w

∂z
=

∂2φ

∂z2
= k2φ. (21.1.20)

Thus the solutions to (21.1.17) that vanish respectively as z → ±∞ may be expressed as

w(1) = A(1) exp (kz) in z < 0, w(2) = A(2) exp (−kz) in z > 0. (21.1.21)

Substitution of these into the boundary conditions using (21.1.10b) leads to the dispersion relation:

1 =
α2 − α1

n2
ka− k3γ

n2 (ρ2 + ρ1)
− 2k2

n

α̂ + µ1

ρ2 + ρ1
. (21.1.22)

Without much loss of generality, we may put α1 = 0, α2 = 1 and α̂ À µ1, so that the dispersion relation
becomes

1 =
ka

n2
− k3γ

n2ρ2
− 2k2

n

α̂

ρ2
, (21.1.23)

which can then be written as a cubic equation for the growth rate n.

It is interesting to note here that (21.1.23) for viscoelastic potential flow gives the same growth rate as the
dispersion relation (21.1.15) for fully viscous flow if q2 in (21.1.15) is approximated as

q2 − k =
√

k2 +
nρ2

α̂
− k ≈ nρ2

2kα̂
, (21.1.24)
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Fig. 21.6. The growth rate n versus the wavenumber k from (21.1.15) for 2% PO (Ms = 2); λ1 = 0.21 s. The average
wavelength and scatter from a very early time in the experiment are indicated.

Fig. 21.7. The growth rate n versus the wavenumber k from (21.1.15) for 2% PO (Ms = 3); λ1 = 0.21 s. The average
wavelength and scatter from a very early time in the experiment are indicated.

i.e., under the condition that
nρ2

2kα̂
¿ 1. (21.1.25)

Thus, under this condition, the theory of viscoelastic potential flow may provide a good approximation of fully
viscous theory.

21.1.3.3 Comparison of the exact and potential flow analysis

Based on the data for the experimental conditions cited in Tables 21.1 and 21.2, the dispersion relation (21.1.15)
is used to calculate the stability conditions, and the results are depicted in figure 21.6: 2% PO (Ms = 2); figure
21.7: 2% PO (Ms = 3); and figure 21.8: 2% PAA (Ms = 3). In each of the figures several plots of the dispersion
relation (21.1.15) are shown for a fxed (known) value of the relaxation time and various assumed values of the
retardation time λ2. The growth rates are computed at increments in the wavenumber of 200 m−1 from k = 0
to the critical value. The dispersion relation (21.1.23) from viscoelastic potential theory gives rise to graphs that
are nearly identical to those in figures 21.6-21.8.

For comparison of (21.1.23) and (21.1.15), values of the wavenumber k, wavelength l and growth rate n of the
most dangerous wave are shown in table 21.3, 2% PO (Ms = 2); table 21.4, 2% PO (Ms = 3); and table 21.5,
2% PAA (Ms = 3). These results show that the set of values of the growth rate and the wavenumber given by
the viscoelastic potential analysis and the corresponding set of values obtained from the exact stability analysis
are at the same level of good agreement as in the Newtonian case. The wavenumber predicted from viscoelastic
potential analysis is greater than the corresponding value from fully viscoelastic theory by between 0 and 5.4%
(with two exceptions): the growth rates from viscoelastic potential analysis are between 8.5% and 9.0% higher
than predicted by fully viscoelastic theory, except at the smallest values of λ2.
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Fig. 21.8. The growth rate n vs. the wavenumber k from (21.1.15) for 2% PAA (Ms = 3); λ1 = 0.034 s. The average
wavelength and scatter from a very early time in the experiment are indicated. Also shown by dotted lines are the average
wavelength and scatter for the set of waves of small wavelength which appear to be superimposed on the long wavelength
waves.

Exact Viscoelastic potential Percent difference
λ2/ (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 600 10.472 6331.7 800 7.8539 6870.9 33.3 8.5
λ1/8 1000 6.2832 7425.1 1000 6.2832 8077.7 0 8.8
λ1/10 1000 6.2832 7991.5 1200 5.2359 8684.8 20.0 8.2
λ1/20 1800 3.4907 10061.5 1800 3.4907 10945.9 0 8.8
λ1/100 4800 1.3090 17000.0 5000 1.2566 18489.8 4.2 8.8
λ1/1000 15 000 0.4189 32238.7 15 800 0.3977 34849.6 5.3 8.1
λ1/10000 22 400 0.2805 43036.2 23 600 0.2662 45074.9 5.4 4.7

0 24 200 0.2596 45697.3 25 000 0.2513 47119.7 3.3 3.1

Table 21.3. 2% PO (Ms = 2). Values of the wavenumber k, wavelength l and growth rate n of the most
dangerous wave for the experimental conditions given in tables 21.1 and 21.2; the retardation time λ2 is

changed against the relaxation time λ1. The values of k and n predicted by viscoelastic potential theory are
higher than the corresponding fully viscoelastic predictions. The differences are indicated as a percentage of the

fully viscoelastic values.

Exact Viscoelastic potential Percent difference
λ2 (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 1200 5.2359 17925.3 1200 5.2359 19496.0 0 8.8
λ1/8 1600 3.9269 20968.4 1600 3.9269 22801.0 0 8.7
λ1/10 1800 3.4907 22584.4 1800 3.4907 24549.0 0 8.7
λ1/20 3000 2.0944 28424.1 3000 2.0944 30915.1 0 8.8
λ1/100 8200 0.7662 48320.5 8400 0.7480 52541.6 2.4 8.7
λ1/1000 29 200 0.2152 96037.0 30 600 0.2053 103 960 4.8 8.2
λ1/10000 49 400 0.1272 138 925 51 600 0.1218 145 138 4.5 4.4

0 55 600 0.1130 152 570 56 600 0.1110 155 111 1.8 1.7

Table 21.4. As table 21.3 but for 2% PO (Ms = 3).

Exact Viscoelastic potential Percent difference
λ2/ (s−1) k (m−1) l (mm) n (s−1) k (m−1) l (mm) n (s−1) k n

λ1/5 11 200 0.5610 49081.4 11 400 0.5512 53350.0 1.8 8.7
λ1/8 14 800 0.4245 57009.4 15 200 0.4134 61948.0 2.7 8.7
λ1/10 17 000 0.3696 61112.1 17 400 0.3611 66389.7 2.4 8.6
λ1/20 24 400 0.2575 75051.4 25 400 0.2474 81393.6 4.1 8.5
λ1/100 43 200 0.1454 108 441 45 400 0.1384 115 536 5.1 6.5
λ1/1000 56 400 0.1114 133 671 57 800 0.1087 136 333 2.5 2.0
λ1/10000 59 000 0.1065 138 403 59 400 0.1058 139 290 0.7 0.6

0 59 400 0.1058 139 007 59 800 0.1051 139 633 0.7 0.5

Table 21.5. As table 21.3 but for 2% PAA (Ms = 3).
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Fig. 21.9. The effect of acceleration on the dispersion relation for 2% PO; λ1 = 0.21 s, λ2 = 3.3× 10−4λ1.

Fig. 21.10. Rayleigh-Taylor waves in 2% PO.

21.1.4 Comparison of theory and experiment

We now compare the Rayleigh-Taylor stability theory with experiments on drop breakup for the three viscoelastic
cases discussed in §21.1.2. For comparison, we repeat results from JBB for a 1.0 kg m−1 s−1 silicone oil whose
viscosity nearly matches the 0.96 kg m−1 s−1 polyacrylamide. Figure 21.12 21.12, taken from JBB, shows the
waves on drops of this Newtonian liquid at very early times in the motion at shock Mach numbers of 2 and 3.

Fig. 21.11. Rayleigh-Taylor waves in 2% PAA.
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The waves on both the polyox and polyacrylamide drops were smaller and more difficult to identify than the
waves on the Newtonian liquids shown, for example, in Engel [1958, Fig. 9], Hwang et al [1996, Fig. 8], and
in JBB. For example, the measured average wavelengths for the 1.0 kg m−1 s−1 silicone oil are about 2.0 mm
and 1.25 mm for shock Mach numbers of 2 and 3 respectively, while the corresponding values for the 2% polyox
solution are 0.39 mm and 0.20 mm. In an attempt to identify the waves more clearly on the computer screen
Adobe PhotoshopTM was used to exaggerate the contrast. We then measured the lengths of the waves by first
locating the troughs across the front of the drop on the computer screen, and then measuring the distance
between troughs in pixels which were finally converted to millimeters using a predetermined scaling factor for
each frame. The enhanced contrast images are shown in Figure 21.10 for the 2% aqueous polyox and Figure
21.11 for the 2% polyacrylamide. The tick marks identify the wave troughs. Like the Newtonian liquids in JBB,
the troughs are easier to identify on the computer screen than in the printed figure. The length of the waves
increases with time because the waves are ultimately forced apart by high pressures in the wave troughs; from
this it follows that the length of unstable waves should be measured at the earliest times for which all the waves
can be identified.

The early appearance and short life of distinctly identifiable Rayleigh-Taylor waves is illustrated in Figure
9.9 (a), which shows contrast-enhanced images from a repeat movie of the breakup of a drop (2.9 mm diameter)
of 2.0% aqueous solution of polyox at a shock Mach number of 2.9 made several months after the earlier work.
The four images in Figure 9.9 (a) show the drop at 5 µs intervals starting at 30 µs after the passage of the shock
wave. As before, the images are clearer and the waves are much easier to identify on the computer screen than
in the printed version where they appear pixelated. The waves have wavelengths of 5 pixels, which translates to
0.2 mm on the scaling used for this movie, in frames (i), (ii), and (iii) but in (iv) the waves are becoming less
distinct and only a few 5-pixel wavelengths could be found. For times greater than that of frame (iv) the front
face of the drop becomes very irregular as the drop sheds liquid and begins to break up.

The time interval in which the waves can be identified appears to correspond to the interval in which the
original almost-spherical drop is undergoing severe deformation as the front and back faces are being flattened
and the cross-sectional area to the flow is increasing. This deformation is shown in Figure 9.9 (b) which presents
the movie images corresponding to the contrast-enhanced images of Figure 9.9 (a). When the drop of polyox
is injected into the test section of the shock tube it leaves a thin, trailing thread of liquid connecting it to the
injection needle. The disintegration of the thread is visible in the frames of Figure 9.9 (b). The dark area that
moves downstream from the top of the drop is the liquid that formed the small web at the top of the drop where
the thread was attached. Figure 9.9 (b) also indicates that liquid starts to be torn from the equator of the drop
about 30 µs after exposure to the high-speed flow.

Returning to Figure 21.11, there is some uncertainty in the measurements of the wavelengths from the 2%
PAA picture because there appeared to be two sets of waves, a distinct set with an average wavelength of
0.70 mm with a second set of smaller waves superimposed on the larger waves. The wavelengths of the smaller
waves were very irregular, with values between approximately 0.05 mm and 0.24 mm. Smaller, but less distinct,
waves could also be identified over parts of the front face of the polyox drops.

On Figures 21.6-21.8 we graph dispersion relations corresponding to measured data given in tables 21.1 and
21.2. The retardation time λ2 is a fitting parameter. The dispersion graphs are sensitive to values of λ2 as is
shown in Figures 21.6-21.8, where for each figure values for λ2 have been chosen to yield curves such that the
wavelengths of maximum growth are close to the interval of instability defined from the experiments, which
is also included on the figures. From these we may estimate a λ2 which centers the wavelength of maximum
growth in the interval of instability. The estimated values of λ2 needed to achieve agreement are uniformly
small, ranging from λ2 ≈ λ1/5000 for 2% aqueous polyox at Ms = 2, to λ2 ≈ λ1/100 for 2% aqueous PAA at
Ms = 3. Boltzman has described the viscosity of a fluid as an effect of relaxed elastic modes and it is given
as the area under the shear relaxation modulus. Joseph [1990, chapter 18] interpreted the retardation time as
representing the effect of the most rapidly relaxing modes; it depends on the time of observation as well as the
material. The small value of the retardation time which matches theory and experiment reported here is as
might be expected in such an explosive and short-time (10-50 µs) event as produces Rayleigh-Taylor waves on
drops suddenly exposed to a high speed airstream.
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Shock Mach Approx. n Time for Experimental blow-
Liquid number (s−1) A = 10A0 (µs) off time (µs)

SO 1000 3 48 769 47 40
2% PO 3 90 000 25 30
2% PO 2 38 000 60 50

2% PAA: Short 3 110 000 20 35
Long 75 000 30

Table 21.6. Comparison of measured breakup times (defined as the time at which liquid first starts to ‘blow-off’
the perimeter of the drop) with predicted times t̂b calculated from equation t̂b = lnM/n with M = 10 and using

values of n from the fully viscoelastic analysis.

Fig. 21.12. Droplet configurations for 2% PAA, 2% PO, and two different silicone oils 170 µs after passing of the shock
over the drop under the same conditions (Ms = 3). The top pair of photographs compares PAA with a silicone oil of
approximately the same viscosity (1 kg m−1 s−1). The bottom pair compares 2% PO (viscosity = 35 kg m−1 s−1) with
a silicone oil that has a viscosity of about one-third that of the PO (10 kg m−1 s−1).

In the previous paragraph we have argued that λ2 is not fixed but depends at least on some conditions of
external excitation and that Rayleigh-Taylor disturbances are so fast that the response of the drops is highly
elastic (small values of λ2).

21.2 Purely irrotational theories of the effects of viscosity and viscoelasticity on capillary
instability of a liquid cylinder

Capillary instability of a liquid cylinder can arise when either the interior or exterior fluid is a gas of negligible
density and viscosity. The shear stress must vanish at the gas-liquid interface but it does not vanish in irrotational
flows. Joseph and Wang (2004) derived an additional viscous correction to the irrotational pressure. They argued
that this pressure arises in a boundary layer induced by the unphysical discontinuity of the shear stress. Wang,
Joseph and Funada (2005) showed that the dispersion relation for capillary instability in the Newtonian case
is almost indistinguishable from the exact solution when the additional pressure contribution is included in the
irrotational theory. Here we extend the formulation for the additional pressure to potential flows of viscoelastic
fluids in flows governed by linearized equations, and apply this additional pressure to capillary instability of
viscoelastic liquid filaments of Jeffreys type. The shear stress at the gas-liquid interface cannot be made to
vanish in an irrotational theory, but the explicit effect of this uncompensated shear stress can be removed from
the global equation for the evolution of the energy of disturbances. This line of thought allows us to present the
additional pressure theory without appeal to boundary layers. The validity of this purely irrotational theory
can be judged by comparison with the exact solutions of Navier-Stokes equations. Here we show that our purely
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irrotational theory is in remarkably good agreement with the exact solution in linear analysis of the capillary
instability of a viscoelastic liquid cylinder.

21.2.1 Introduction

Capillary instability of a liquid cylinder of mean radius R leading to capillary collapse can be described as a
neckdown due to surface tension γ in which fluid is ejected from the throat of the neck, leading to a smaller
neck and greater neckdown capillary force as seen in the diagram in Fig. 21.13.

Capillary instability of Newtonian fluids was studied by Rayleigh (1879) following earlier work by Plateau
(1873) who showed that a long cylinder of liquid is unstable to disturbances with wave lengths greater than
2πR. The analysis of Rayleigh is based on potential flow of an inviscid liquid. Tomotika (1935) studied the
capillary instability and gave an exact normal mode solution of the linearized Navier-Stokes equations.

The linear analysis of capillary instability of viscoelastic fluids has been done by Middleman (1965), Goldin
et al. (1969), Goren and Gottlieb (1982). They showed that the growth rates are larger for the viscoelastic fluids
than for the equivalent Newtonian fluids.

Funada and Joseph (2002, 2003) presented potential flow analyses of capillary instability of viscous and
viscoelastic fluids. In their studies, the flow is assumed to be irrotational but the viscous and viscoelastic effects
are retained (viscous or viscoelastic potential flow, VPF). The viscous and viscoelastic stresses enter into the
analyses through the normal stress balance at the interface. Funada and Joseph compared their results based on
potential flow to the unapproximated normal mode results (Tomotika 1935). They showed that the results with
viscous and viscoelastic effects retained are in better agreement with the unapproximated results than those
assuming inviscid fluids.

The capillary instability can be viewed as a free surface problem when either the interior or the exterior fluid
is a gas of negligible density and viscosity. One difficulty in the potential flow analyses of free surface problems is
that the non-zero irrotational shear stress violates the zero-shear-stress condition at the free surface. Joseph and
Wang (2004) derived an additional viscous correction for the irrotational pressure, which arises in the boundary
layer induced by the unphysical discontinuity of the shear stress. Wang, Joseph and Funada (2005) applied this
additional pressure contribution to the potential flow analysis of capillary instability of Newtonian fluids. They
showed that the results computed with the additional pressure contribution are almost indistinguishable from
the exact results. Here we extend the formulation for the additional pressure correction to potential flows of
viscoelastic fluids in flows governed by linearized equations (viscoelastic correction of viscoelastic potential flow,
VCVPF), and apply this additional pressure correction to capillary instability of viscoelastic liquid filaments
of Jeffreys type. The results are in remarkably good agreement with those obtained from the unapproximated
normal mode analysis for viscoelastic fluids.

The linear stability analysis given here and elsewhere indicates that the liquid jets are less stable with increas-
ing elasticity, which contradicts the observation in experiments. A possible explanation of this contradiction is

R
u

Capillary Force g/r

r = R+h

Fig. 21.13. Capillary instability. The force γ/r drives fluid away from the throat, leading to collapse.
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related to the linear stability analysis of a stressed filament at rest (Entov 1978). One difficulty is that a stressed
filament at rest is not a permanent solution.

21.2.2 Linear stability equations and the exact solution (Tomotika 1935)

In an undisturbed rest state, the long cylinder of a viscoelastic liquid is surrounded by a gas of negligible
density and viscosity. We use cylindrical coordinates (r, θ, z) and consider small axisymmetric disturbances.
The linearized governing equations of the interior liquid are

∇ · u = 0, (21.2.1)

ρ
∂u

∂t
= −∇p +∇ · τ (21.2.2)

where u = uer + wez is the velocity, ρ is the density, p is the pressure, and τ is the extra stress. The extra
stress may be modeled by Jeffreys model

τ + λ1
∂τ

∂t
= 2µ

(
D + λ2

∂D
∂t

)
, (21.2.3)

where D is the rate of strain tensor, µ is the viscosity, λ1 and λ2 are the relaxation and retardation times,
respectively. Suppose that we have normal mode solutions with the growth rate σ:

τ = exp(σt)τ̃ and D = exp(σt)D̃, (21.2.4)

then (21.2.3) leads to

τ̃ =
1 + λ2σ

1 + λ1σ
2µD̃ ⇒ τ =

1 + λ2σ

1 + λ1σ
2µD. (21.2.5)

The momentum equation (21.2.2) becomes

ρ
∂u

∂t
= −∇p +∇ ·

(
1 + λ2σ

1 + λ1σ
2µD

)
= −∇p +

1 + λ2σ

1 + λ1σ
µ∇2u. (21.2.6)

The shear and normal stress boundary conditions are

1 + λ2σ

1 + λ1σ
µ

(
∂u

∂z
+

∂w

∂r

)
= 0 ; (21.2.7)

− p +
1 + λ2σ

1 + λ1σ
2µ

∂u

∂r
= γ

(
∂2η

∂z2
+

η

R2

)
, (21.2.8)

where η is the varicose displacement. The governing equations (21.2.1) and (21.2.6) and boundary conditions

(21.2.8) and (21.2.7) are the same as those for a Newtonian fluid except that
1 + λ2σ

1 + λ1σ
µ replaces µ.

Following scales are used to construct dimensionless governing equations: the cylinder diameter D for length,
U =

√
γ/(ρD) for velocity, T = D/U for time and p0 = ρU2 for pressure. The dimensionless momentum

equation is (we use the same symbols for dimensionless variables)

∂u

∂t
= −∇p +

µ̂√
J
∇2u, (21.2.9)

where

µ̂ =
1 + λ̂2σ

1 + λ̂1σ
(21.2.10)

with

λ̂1 = λ1
U

D
= λ1

√
γ

ρD3
and λ̂2 = λ2

U

D
= λ2

√
γ

ρD3
, (21.2.11)
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and

J = ργD/µ2 (21.2.12)

is the Reynolds number and J−1/2 is the Ohnesorge number. The dimensionless boundary conditions at the
cylinder surface R = 0.5 are

− p + 2
µ̂√
J

∂u

∂r
=

∂2η

∂z2
+

η

R2
; (21.2.13)

µ̂√
J

(
∂u

∂z
+

∂w

∂r

)
= 0. (21.2.14)

A solution of (21.2.9) which satisfies both the boundary conditions (21.2.13) and (21.2.14) takes the following
form:

ψ = [A1rI1(kr) + A2rI1(kvr)] exp(σt + ikz), u =
1
r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
, (21.2.15)

η = H exp(σt + ikz), (21.2.16)

where k is the wavenumber and I1 denotes the first kind modified Bessel function of the first order. Substitution
of (21.2.15) and (21.2.16) into (21.2.13) and (21.2.14) leads to the solvability condition, which is given as the
dispersion relation of σ:

∣∣∣∣
2k2I1(kR)

(
k2 + k2

v

)
I1(kvR)

F1 F2

∣∣∣∣ = 0 (21.2.17)

where

F1 = σI0(kR) + 2
µ̂k2

√
J

(
dI1(kR)
d(kR)

)
−

(
1

R2
− k2

)
k

σ
I1(kR), (21.2.18)

F2 = 2
µ̂kkv√

J

(
dI1(kvR)
d(kvR)

)
−

(
1

R2
− k2

)
k

σ
I1(kvR), (21.2.19)

with kv =

√
k2 +

√
J

µ̂
σ. This solution satisfies the governing equations and all the boundary conditions and is

an exact solution†.

21.2.3 Viscoelastic potential flow (VPF)

It is easy to show that the momentum equation (21.2.9) admits potential flow solutions. Take curl of equation
(21.2.9) and use u = ∇φ, we obtain

∇∧ ∂∇φ

∂t
= ∇∧ (−∇p) +

µ̂√
J
∇∧∇2∇φ. (21.2.20)

Both sides of (21.2.20) are zero, therefore potential flow solutions are compatible in this problem. The pressure
integral can also be easily obtained from (21.2.9),

∇
(

∂φ

∂t

)
= −∇pp +

µ̂√
J
∇∇2φ ⇒ pp = −∂φ

∂t
, (21.2.21)

where pp denotes the pressure from the potential flow solution and it is equal to the pressure from the inviscid
potential flow.

The potential flow solution is given by

φ = AiI0(kr) exp(σt + ikz), u =
∂φ

∂r
, w =

∂φ

∂z
, (21.2.22)

† In our former paper (Wang, Joseph & Funada 2005), the exact solution of the linearized equations was called the fully viscous
flow (FVF) solution.
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η = H exp(σt + ikz). (21.2.23)

Substitution of the potential flow solution into the normal stress balance (21.2.13) leads to the dispersion relation

I0(kR)
I1(kR)

σ2
(
1 + λ̂1σ

)
+

(
1 + λ̂2σ

)
σ

2k2

√
J

[
I0(kR)
I1(kR)

− 1
kR

]
− k

(
1

R2
− k2

) (
1 + λ̂1σ

)
= 0, (21.2.24)

which is a cubic equation of σ and has explicit solutions.

When J →∞, equation (21.2.24) reduces to

I0(kR)
I1(kR)

σ2 = k

(
1

R2
− k2

)
, (21.2.25)

which is the dispersion relation for inviscid potential flow (IPF) solution. The IPF solution does not allow
viscous or viscoelastic effects.

21.2.4 Dissipation and the formulation for the additional pressure contribution

Joseph and Wang (2004) derived a viscous pressure contribution in addition to the irrotational pressure for the
potential flow solutions of Newtonian fluids by considering the dissipation of energy. Here we extend the analysis
to a viscoelastic fluid of Jeffereys type in flows governed by linearized equations. We start from the momentum
equation

ρ
du

dt
= ∇ ·T ⇒ u · ρdu

dt
= (∇ ·T) · u, (21.2.26)

where T is the total stress. It follows that

ρ
d
dt

(
1
2
u · u

)
= ∇ · (T · u)−∇u : T

= ∇ · (T · u)− (D + Ω) : (−p1 + 2µ̂µD)

= ∇ · (T · u)−D : (−p1 + 2µ̂µD)

= ∇ · (T · u)− 2µ̂µD : D.

It follows that
d
dt

∫

V

(ρ

2
u · u

)
dV =

∫

Ω

n · (T · u) dΩ− 2µ̂µ

∫

V

D : DdV , (21.2.27)

where V is the volume occupied by the viscoelastic fluid, Ω is the boundary of V , and n is the outward normal
of V on Ω. We have shown that the potential flow is a solution of the momentum equation in this problem.
Thus we can insert the velocity and stress tensor evaluated on the potential flow into (21.2.27) to obtain

d
dt

∫

V

(ρ

2
u · u

)
dV =

∫

Ω

[(−pp + τrr)u + τrzw] dΩ− 2µ̂µ

∫

V

D : D dV. (21.2.28)

At the free surface, the potential flow leads to a non-zero irrotational shear stress and does not satisfy the
zero-shear-stress condition. We introduce a pressure contribution pc in addition to the irrotational pressure pp;
pc cancels out the power due to the unphysical irrotational shear stress in the energy equation and (21.2.27)
becomes

d
dt

∫

V

(ρ

2
u · u

)
dV =

∫

Ω

[(−pp − pc + τrr)u] dΩ− 2µ̂µ

∫

V

D : D dV . (21.2.29)

Comparing (21.2.28) and (21.2.29), we obtain
∫

Ω

τrzw dΩ =
∫

Ω

(−pc)u dΩ, (21.2.30)

which is the same as the formulation for the additional pressure contribution as in the potential flow of a viscous
Newtonian fluid (Joseph and Wang 2004). However, the calculation of τrz in viscoelastic fluids is different than
in Newtonian fluids. The additional pressure contribution pc depends strongly on viscoelastic parameters and
is determined solely by the irrotational flow.
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21.2.5 The additional pressure contribution for capillary instability

Now we consider the additional pressure contribution for the potential flow analysis of capillary instability.
Joseph and Wang (2004) showed that in linearized problems, the governing equation for the additional pressure
contribution is

∇2pc = 0. (21.2.31)

It is easy to show that (21.2.31) holds for the viscoelastic fluid under consideration here. Solving (21.2.31), we
obtain

− pc =
∞∑

j=0

Cj iI0(jr) exp(σt + ijz), (21.2.32)

where Cj are constants. With the additional pressure contribution, the normal stress balance becomes

− pp − pc + 2µ̂
1√
J

∂u

∂r
=

∂2η

∂z2
+

η

R2
, (21.2.33)

which gives rise to
{

AσI0(kR) + CkI0(kR) +
2µ̂k2

√
J

A

[
I0(kR)− I1(kR)

kR

]}
exp(σt + ikz)

+
∑

j 6=k

CjI0(jR) exp(σt + ijz) = A
k

σ
I1(kR)

(
1

R2
− k2

)
exp(σt + ikz).

(21.2.34)

By orthogonality of Fourier series, Cj = 0 if j 6= k. The coefficient Ck can be determined using (21.2.30). The
left hand side of (21.2.30) is

∫

Ω

τrzw
∗dΩ =

µ̂√
J

4πlRAA∗k3I0(kR)I1(kR) exp(σ + σ∗)t, (21.2.35)

where l is the length of one wave period and “*” denotes conjugate variables. On the other hand,
∫

Ω

(−pc)u∗dΩ = 2πlRCkA∗kI0(kR)I1(kR) exp(σ + σ∗)t. (21.2.36)

It follows that Ck = 2
µ̂√
J

Ak2 and

− pc = iAk2 2µ̂√
J

I0(kr) exp(σt + ikz). (21.2.37)

Inserting Ck into (21.2.34), we obtain

σI0(kR) +
2µ̂k2

√
J

I0(kR) +
2µ̂k2

√
J

[
I0(kR)− I1(kR)

kR

]
=

k

σ
I1(kR)

(
1

R2
− k2

)
,

which can be written as

I0(kR)
I1(kR)

σ2
(
1 + λ̂1σ

)
+

(
1 + λ̂2σ

)
σ

2k2

√
J

[
2I0(kR)
I1(kR)

− 1
kR

]
− k

(
1

R2
− k2

) (
1 + λ̂1σ

)
= 0. (21.2.38)

Equation (21.2.38) is the dispersion relation from the viscoelastic correction of VPF (VCVPF).

If the pressure correction (21.2.37) is inserted back into the governing equation (21.2.9), we obtain

∂uc

∂t
= −∇pc +

µ̂√
J
∇2uc, (21.2.39)

where uc is the velocity correction induced by the pressure correction pc. We can find a potential flow solution
uc = ∇φc, such that ∇2uc = ∇∇2φc = 0 and

∇ ∂

∂t
φc = −∇pc. (21.2.40)
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It can be readily shown that

φc =
i
σ

Ak2 2µ̂√
J

I0(kr) exp(σt + ikz). (21.2.41)

Thus the pressure correction pc which is proportional to J−1/2 induces a velocity correction proportional to
J−1/2. This velocity correction gives rise to uncompensated shear stress proportional to J−1 which may induce a
new pressure correction now proportional to J−1. In this way we may generate, successively, irrotational solutions
proportional to increasing powers of J−1/2. We believe that only the first pressure correction proportional to
J−1/2 is of physical significance; the higher order corrections are not considered in the normal stress balance
(21.2.33).

21.2.6 Comparison of the growth rate

We compare the dispersion relation (21.2.38) from VCVPF with (21.2.24) from VPF, (21.2.25) from IPF and
(21.2.17) from the exact solution. Equations (21.2.17), (21.2.24), (21.2.25) and (21.2.38) are solved by numerical
methods for the growth rate σ and the values of σ are compared.

First we examine two practical cases: 2% PAA in air and 2% PEO in air (following Funada and Joseph
2003). We choose the diameter of the fluid cylinder to be 1 cm. The σ vs. k plots for 2% PAA and 2% PEO
are shown in Figs. 21.14 and 21.15, respectively. These figures show that the results from VCVPF are almost
indistinguishable from the exact solution, whereas IPF and VPF overestimates σ significantly.
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Fig. 21.14. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic
correction of VPF (VCVPF) and the exact solution. The growth rates for the exact solution and VCVPF are almost the
same. The fluid is 2% PAA, ρ =0.99 g cm−1, µ =96 P, γ =45.0 dyn cm−1, λ1 =0.039 s, λ2 = 0 s, J = 4.834 × 10−3,

λ̂1 =0.263.

Capillary instability is controlled by three dimensionless numbers: J , λ̂1, and λ̂2. We vary these parameters
and present the computed growth rate in Figs. 21.16–21.19. The Reynolds number J ranges from 10−4 to 104,
λ̂1 ranges from 0.1 to 1000, and λ̂2 ranges from 0 to 100. In all the cases, the growth rates from VCVPF are in
excellent agreement with the exact solution, indicating that our additional pressure contribution is valid for a
wide range of controlling parameters.

Figures 21.16 and 21.17 show that the growth rates increase with λ̂1 when J and λ̂2 are fixed. Comparing
Figs. 21.17 and 21.18, it can be seen that the effect of λ̂2 is opposite to that of λ̂1; the growth rates decreases
with λ̂2. When λ̂1 = λ̂2, the fluid becomes Newtonian. When the Reynolds number is as high as 104 (Fig.
21.19), IPF and VPF slightly over-estimate the maximum growth rate whereas the VCVPF results are almost
the same as the the exact solution.
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Fig. 21.15. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic
correction of VPF (VCVPF) and the exact solution. The results of the exact solution and VCVPF are almost the same.
The fluid is 2% PEO, ρ = 0.99 g cm−1, µ = 350 P, γ = 63.0 dyn cm−1, λ1 = 0.21 s, λ2 = 0 s, J = 5.091 × 10−4,

λ̂1 = 1.676.

0

0.002

0.004

0.006

0.008

0.01

0.001 0.01 0.1 1 10

σ

k

VCVPF
Exact

VPF
IPF

Fig. 21.16. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic

correction of VPF (VCVPF) the exact solution. J = 10−4, λ̂1 = 0.1, λ̂2 = 0.

In Table 21.7 we present the maximum growth rate σm and the associated wavenumber km computed from
VPF, VCVPF and the exact solution. The value of σm given by VPF is several times larger than the exact
result when J is small. VCVPF gives excellent approximation to the values of σm and km in all the cases.

21.2.7 Comparison of the stream function

Next we compare the stream functions from VPF, VCVPF and the exact solution at the same wave number.
The wave number chosen for the comparison is km at which the maximum growth rate σm occurs in the exact
solution. The relation between the constants A1 and A2 in the exact stream function (21.2.15) and A in the
potential flow solution (21.2.22) must be established before one can compare the stream functions. Here this
relation is obtained by assuming that the magnitude of the disturbance H is the same in the exact solution and
in the potential flow solution.
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Fig. 21.17. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic

correction of VPF (VCVPF) and the exact solution. J = 10−4, λ̂1 = 1000, λ̂2 = 0.
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Fig. 21.18. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic

correction of VPF (VCVPF) and the exact solution. J = 10−4, λ̂1 = 1000, λ̂2 = 100.

We use a superscript ‘E’ for quantities appearing in the exact solution and (21.2.15) and (21.2.16) are rewritten
as

ψE =
[
AE

1 rI1(kr) + AE
2 rI1(kvr)

]
exp(σEt + ikz), (21.2.42)

ηE = HE exp(σEt + ikz). (21.2.43)

The relation between AE
1 and AE

2 is determined by the zero-shear-stress condition at r ≈ R:

AE
2 =

−2k2I1(kR)
(k2 + k2

v)I1(kvR)
AE

1 . (21.2.44)

Therefore we can write the stream function as

ψE = AE
1 r

[
I1(kr)− 2k2I1(kR)

(k2 + k2
v)I1(kvR)

I1(kvr)
]

exp(σEt + ikz). (21.2.45)

The amplitude of the disturbance HE is related to AE
1 through the kinematic condition:

HE =
ik
σE

(
1− 2k2

k2 + k2
v

)
I1(kR)AE

1 . (21.2.46)

Now we consider the potential flow solution which is indicated by a superscript ‘P’. The stream function and
the disturbance are given by

ψP = AP rI1(kr) exp(σP t + ikz), (21.2.47)

ηP = HP exp(σP t + ikz), (21.2.48)
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Fig. 21.19. The growth rate σ vs. k from inviscid potential flow (IPF), viscoelastic potential flow (VPF), viscoelastic

correction of VPF (VCVPF) and the exact solution. J = 104, λ̂1 = 0.1, λ̂2 = 0. When the Reynolds number J is
large, viscoelastic effects are relatively small, and the four curves are close; but differences among them can be seen
near the peak growth rate. The inset is the amplified plot for the region near the peak growth rate. VCVPF is the best
approximation to the exact solution.

Table 21.7. Maximum growth rate σm and the associated wavenumber km for viscoelastic potential flow
(VPF), viscoelastic correction of VPF (VCVPF) and the exact solution in Figs. 21.14–21.19. For inviscid

potential flow (IPF) solution, km =1.394 and σm =0.9711 in all the 6 cases.

VPF VCVPF exact solution
Fig. km σm km σm km σm

21.14 3.439e-01 6.557e-02 2.052e-01 2.274e-02 2.135e-01 2.278e-02

21.15 2.025e-01 2.283e-02 1.183e-01 7.554e-03 1.229e-01 7.559e-03

21.16 1.331e-01 9.899e-03 7.831e-02 3.322e-03 8.154e-02 3.323e-03

21.17 1.309e+00 8.665e-01 1.144e+00 6.703e-01 1.170e+00 6.850e-01

21.18 3.848e-01 8.200e-02 2.101e-01 2.384e-02 2.186e-01 2.390e-02

21.19 1.386e+00 9.618e-01 1.374e+00 9.447e-01 1.375e+00 9.458e-01

respectively. The amplitude of the disturbance HP is related to AP through the kinematic condition:

HP =
ik
σP

AP I1(kR). (21.2.49)

We assume that the amplitude of the disturbance is the same in the exact solution and the potential flow
solution. Thus HE = HP and it follows that

AP = AE
1

σP

σE

(
1− 2k2

k2 + k2
v

)
. (21.2.50)

Then the stream function of the potential flow can be written as

ψP = AE
1

σP

σE

(
1− 2k2

k2 + k2
v

)
rI1(kr) exp(σP t + ikz). (21.2.51)

Now we can compare (21.2.45) and (21.2.51). The stream function is decomposed into two parts, the exponential
function depending on t and z and the rest part depending on r. Since we are comparing the stream functions
at the same wave number km, the comparison of the exponential function is equivalent to the comparison of the
growth rate. In Table 21.8, we list the values of the growth rate σ computed from VPF, VCVPF and the exact
solution. In all the cases, the growth rate from VPF is larger than the exact result, whereas the growth rate
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Table 21.8. The growth rate σ computed from viscoelastic potential flow (VPF), viscoelastic correction of VPF
(VCVPF) and the exact solution at the same wave number km. In the exact solution, km is the wave number

for the maximum growth rate.

J λ̂1 λ̂2 km σV PF σV CV PF σE

4.834 ×10−3 0.263 0 0.2135 0.06345 0.02274 0.02278

5.091 ×10−4 1.676 0 0.1229 0.02252 0.007554 0.007559

10−4 0.1 0 0.08154 0.009843 0.003322 0.003323

10−4 1000 0 1.170 0.8495 0.6696 0.6850

10−4 1000 100 0.2186 0.07718 0.02384 0.02390

104 0.1 0 1.375 0.9617 0.9447 0.9458

from VCVPF is very close to the exact result. The rest part of the stream function depends on r and we define

SF (r) =
σV PF

σE

(
1− 2k2

k2 + k2
v

)
rI1(kr) for VPF; (21.2.52)

SF (r) =
σV CV PF

σE

(
1− 2k2

k2 + k2
v

)
rI1(kr) for VCVPF; (21.2.53)

SF (r) = r

[
I1(kr)− 2k2I1(kR)

(k2 + k2
v)I1(kvR)

I1(kvr)
]

for the exact solution. (21.2.54)

Three examples for the comparison of the function SF (r) are shown in Figs. 21.20, 21.21 and 21.22. The curves
for SF (r) are very close to straight lines, indicating power functions. This can also be seen from (21.2.52),
(21.2.53) and (21.2.54). The expansion of the modified Bessel function gives

I1(kr) =
kr

2
+

k3r3

16
+

k5r5

384
+ O(r7). (21.2.55)

Higher order terms of r may be neglected because 0 ≤ r ≤ 0.5 inside the cylinder. If we only keep the first term
in the expansion, the stream functions (21.2.52) and (21.2.53) become, respectively

SF (r) =
σV PF

σE

(
1− 2k2

k2 + k2
v

)
kr2

2
+ O(r4) for VPF; (21.2.56)

SF (r) =
σV CV PF

σE

(
1− 2k2

k2 + k2
v

)
kr2

2
+ O(r4) for VCVPF. (21.2.57)

For (21.2.54), we also expand I1(kR) and I1(kvR) and keep only the leading term, which gives rise to

SF (r) =
kr2

2
− 2k2 kR

2

(k2 + k2
v)kvR

2

kvr2

2
+ O(r4)

=
(

1− 2k2

k2 + k2
v

)
kr2

2
+ O(r4) for the exact solution. (21.2.58)

Equations (21.2.56), (21.2.57) and (21.2.58) show that the functions SF (r) are approximately quadratic func-
tions for small r and this is confirmed in Figs. 21.20, 21.21 and 21.22. The comparison of the leading terms of
SF (r) depends directly on the growth rate σV PF , σV CV PF and σE . Since σV PF > σE , the curves for SF (r)
of VPF are higher than those for the exact solution. On the other hand, σV CV PF is very close to σE and the
curves for VCVPF and the exact solution almost overlap. Combining the comparison of the growth rate in
Table 21.8 and the comparison of the function SF (r) in Figs. 21.20, 21.21 and 21.22, we show that the stream
function given by VCVPF is in remarkably good agreement with the exact solution. This result indicates that
the vorticity plays a small role in the exact solution and our VCVPF solution, which is based solely on potential
flow, can give an excellent approximation to the flow.
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Fig. 21.20. The part of the stream function depending on r defined in (21.2.52), (21.2.53) and (21.2.54) for viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact solution respectively. The fluid is 2% PAA,

J = 4.834 × 10−3, λ̂1 = 0.263, λ̂2 = 0. The wave number for the maximum growth rate km = 0.2135 is chosen for the
comparison.
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Fig. 21.21. The part of the stream function depending on r defined in (21.2.52), (21.2.53) and (21.2.54) for viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact solution respectively. In this case, J = 10−4,

λ̂1 = 1000, λ̂2 = 0. The wave number for the maximum growth rate km = 1.170 is chosen for the comparison.

21.2.8 Discussion

Chang, Demekhin, and Kalaidin (1999) did a long wave study of the stretching dynamics of bead-string filaments
for FENE and Oldroyd-B fluids. They also did a long wave study of linear stability and their results can be
compared to ours. To this end, we first convert the parameters used by Chang et al. to the parameters used
by us. In the notation of Chang et al. Ca is the capillary number, We is the Weissenberg number and S is the
retardation number. We linearize the stress equation of Chang et al. and reduce it to a form comparable to our
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Fig. 21.22. The part of the stream function depending on r defined in (21.2.52), (21.2.53) and (21.2.54) for viscoelastic
potential flow (VPF), viscoelastic correction of VPF (VCVPF) and the exact solution respectively. In this case, J = 10−4,

λ̂1 = 1000, λ̂2 = 100. The wave number for the maximum growth rate km = 0.2186 is chosen for the comparison.

Jeffreys model (21.2.3), then the relation between We and S used by Chang et al. and λ̂1 and λ̂2 used by us
is revealed. After taking the different length and time scales into account, we can express the parameters in
Chang et al. in terms of our parameters

Ca = 2/J, We = 4λ̂1/
√

J, and S = λ̂2/λ̂1. (21.2.59)

Then the dispersion relation given by the linear stability analysis of Chang et al. (their Equation (16)) can be
written as

λ̂1σ
3 +

(
1 + 3k2 λ̂2√

J

)
σ2 +

[
3k2

√
J
− k2λ̂1

4
(4− k2)

]
σ − k2

4
(4− k2) = 0. (21.2.60)

Now we consider the dispersion relation (21.2.38) from the VCVPF method. The dimensionless radius R = 1/2
and the Bessel functions can be expanded for small k

I0(kR)
I1(kR)

=
4
k

+
k

8
− k3

768
+ O(k5),

2I0(kR)
I1(kR)

− 1
kR

=
6
k

+
k

4
− k3

384
+ O(k5). (21.2.61)

Inserting (21.2.61) into (21.2.38), we can obtain
(

1 +
k2

32

)
λ̂1σ

3 +

[
1 +

k2

32
+ 3k2 λ̂2√

J

(
1 +

k2

24

)]
σ2

+

[
3k2

√
J

(
1 +

k2

24

)
− k2λ̂1

4
(4− k2)

]
σ − k2

4
(4− k2) + O(k4) = 0. (21.2.62)

The expansion of the Bessel functions can also be applied to the exact solution and the result will be compared
to (21.2.60) and (21.2.62). After some arrangement, the dispersion relation (21.2.17) of the exact solution can
be written as

4k3kv√
J

µ̂

[
I0(kvR)
I1(kvR)

− 1
kvR

]
− 2k2(k2 + k2

v)√
J

µ̂

[
I0(kR)
I1(kR)

− 1
kR

]

− 2k3

σ

(
1

R2
− k2

)
+ (k2 + k2

v)
k

σ

(
1

R2
− k2

)
− (k2 + k2

v)σ
I0(kR)
I1(kR)

= 0. (21.2.63)
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Fig. 21.23. The growth rate σ as a function of k computed using (21.2.60) given by Chang et al., (21.2.38) given by our
VCVPF method, and (21.2.17) given by the exact solution. The fluid is water with ρ = 1000 kg/m3, µ = 0.001 kg/(m s),
γ = 0.0728 N/m. The diameter of the liquid cylinder is assumed to be 0.01 m and the Reynolds number is J = 7.28×105.

After expanding the Bessel functions as power series of k, we obtain

λ̂1

(
1 +

k2

32

)
σ3 +

(
1 +

k2

32
+ 3k2 λ̂2√

J

)
σ2 +

[
3k2

√
J
− k2λ̂1

4
(4− k2)

]
σ − k2

4
(4− k2) + O(k4) = 0. (21.2.64)

The dispersion relation (21.2.64) given by the exact solution is different from both (21.2.60) given by Chang et
al. and (21.2.62) given by our VCVPF method; the first order differences are O(k2) in both cases. The differences
between (21.2.64) and (21.2.60) are two k2/32 terms in the coefficients of σ3 and σ2; the differences between
(21.2.64) and (21.2.62) are two k2/24 terms in the coefficients of σ2 and σ.

The limit of a Newtonian fluid can be obtained by letting λ̂1 = λ̂2 = 0. Then the dispersion relations (21.2.60),
(21.2.62) and (21.2.64) reduce to, respectively

σ2 +
3k2

√
J

σ − k2

4
(4− k2) = 0 for Chang et al. ; (21.2.65)

(
1 +

k2

32

)
σ2 +

3k2

√
J

(
1 +

k2

24

)
σ − k2

4
(4− k2) + O(k4) = 0 for VCVPF; (21.2.66)

(
1 +

k2

32

)
σ2 +

3k2

√
J

σ − k2

4
(4− k2) + O(k4) = 0 for the exact solution. (21.2.67)

The first order differences among the dispersion relations (21.2.65), (21.2.66) and (21.2.67) are O(k2). The
difference between (21.2.65) and (21.2.67) is a k2/32 term in the coefficient of σ2; the difference between
(21.2.66) and (21.2.67) is a k2/24 term in the coefficient of σ.

In Figs. 21.23 to 21.27, we plot the growth rate σ as a function of k computed using (21.2.60) given by Chang
et al., (21.2.38) given by our VCVPF method, and (21.2.17) given by the exact solution. Both Newtonian fluids
and viscoelastic fluids are compared. The limit of Newtonian fluids is achieved by setting λ̂1 and λ̂2 to be zero
in (21.2.60), (21.2.38) and (21.2.17). There is almost no difference between the three curves when k is close to
zero, and small differences can be seen when k is close to 2. The dispersion relation of Chang et al. is in better
agreement with the exact solution when the Reynolds number J is small (Figs. 21.24 – 21.27), whereas our
VCVPF is in better agreement with the exact solution when J is large (Fig. 21.23).

In this work, linear stability analysis of the capillary instability of a viscoelastic thread is carried out under
the assumption that the flow is irrotational. The non-zero irrotational shear stress at the surface of the liquid

381



0

0.005

0.01

0.015

0 0.5 1 1.5 2

σ

k

Exact

VCVPF

Chang et al.

Fig. 21.24. The growth rate σ as a function of k computed using (21.2.60) given by Chang et al., (21.2.38) given by our
VCVPF method, and (21.2.17) given by the exact solution. The fluid is a Newtonian fluid SO10000 oil with ρ = 969
kg/m3, µ = 10 kg/(m s), γ = 0.021 N/m. The Reynolds number is J = 2.04× 10−3.
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Fig. 21.25. The growth rate σ as a function of k computed using (21.2.60) given by Chang et al., (21.2.38) given by our

VCVPF method, and (21.2.17) given by the exact solution. The fluid is 2% PAA with J = 4.834 × 10−3, λ̂1 = 0.263,

λ̂2 = 0.

thread does not agree with the zero-shear-stress condition. We derive a pressure contribution in addition to the
irrotational pressure. This additional pressure contribution depends on the viscoelastic parameters and cancels
out the power due to the uncompensated irrotational shear stress in the energy equation. We include the
additional pressure contribution, the irrotational pressure and the extra stress evaluated using the irrotational
flow in the normal stress balance at the surface, then a dispersion relation is obtained. We call this approach as
the viscoelastic correction of the viscoelastic potential flow (VCVPF). The comparison of the growth rate and
the stream function show that the VCVPF solution is an excellent approximation to the exact solution. The
dispersion relation given by VCVPF is also compared to that obtained by Chang et al. (1999) using a long wave
approximation. The differences between the two dispersion relations are negligible when the wave number k is
small and both dispersion relations are in remarkably good agreement with the exact solution.
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Fig. 21.26. The growth rate σ as a function of k computed using (21.2.60) given by Chang et al., (21.2.38) given by our

VCVPF method, and (21.2.17) given by the exact solution. The fluid is a viscoelastic fluid with J = 10−4, λ̂1 = 1000,

λ̂2 = 0.
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Fig. 21.27. The growth rate σ as a function of k computed using (21.2.60) given by Chang et al., (21.2.38) given by our

VCVPF method, and (21.2.17) given by the exact solution. The fluid is a viscoelastic fluid with J = 10−4, λ̂1 = 1000,

λ̂2 = 100.

21.3 Steady motion of a deforming gas bubble in a viscous potential flow

Miksis, Vanden-Broeck and Keller (MVK, 1982) computed the shape of an axisymmetric rising bubble, or a
falling drop, in an incompressible fluid assuming that the flow in the liquid is irrotational but viscous. The
boundary condition for the normal stress including surface tension is satisfied but as in other problems of VPF,
the tangential stress is neglected. The shape function is obtained from the gravitational potential evaluated on
the free surface; two shape functions are computed, one on the top and one on the bottom of the bubble. The
shape is single valued on each function The potential function is obtained from the values of the potential on
the free surface, using a Green’s function approach following ideas introduced by Longuet-Higgins and Cokelet
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1976, Vanden-Broeck and Keller 1980 and Miksis, Vanden-Broeck and Keller 1982. The system of differential
and integral equations are solved in a frame in which the bubble is stationary and the velocity at infinity is U

which is calculated by a drag balance in two ways. The first calculation is like that of Moore 1959 in which the
drag comes from the normal irrotational viscous stress leading to 32/R. This direct method should not be used
because of the additional contribution due to the irrotational viscous pressure.

This pressure is not easy to calculate in general, but the correct drag leading to 48/R can be obtained, and
was obtained by MVK in a second calculation using the dissipation method.

The solution of the system of governing equations was obtained as a power series in the Weber number and
R−1 and is therefore restricted to low Weber numbers (large surface tension) and high Reynolds numbers (small
viscosity).
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22

Numerical methods for irrotational flows of
viscous fluid

Problems of potential flow in irregular domains bounded by rigid solids and satisfying perhaps conditions at
infinity require numerical methods. Computers and software are now so powerful that it can be easier to compute
a solution than to find the exact one in a reference book. There are many techniques which may be used to
solve Laplaces equation with prescribed boundary conditions. These techniques are readably available even in
“search” on the web.

The numerical simulation of the deformation of interfaces between two immiscible fluids or in gas-liquid
flows is currently an active topic of research and many options are available for researchers. Level set methods
associated with the names of S. Osher. R. Fedkiw and J. Sethian, volume of fluid methods associated with the
name of S. Zaleski and front tracking methods associated with the name of G. Trygvasson, are high among the
most popular methods. Readers can find references in the comprehensive reviews by Yeung (1982), Tsai and
Yue (1996) and Scardovelli and Zaleski (1999) or in “search” on Google.

22.1 Perturbation methods

The problem of numerical simulation of the shape of free surfaces in potential flows of inviscid fluids has been
considered by various authors. Perturbation methods for nonlinear irrotational waves on an inviscid fluid were
introduced by Stokes 1847. He expanded the solution in powers of the amplitude. Many authors have worked
with these series and proofs of convergence and non-convergence have been considered (Schwartz, 1975). A
mapping method for the perturbation series was presented by Joseph 1973. Yoo 1973 computed many terms.
The mapping method was devised to justify an apparent problem of Stokes method in which boundary conditions
at z = η are enforced on the unperturbed surface at z = 0

The problem of computer aided studies and analytical continuation of the perturbation series has been consid-
ered by L.Schwartz 1975. The main contribution of this paper is summation protocol base Padé approximations
which in many cases improve convergence.

Stokes’ waves cannot be permanently maintained in the presence of viscosity. This fact places certain limits
on the utility of the perturbation methods.

22.2 Boundary integral methods for inviscid potential flow

A major objective in the solution of interfacial flow problems is a highly accurate description of the interface.
Therefore, boundary integral techniques are a fitting choice for the analysis, since they seek solutions of integral
equations involving information only on the interface. This feature reduces the dimensionality of the problem
by one. Thus, when an approximate solution is sought, a fine mesh can be afforded on the interface especially in
regions with high curvature, without having to discretize the neighboring domain. This attribute is particularly
important for an unbounded domain, in which case appropriate boundary conditions at infinity can be satisfied
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automatically by the governing integral equations. A survey of the literature on free-surface or interfacial flows
indicates that boundary integral methods have been applied mostly to problems in two-dimensions or three-
dimensions with axial symmetry since domain discretization simply takes place over a curve in the plane for
these cases.

The application of the boundary integral method relies on the existence of a ‘fundamental solution’ for the
partial differential equation on hand. In particular, this solution is known for the Laplace’s equation. Therefore,
BEM becomes a useful tool for incompressible potential flow problems since the velocity potential is harmonic.
BEM formulations have also been developed for Stokes flow (Pozrikidis 1992).

In general, boundary integral methods can be grouped into two major categories, namely, the indirect and the
direct formulations (Banerjee and Butterfield 1981; Brebbia, Telles and Wrobel 1984). In the indirect formulation
an integral equation is written in terms of the density distribution over the boundary of a unit singular solution
of the partial differential equation of interest. Numerical techniques are then applied to compute this density
profile which may have no explicit physical connotation. Once the density function over the boundary has been
determined, the physical variables of the problem inside the domain can be obtained by integration. On the other
hand, the direct formulation poses integral equations on the boundaries in terms of the physical parameters of
interest. By enforcing the boundary conditions, one can solve for the unknown field on the boundary first and
then at particular locations on the interior. For instance, the normal derivative of the potential at the boundary
can be computed in the Dirichlet problem or the potential over the boundary in the Neumann problem. Also,
mixed boundary conditions can be easily handled.

For most of the problems of interest in science and engineering, finding a solution of the boundary integral
equations is only possible in an approximate manner, using numerical techniques. A widely used approach is the
boundary element method (BEM). In general terms, this method sets marker points or nodes on the boundary.
A number of segments or ‘elements’ connecting the nodes are used to approximate this boundary. In two
dimensions, these elements may be straight segments or, if greater accuracy is desired, of higher order, including
circular, parabolic or cubic representations. In three dimensions, triangular or quadrilateral elements may be
chosen. Regarding the fields functions taken to the boundary (e.g., the potential and its normal derivative), they
are approximated with a truncated polynomial over each element. For instance, the simplest choice is to hold
the function constant on the element. To improve accuracy, the linear expansion or higher-order approximations
may be used. The coefficients of the expansion correspond to the values of the function at particular locations
on the element, which may be those of the nodes. Next, the integrals on the boundary integral equation are
split into integrals evaluated over each element and the local expansions for the field functions are substituted.
Then, the discretized equation is satisfied at a set of collocation points on the boundary. This process gives
rise to a set of algebraic equations that may be solved for the vector of unknowns. Detailed descriptions on the
implementation of BEM can be found in monographs on the subject, such as those by Brebbia et al. (1984),
Pozrikidis (1992) and Wrobel (2002), among others. A fairly rigorous mathematical treatment of boundary
integral equations and their numerical solution is given by Jaswon and Symm (1977).

Examples of the applications of boundary integral methods to problems involving free-surface flows are
abundant. For instance, the inviscid analysis of steady motion of free surfaces is carried out by Byatt-Smith
and Longuet-Higgins (1976) for a steep solitary wave, by Miksis, Vanden-Broeck and Keller (1981) to study the
deformation of an axisymmetric bubble in a uniform flow using a direct formulation and by Meiron and Saffman
(1983) for interfacial gravity waves applying the indirect formulation.

The accurate description of the unsteady motion of free surfaces or fluid-fluid interfaces bounding regions of
inviscid irrotational flow can be performed using boundary integral techniques. An approach that arises from
the indirect double-layer potential formulation is the generalized vortex method. This method was presented
and developed by Baker, Meiron and Orszag (1980, 1982, 1984) in a series of publications. They obtained
an integral equation for the Lagrangian time derivative of the dipole density distribution over the boundary.
Solving for this time derivative allows updating the dipole density which is used to march the interface forward
in time. Baker et al. (1980) used the vortex method to simulate the Rayleigh-Taylor instability in its classical
form while Verdon et al. (1982) considered the acceleration of a thin fluid layer. Baker et al. (1982) applied the
method to the breaking of surface waves and interacting triads of surface and interfacial waves. Lundgren and
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Mansour (1988, 1991) studied the oscillations of an inviscid axisymmetric drop in a dynamically inactive fluid
(e.g., vacuum) and the motion of toroidal gas bubbles in an inviscid liquid, respectively, with a modified version
of the generalized vortex method. Mansour and Lundgren 1990 also applied this approach to model satellite
formation in capillary jet breakup. The vortex method based upon the indirect approach has been used to study
the dynamic breakup of an inviscid liquid bridge by Chen and Steen 1997 and capillary pinch-off of an inviscid
drop surrounded by an ambient inviscid fluid by Leppinen and Lister (2003).

The direct formulation of the boundary integral method for inviscid fluids has been used by Longuet-Higgins
and Cokelet (1976) to study the deformation of steep surface waves and by Keller and Miksis (1983) to model
a breaking sheet of liquid and the flow near the intersection of a solid boundary with the free surface of a
liquid. The direct approach is applied to problems of capillary pinch off by Day, Hinch and Lister (1998) and
Rodriguez-Rodriguez et al (2006). Several papers by Oguz and Prosperetti (1989, 1990, 1993) on the effect of
surface tension in the contact of liquid surfaces, bubble entrainment by the impact of drops on liquid surfaces and
dynamics of bubble growth with detachment from a needle, respectively, use the direct formulation of boundary
integral methods. Machane and Canot (1997) present applications of BEM for various two-dimensional and
axisymmetric free-surface problems.

22.3 Boundary integral methods for viscous potential flow

BEM has been extended to accommodate the effects of viscosity in a purely irrotational flow by Georgescu,
Achard and Canot (2002) to study a gas bubble bursting at a free surface and by Canot et al (2003) in their
numerical simulation of the buoyancy-driven bouncing of a 2-D bubble at a horizontal wall using the direct
formulation. Their interesting approach will be discussed in Chapter 18.4. Another kind of viscous potential
flow analysis of the deformation of a rising 3-D bubble was given by Miksis, Vanden-Broeck and Keller 1982. They
converted their problem into a system of integro-differential equations which they solved under the conditions
of small Weber numbers and large Reynolds numbers.

Lundgren and Mansour (1988) also included the effect of a small viscosity by decomposing the velocity field
into the sum of an irrotational and a rotational velocity, in which the former is expressed as the gradient of a
potential and the latter is written as the curl of a vector potential. Substitution of this decomposition into the
incompressible Navier-Stokes equations and applying order-of-magnitude arguments under the assumption of a
thin vortical layer at the free surface of the drop yields a new set of differential equations for the potentials.
These equations carry weak viscous effects and are coupled with the boundary integral formulation for potential
flow based on the vortex method.

Weak viscous effects emanating from boundary layers in which vorticity does not vanish are associated with
the quasipotential methodology discussed in §14.1.7.

The BEM calculations of Georgescu et al 2002 and Canot et al 2003 neglect vorticity but the viscous effects
in the purely irrotational flow are not restricted to small viscosity.

22.4 Boundary integral methods for effects of viscosity and surface tension on steep surface
waves

Longuet-Higgins and Cokelet 1976 (hereafter LHC) wrote a seminal paper in which they computed the shape
of steep surface waves on an inviscid liquid (called water) using the direct formulation of BEM; surface tension
and viscosity were neglected. The problem considered by LHC is briefly described in the caption to Fig. 22.1.

Our goal here is to extend the methods used by LHC to include the effects of viscosity and surface tension.
The presentation of LHC is very efficient. We are going to follow their analysis but with surface tension included.
The analysis of LHC is based on the direct formulation of BEM which in turn is an application of Green’s third
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Fig. 22.1. Periodic progressive wave with period L = 2π/k and speed c. The velocity is given by a harmonic potential,

with a zero horizontal average ∇φ = 0 which as y → −∞, at great depths. The unsteady wave is produced by initially
applying an asymmetric distribution of pressure to a symmetric progressive wave. It is striking that they were able to
compute the shape of breaking surface waves (Fig. 22.2).

Fig. 22.2. (Figure 8 of Longuet-Higgins and Cokelet 1976) Close-up of the wave crest at successive times.

identity. A simple derivation of Green’s third identity in 3D can be found on pages 55-56 in Milne Thomson
1959. The 2D result, needed here, follows along the same lines and can be found in many books.

Let Ω(t) be the plane 2D region of flow and S(t) is the plane curve, with outward normal n, defining the
boundary of Ω(t); ∇2φ = 0 on Ω(t) and S(t). Let

x0 = exx0 + eyy0 ∈ Ω(t),
x = exx + eyy ∈ S(t).

}
(22.4.1)

Green’s third identity is

α(x0)φ(x0) =
∫

S(t)

[
∂φ(x)

∂n
G(x0,x)− φ(x)

∂G(x0,x)
∂n

]
dS,

G(x0,x) = log
1

|x0 − x| , α(x0) = 2π.





(22.4.2)

If x0 is taken to the boundary, in the limit, then α(x0)φ(x0) = πφ(x0) with x0 ∈ S(t), α = π instead of 2π on
the left side of (22.4.2).

The flow is assumed to be purely irrotational u = ∇φ, ∇2φ = 0. The problem is solved in dimensionless
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form; the length scale is L, the time scale is L/U where U =
√

gL. The evolution of dynamics is governed by
the normal stress balance

∂φ

∂t
= −ps − y − 1

2
|∇φ|2 − 2

Re

∂2φ

∂n2
− κ

We
(22.4.3)

where ps = (pa − p∞)
/
ρU2, pa is air pressure, p∞ is the pressure in the water at great depths where there is

no motion, Re = UL/ν is the Reynolds number, We = ρLU2/γ is the Weber number and κ = 1/r is curvature
where r is the radius of the circle with the same tangent and curvature as the scaled boundary curve C̃(t)
corresponding to δ(t). The arc length C̃(t) is dimensionless and designated by S, independent of t. The terms
associated with Re and We were not considered by LHC.

The procedure folowed by LHC is Lagrangian, the free surface and φ are updated following particles of C̃(t).
Since

dφ

dt
=

∂φ

∂t
+ |∇φ|2 (22.4.4)

we have

dφ

dt
= −ps − y +

1
2
|∇φ|2 − 2

Re

∂2φ

∂n2
− κ

We
(22.4.5)

and
dx

dt
=

∂φ

∂x
,

dy

dt
=

∂φ

∂y
(22.4.6)

on the free surface y = ys(x, t), where x ∈ C̃(t) is periodic with period 2π. The free surface C̃(t) is mapped into
a closed contour C(t)

reiθ = ζ = e−iz, z = x + iy (22.4.7)

where ζ is a new complex variable, analytic and single-valued everywhere inside the contour C which corresponds
to the fluid surface, (r, θ) are polar coordinates in the ζ-plane, and

r = ey, y = ln r, θ = −x, x = −θ. (22.4.8)

All points at infinite depth in the (x, y) plane are into the origin O in the ζ-plane.

χ = φ + iψ (22.4.9)

is the complex potential in the z-plane and

dχ

dz
= u− iv,

∣∣∣∣
dχ

dz

∣∣∣∣
2

= u2 + v2 (22.4.10)

is the complex velocity. At the free surface

dr

dt
= ey dy

dt
= r

∂φ

∂y
= r2 ∂ψ

∂r
,

dθ

dt
= −dx

dt
= −∂φ

∂x
=

∂ψ

∂θ
,

(22.4.11)

dφ

dt
= −ps − ln r +

1
2

[(
r
∂φ

∂r

)2

+
(

∂φ

∂θ

)2
]
− 2

Re

∂2φ

∂n2
− κ

We
(22.4.12)

LHC solve a Dirichlet problem for φ. They say that

Suppose that at some initial instant t = t0 we are given the velocity potential φ throughout the fluid, and hence the
value of φ and its derivatives both inside and on the contour C(t0). Let (r, θ) denote the (Lagrangian) coordinates
of a particle on C(t0). Then equations (22.4.11) will determine the position of the same particle a short time dt later.
Similarly, (22.4.12) will determine the value of φ(t0+dt) on the new contour C(t0+dt). By considering adjacent particles,
and differentiating along the surface we can then obtain the tangential component of velocity ∂φ/∂s. But this does not
immediately determine the normal component ∂φ/∂n, which is also needed for the step afterwards.

The problem of determining the normal component of velocity at the boundary is equivalent to the Dirichlet problem
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of finding the normal gradient of a function φ whose values are given on a closed contour C, and which is harmonic
(∇2φ = 0) everywhere inside C. We may formulate the problem as an integral equation as follows.

Let (s, n) be tangential and normal coordinates at a typical point P on the boundary (see figure 22.3), and let (R, α)
be the polar coordinates of P with respect to an arbitrary point Q(r0, θ0) in the interior. Let

G =
1

2π
ln R (22.4.13)

so ∇2S = 0. Then, by Green’s theorem we have

φ(r0, θ0) =

Z

C

»
φ

∂G

∂n
− ∂φ

∂n
G

–
ds =

1

2π

Z

C

»
φ

∂α

∂s
− ∂φ

∂n
ln R

–
ds. (22.4.14)

Fig. 22.3. One wavelenth in the z-plane transformed to a closed domain in the ζ-plane by (22.4.5). Parameters relating
boundary points P to field points Q.
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where, using Fig. 22.3 (a) and (b), we have

∂G

∂n
= n · ∇G =

1
2π

ni

R

∂R

∂xi
=

niRi

2πR2
=

n · eR

2πR
=

t · eα

2πR

=
1

2πR

(
eR

∂R

∂s
+ eαR

∂α

∂s

)
· eα =

1
2π

∂α

∂s
. (22.4.15)

In the limit of Q(r0, θ0) approaching C, we find
∫

C

φdα = πφ0 + P
∫

C

φdα, (22.4.16)

where the principal value integral is denoted by P and C is assumed to be smooth at Q. Using (22.4.16),
expression (22.4.14) can be rearranged to obtain the boundary integral relation

∫

C

∂φ

∂n
lnRds = P

∫

C

φdα− πφ0. (22.4.17)

In this expression, R and α are determined by the curve C and the values of φ are given on C in the Dirichlet
problem. Therefore, (22.4.17)) is an integral equation for ∂φ/∂n with a logarithmic singularity.

It remains to express the time-derivatives of r, θ and φ in terms of the tangential and normal derivatives of
φ.

First, we show that

∂φ

∂r
= sin ν

∂φ

∂s
+ cos ν

∂φ

∂n
,

1
r

∂φ

∂θ
= cos ν

∂φ

∂s
− sin ν

∂φ

∂n
.





(22.4.18)

This follows from

∇φ = er
∂φ

∂r
+

eθ

r

∂φ

∂θ
= t

∂φ

∂s
+ n

∂φ

∂n
(22.4.19)

using Fig. 22.3 (c). Noting next that

t =
∂r

∂s
= er

∂r

∂s
+ eθr

∂θ

∂s
= er sin ν + eθ cos ν, (22.4.20)

we find that

sin ν =
∂r

∂s
,

cos ν = r
∂θ

∂s
.





(22.4.21)

Hence

dr

dt
= r

∂φ

∂r
= r2 ∂r

∂s

∂φ

∂s
+ r3 ∂θ

∂s

∂φ

∂n
, (22.4.22)

dθ

dt
=

∂φ

∂θ
= r2 ∂θ

∂s

∂φ

∂s
− r

∂r

∂s

∂φ

∂n
, (22.4.23)

dφ

dt
= −ps − ln r +

1
2
r2

[(
∂φ

∂s

)2

+
(

∂φ

∂n

)2
]
− 2

Re

∂2φ

∂n2
− κ

We
. (22.4.24)

LHC did not compute viscous or surface tension terms. The viscous term can be reduced to a computable
form in which ∂2φ/∂n2 is replaced with computable terms

∂2φ

∂n2
= −κ

∂φ

∂n
− ∂2φ

∂s2
(22.4.25)

using Laplace’s equation in (r, s) coordinates.

391



It remains then to compute the curvature κ = 1/r. This is very easy to do numerically from the three point
algorithm of neighboring points on s. To compute a computable formula for κ we first note that

ėr = eθ
∂θ

∂s
, ėθ = −er

∂θ

∂s
, (22.4.26)

dt

ds
= ėr

∂r

∂s
+ ėθr

∂θ

∂s
+ er

∂2r

∂s2
+ eθ

[
∂r

∂s

∂θ

∂s
+ r

∂2θ

∂s2

]
(22.4.27)

= er

[
∂2r

∂s2
− r

(
∂θ

∂s

)2
]

+ eθ

[
2
∂r

∂s

∂θ

∂s
+ r

∂2θ

∂s2

]
. (22.4.28)

We have

κ = n · dt

ds
= −

(
∂r

∂s

)2
∂θ

∂s
+ r

∂θ

∂s

∂2r

∂s2
− r

∂r

∂s

∂2θ

∂s2
− ∂θ

∂s
(22.4.29)

where we have used (see Fig. 22.3(c))

n · er = cos ν = r
∂θ

∂s
, n · eθ = − sin ν = −∂r

∂s
(22.4.30)

and

1 = t · t =
(

∂r

∂s

)2

+
(

r
∂θ

∂s

)2

. (22.4.31)

Equations (22.4.22-22.4.25) and (22.4.29) together with initial conditions, are a basis for computing the effects
of viscosity and surface tension on the steep waves computed by LHC. This calculation will be carried out in
the futute.
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Appendix 1

Equations of motion and strain rates for
rotational and irrotational flow in cartesian,

cylindrical and spherical coordinates

A1.1 Cartesian coordinates

In Cartesian coordinates (ξ1, ξ2, ξ3) = (x, y, z) with unit vectors ex, ey, ez, equations for u = (u1, u2, u3) =
(ux, uy, uz) are given as follows,

n · ∇u = ex (n · ∇) ux + ey (n · ∇) uy + ez (n · ∇) uz (A1.1.1)

∇ · u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
, (A1.1.2)

∇× u =

∣∣∣∣∣∣∣∣∣

ex ey ez

∂

∂x

∂

∂y

∂

∂z

ux uy uz

∣∣∣∣∣∣∣∣∣

=
(

∂uz

∂y
− ∂uy

∂z

)
ex +

(
∂ux

∂z
− ∂uz

∂x

)
ey +

(
∂uy

∂x
− ∂ux

∂y

)
ez. (A1.1.3)

∇2u = ex∇2ux + ey∇2uy + ez∇2uz = ex∆ux + ey∆uy + ez∆uz (A1.1.4)

with

∇2 = ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (A1.1.5)

Tij = −pδij + Sij , Sij = 2µeij (A1.1.6)

Lij =
∂ui

∂xj
, Lij =

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
= eij + Ωij (A1.1.7)

eij =
1
2

(Lij + Lji) , eij = eji, Ωij =
(

1
2
Lij − Lji

)
, Ωij = −Ωji (A1.1.8)

exx =
∂ux

∂x
, eyy =

∂uy

∂y
, ezz =

∂uz

∂z
,

exy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
, eyz =

1
2

(
∂uy

∂z
+

∂uz

∂y

)
, ezx =

1
2

(
∂uz

∂x
+

∂ux

∂z

)
, (A1.1.9)

∂ux

∂t
+ u · ∇ux = −1

ρ

∂p

∂x
+ ν∆ux, (A1.1.10)

∂uy

∂t
+ u · ∇uy = −1

ρ

∂p

∂y
+ ν∆uy, (A1.1.11)

∂uz

∂t
+ u · ∇uz = −1

ρ

∂p

∂z
+ ν∆uz, (A1.1.12)
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For u = ∇φ, equations for φ are given as follows

∇φ = ex
∂φ

∂x
+ ey

∂φ

∂y
+ ez

∂φ

∂z
, (A1.1.13)

∇2φ = ∆φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
(A1.1.14)

eij =
1
2

(Lij + Lji) =
∂2φ

∂xi∂xj
, eij = eji, (A1.1.15)

exx =
∂2φ

∂x2
, eyy =

∂2φ

∂y2
, ezz =

∂2φ

∂z2
,

exy =
∂2φ

∂x∂y
, eyz =

∂2φ

∂y∂z
, ezx =

∂2φ

∂z∂x
. (A1.1.16)

∂φ

∂t
+

1
2
|∇φ|2 +

p

ρ
=

∂φ

∂t
+

1
2

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂z

)2
]

+
p

ρ
= f(t) (A1.1.17)

A1.2 Cylindrical coordinates

In cylindrical coordinates (ξ1, ξ2, ξ3) = (r, θ, z) with unit vectors er, eθ, ez, equations for u = (u1, u2, u3) =
(ur, uθ, uz) are given as follows,

∂er

∂θ
= eθ,

∂eθ

∂θ
= −er,

∂eθ

∂θ
= 0, (A1.2.1)

n · ∇u = er

[
(n · ∇) ur − nθ

r
uθ

]
+ eθ

[
(n · ∇) uθ +

nθ

r
ur

]

+eϕ (n · ∇) uϕ (A1.2.2)

∇ · u =
1
r

∂

∂r
(rur) +

1
r

∂uθ

∂θ
+

∂uz

∂z
, (A1.2.3)

∇× u = er

[
1
r

∂uz

∂θ
− ∂uθ

∂z

]
+ eθ

[
∂ur

∂z
− ∂uz

∂r

]
+ ez

[
1
r

∂ (ruθ)
∂r

− 1
r

∂ur

∂θ

]
(A1.2.4)

∇2u = er

[
∆ur − ur

r2
− 2

r2

∂uθ

∂θ

]
+ eθ

[
∆uθ +

2
r2

∂ur

∂θ
− uθ

r2

]
+ ez∆uz (A1.2.5)

with

∇2 = ∆ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
+

∂2

∂z2
. (A1.2.6)

Tij = −pδij + 2µeij (A1.2.7)

err =
∂ur

∂r
, eθθ =

1
r

∂uθ

∂θ
+

ur

r
, ezz =

∂uz

∂z
, (A1.2.8)

erθ =
r

2
∂

∂r

(uθ

r

)
+

1
2r

∂ur

∂θ
, eθz =

1
2r

∂uz

∂θ
+

1
2

∂uθ

∂z
, ezr =

1
2

∂ur

∂z
+

1
2

∂uz

∂r
(A1.2.9)

∂ur

∂t
+ u · ∇ur − u2

θ

r
= −1

ρ

∂p

∂r
+ ν

[
∆ur − ur

r2
− 2

r2

∂uθ

∂θ

]
, (A1.2.10)

∂uθ

∂t
+ u · ∇uθ +

uruθ

r
= − 1

ρr

∂p

∂θ
+ ν

[
∆uθ +

2
r2

∂ur

∂θ
− uθ

r2

]
, (A1.2.11)

∂uz

∂t
+ u · ∇uz = −1

ρ

∂p

∂z
+ ν∆uz. (A1.2.12)
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For u = ∇φ, equations for φ are given as follows,

∇φ = er
∂φ

∂r
+

eθ

r

∂φ

∂θ
+ ez

∂φ

∂z
(A1.2.13)

∇2φ = ∆φ =
1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2

∂φ

∂θ
+

∂2φ

∂z2
(A1.2.14)

err =
∂2φ

∂r2
, eθθ =

1
r2

∂2φ

∂θ2
+

1
r

∂φ

∂r
, ezz =

∂2φ

∂z2
, (A1.2.15)

erθ =
1
r

∂2φ

∂r∂θ
− 1

r2

∂φ

∂θ
, eθz =

1
r

∂2φ

∂z∂θ
, ezr =

∂2φ

∂z∂r
(A1.2.16)

∂φ

∂t
+

1
2
|∇φ|2 +

p

ρ
=

∂φ

∂t
+

1
2

[(
∂φ

∂r

)2

+
(

1
r

∂φ

∂θ

)2

+
(

∂φ

∂z

)2
]

+
p

ρ
= f(t) (A1.2.17)

A1.3 Polar Spherical coordinates

In polar spherical coordinates (ξ1, ξ2, ξ3) = (r, θ, ϕ) with unit vectors er, eθ, eϕ, equations for u = (u1, u2, u3) =
(ur, uθ, uϕ) are given as follows,

∂er

∂r
= 0,

∂er

∂θ
= eθ,

∂er

∂ϕ
= eϕ sin θ, (A1.3.1)

∂eθ

∂r
= 0,

∂eθ

∂θ
= −er,

∂eθ

∂ϕ
= eϕ cos θ, (A1.3.2)

∂eϕ

∂r
= 0,

∂eϕ

∂θ
= 0,

∂eϕ

∂ϕ
= −er sin θ − eθ cos θ (A1.3.3)

n · ∇u = er

[
(n · ∇) ur − nθ

r
uθ − nϕ

r
uϕ

]
+ eθ

[
(n · ∇) uθ +

nθ

r
ur − nϕ

r
uϕ cot θ

]

+eϕ

[
(n · ∇) uϕ +

nϕ

r
ur +

nϕ

r
uθ cot θ

]
(A1.3.4)

∇ · u =
1
r2

∂

∂r

(
r2ur

)
+

1
r sin θ

∂

∂θ
(uθ sin θ) +

1
r sin θ

∂uϕ

∂ϕ
, (A1.3.5)

∇× u = er
1

r sin θ

[
∂

∂θ
(sin θuϕ)− ∂uθ

∂ϕ

]
− 1

r sin θ
eθ

[
sin θ

∂ (ruϕ)
∂r

− ∂ur

∂ϕ

]

+
1
r
eϕ

[
∂ (ruθ)

∂r
− ∂ur

∂θ

]
(A1.3.6)

∇2u = er

[
∆ur − 2

ur

r2
− 2

r2

∂uθ

∂θ
− 2

uθ

r2
cot θ − 2

r2 sin θ

∂uϕ

∂ϕ

]

+eθ

[
∆uθ +

2
r2

∂ur

∂θ
− uθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂uϕ

∂ϕ

]

+eϕ

[
∆uϕ +

2
r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ
− uϕ

r2 sin2 θ

]
(A1.3.7)

with

∇2 = ∆ =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2

∂2

∂θ2
+

1
r2

cot θ
∂

∂θ
+

1
r2 sin2 θ

∂2

∂ϕ2
. (A1.3.8)

Tij = −pδij + 2µeij (A1.3.9)
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err =
∂ur

∂r
, eθθ =

1
r

∂uθ

∂θ
+

ur

r
, eϕϕ =

1
r sin θ

∂uϕ

∂ϕ
+

ur

r
+

uθ

r
cot θ,(A1.3.10)

erθ =
r

2
∂

∂r

(uθ

r

)
+

1
2r

∂ur

∂θ
, eθϕ =

sin θ

2r

∂

∂θ

( uϕ

sin θ

)
+

1
2r sin θ

∂uθ

∂ϕ
, eϕr =

1
2r sin θ

∂ur

∂ϕ
+

r

2
∂

∂r

(uϕ

r

)

∂ur

∂t
+ u · ∇ur − u2

θ

r
− u2

ϕ

r
= −1

ρ

∂p

∂r

+ν

[
∆ur − 2

ur

r2
− 2

r2

∂uθ

∂θ
− 2

uθ

r2
cot θ − 2

r2 sin θ

∂uϕ

∂ϕ

]
,(A1.3.11)

∂uθ

∂t
+ u · ∇uθ +

uruθ

r
− u2

ϕ

r
cot θ = − 1

ρr

∂p

∂θ

+ν

[
∆uθ +

2
r2

∂ur

∂θ
− uθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂uϕ

∂ϕ

]
, (A1.3.12)

∂uϕ

∂t
+ u · ∇uϕ +

uϕur

r
+

uθuϕ

r
cot θ = − 1

ρr sin θ

∂p

∂ϕ

+ν

[
∆uϕ +

2
r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ
− uϕ

r2 sin2 θ

]
.(A1.3.13)

For u = ∇φ, equations for φ are given as follows

∇φ = er
∂φ

∂r
+

eθ

r

∂φ

∂θ
+

eϕ

r sin θ

∂φ

∂ϕ
(A1.3.14)

∇2φ = ∆φ =
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1
r2 sin2 θ

∂2φ

∂ϕ2
(A1.3.15)

err =
∂2φ

∂r2
, eθθ =

1
r2

∂2φ

∂θ2
+

1
r

∂φ

∂r
, eϕϕ =

1
r2 sin2 θ

∂2φ

∂ϕ2
+

1
r

∂φ

∂r
+

1
r2

∂φ

∂θ
cot θ, (A1.3.16)

erθ =
1
r

∂2φ

∂r∂θ
− 1

r2

∂φ

∂θ
, eθϕ =

1
r2 sin θ

(
∂2φ

∂θ∂ϕ
− cot θ

∂φ

∂ϕ

)
, eϕr =

1
r sin θ

(
∂2φ

∂r∂ϕ
− 1

r

∂φ

∂ϕ

)

∂φ

∂t
+

1
2
|∇φ|2 +

p

ρ
=

∂φ

∂t
+

1
2

[(
∂φ

∂r

)2

+
(

1
r

∂φ

∂θ

)2

+
(

1
r sin θ

∂φ

∂ϕ

)2
]

+
p

ρ
= f(t) (A1.3.17)
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Appendix 2

Tests of BibTeX

Environment of LATEX2εand BibTeX is given by documentclass=“book.cls”, usepackage=“natbib”, and bibliographystyle=“cupbook.bst”.

We can find that “cupbook.bst” works well.

As in the other bst styles, the folowing four cases cannot be processed well:

@Article{Dyke62,
author = {M. Van Dyke},
title = {Higher approximations in boundary-layer theory. {P}art 1. {G}eneral analysis},
year = {1962},
journal = {J. Fluid Mech.},
volume = {14},
pages = {161--177}

}

@Article{Dyke69,
author = {M. Van Dyke},
title = {Higher-order boundary-layer theory},
year = {1969},
journal = {Annu. Rev. Fluid Mech.},
volume = {1},
pages = {265--292}

}

@inproceedings{KuhnBrennen93,
author={Y. Kuhn-de-Chizelle and C. E. Brennen},
year={1993},
title={Comparison of observed and calculated shapes of travellingcavitation bubbles},
booktitle={Proc. IUTAM Symp. on Bubble Dynamics and Interface Phenomena, Birmingham, UK.},
volume={},
pages={207--217}
}

@Article{KuhnCeccioBrennen95,
author={Y. Kuhn-de-Chizelle and S. L. Ceccio and C. E. Brennen},
year={1995},
title={Observation and scaling of travelling bubble cavitation},
journal={J. Fluid Mech.},
volume={293},
pages={99--126}
}

A2.1 Sample citation (1)

Ackeret (1952),

Aitken and Wilson (1993),

Andritsos and Hanratty
(1987),

Andritsos et al. (1989),

Apfel (1970),

Arakeri and Acosta (1973),

Archer et al. (1997),

Ashmore et al. (2005),

Bair and Winer (1990),

Bair and Winer (1992),

Barnea (1991),

Barnea and Taitel (1993),

Barr (1926),

Batchelor (1967),

Batchelor (1987),

Batchelor and Gill (1962),
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Benjamin and Feir (1967),

Benjamin and Ursell (1954),

Bergwerk (1959),

Bers (1975),

Bhaga and Weber (1981),

Billet (1985),

Bi and Zhao (2001),

Bird et al. (1987),

Blake and Gibson (1987),

Boulton-Stone et al. (1996),

Brabston and Keller (1975),

Brennen (1995),

Bretherton (1961),

Brenner et al. (1997),

Briggs (1950),

Briggs (1964),

Brodkey (1967),

Brown (1965),

Canot et al. (2003),

Cerda and Tirapegui (1998),

Chandrasekhar (1961),

Chang and Russel (1965),

Chang et al. (1999),

Charru and Hinch (2000),

Chaves et al. (1995),

Chawla (1975),

Chen and Li (1999),

Chen and Israelachvili (1991),

Chen (1974),

Chen et al. (2002),

Christiansen and Hixson
(1957),

Crowley et al. (1992),

Crum (1982),

Currie (1974),

Davies (1950),

Davies and Taylor (1950),

Dias and Kharif (1999),

Dizés (1997),

Dollet et al. (2004),

Drazin and Reid (1981),

Dumitrescue (1943),

Dunne and Cassen (1954),

Dunne and Cassen (1956),

Dyke (1962),

Dyke (1969),

Ece et al. (1984),

Edwards and Fauve (1993),

Eggers (1997),

Eggers (1993),

Engel (1958),

Entov (1978),

Faeth (1996),

Farrell (2003),

Fisher (1948),

Fluent Inc. Lebanon, NH.
(2003),

Foteinopoulou et al. (2004),

Franc and Michel (1985),

Francis (1951),

Funada and Joseph (2001),

Funada and Joseph (2002),

Funada and Joseph (2003),

Funada et al. (2004),

Funada et al. (2004),

Funada et al. (2005),

Funada et al. (2006),

Funada et al. (2005),

Funada et al. (2005),

Galdi et al. (2002),

Gibson (1913),

Glauert (1957),

Goldin et al. (1969),

Goldstein (1960),

Goren and Gottlieb (1982),

Grace and Harrison (1967),

Grace et al. (1978),

Haberman and Morton (1953),

Hamel (1917),

Hamel (1941),

Hanson and Domich (1956),

Hanson et al. (1963),

Harper and Moore (1968),

Harper (1972),

Harrison (1908),

Harvey et al. (1944),

Harvey et al. (944b),

Harvey et al. (1947),

Hattori (1935),

Hesla et al. (1993),

Hicks (1884),

Hiemenz (1911),
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Hirahara and Kawahashi
(1992),

Howarth (1953),

Hsiang and Faeth (1992),

Hu et al. (1990),

Huang et al. (1997),

Huerre (2000),

Huerre and Monkewitz (1985),

Hwang et al. (1996),

Johnson and Patel (1999),

Joseph (1976),

Joseph (1990),

Joseph and Saut (1990),

Joseph and Renardy (1991),

Joseph (1992),

Joseph (992b),

Joseph et al. (1993),

Joseph and Liao (1994b),

Joseph and Liao (1994a),

Joseph (1995),

Joseph (1996),

Joseph and Feng (1996),

Joseph et al. (1996),

Joseph (1998),

Joseph et al. (1999),

Joseph (2000),

Joseph et al. (2002),

Joseph (2003b),

Joseph (2003a),

Joseph and Wang (2004),

Joseph (2006b),

Joseph (2006b),

Kang and Leal (1988a),

Kang and Leal (1988b),

Kang et al. (1999),

Keller et al. (1973),

Keller and Miksis (1983),

Kitscha and Koca-
mustafaogullari (1989),

Knapp et al. (1970),

Knapp (1958),

Knapp et al. (2003),

Kordyban and Ranov (1970),

Kottke et al. (2003),

Kottke et al. (2005),

Krzeczkowski (1980),

de Chizelle and Brennen
(1993),

Kuhl et al. (1994),

de Chizelle et al. (1995),

Kumar and Tuckerman (1994),

Kumar (2000),

Lagerstrom and Cole (1955),

Lamb (1932),

Landau and Lifshitz (1987),

Lane (1951),

Laoonual et al. (2001),

Leib and Goldstein (1986b),

Leib and Goldstein (1986a),

Levich (1949),

Li and Kelly (1992),

Lighthill (1963),

Lin (2003),

Lin and Hanratty (1986),

Lin and Lian (1989),

Liu (1995),

Liu and Brennen (1998),

Liu and Joseph (1993),

Liu et al. (1995),

Liu and Reitz (1997),

Lundgren and Mansour (1988),

Magnaudet et al. (1995),

Maslen (1963),

Magnaudet and Eames (2000),

Matta and Tytus (1982),

Matta et al. (1983),

Mata et al. (2002),

McKinley and Tripathi (2000),

Michele et al. (1977),

Middleman (1965),

Miksis et al. (1982),

Miles and Henderson (1990),

Miller and Scriven (1968),

Milne-Thomson (1968),

Mishima and Ishii (1980),

Mittal and Kumar (2003),

Moore (1957),

Moore (1959),

Moore (1963),

Nayfeh and Saric (1973),

Ortiz et al. (2004),

Padrino and Joseph (2006b),

Padrino et al. (2005),
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Pan et al. (2001),

Panton (1984),

Papageriou (1995),

Park et al. (1995),

Pedley (1968),

Peregrine et al. (1990),

Pereira et al. (2001),

Perlin and Schultz (2000),

Petit and Noetinger (1988),

Pilch and Erdman (1987),

Plateau (1873),

Plesset (1949),

Plesset (1969),

Plesset and Prosperetti (1977),

Poritsky (1951),

Pouliquen et al. (1994),

Prandtl and Tietjens (1934),

Pretsch (1938),

Prosperetti (1976),

Prosperetti (1980),

Ranger and Nicholls (1969),

Pruppacher et al. (1970),

Rayleigh (1878),

Rayleigh (1879),

Rayleigh (1890),

Rayleigh (1892),

Rayleigh (1917),

Reinecke and McKay (1969),

Reinecke and Waldman (1970),

Reinecke and Waldman (1975),

Romberg (1967),

Roos and Willmarth (1971),

Rothert et al. (2001),

Ryskin and Leal (1984),

Schetz et al. (1980),

Schlichting (1960),

Schmid and Henningson
(2001),

Scirocco et al. (2003),

Segur et al. (2005),

Sherman and Schetz (1971),

Simpkins and Bales (1972),

Singhal et al. (2002),

Sirakov et al. (2005),

Soteriou et al. (1995),

Spiegelberg et al. (1994b),

Stokes (1851),

Stokes (1880),

Stone (1994),

Strasberg (1959),

Tait (1890),

Taitel and Dukler (1976),

Taneda (1956),

Taylor (1949),

Taylor (1950),

Taylor and Acrivos (1964),

Theofanous et al. (2003),

Tomboulides (1993),

Tomotika (1935),

Varga et al. (2003),

Vaynblat et al. (2001),

Viana et al. (2003),

Viana et al. (2005),

Waldman et al. (1972),

Wallis (1969),

Wallis and Dobson (1973),

Walters and Davidson (1963),

Wang et al. (2004),

Wang and Joseph (2003),

Wang et al. (2005a),

Wang et al. (2005b),

Wang et al. (2005c),

Wang and Joseph (2006a),

Wang and Joseph (2006b),

Wang and Joseph (2006c),

Wang and Joseph (2006d),

Weber (1931),

Wegener and Parlange (1973),

White and Beardmore (1962),

White (2006),

Wierzba and Takayama (1988),

Wierzba (1990),

Wilcox et al. (1961),

Winer and Bair (1987),

Wu et al. (1987),

Yang (1992),

Yang and Leal (1991),

Young (1989),

Yoshida and Takayama (1990),

Zhou and Lin (1992),

Zierep (1984),
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A2.2 addition on July 8

Baker et al. (1980),

Baker et al. (1982),

Baker et al. (1984),

Byatt-Smith and Longuet-
Higgins (1976),

Chen and Steen (1997),

Day et al. (1998),

Longuet-Higgins and Cokelet
(1976),

Meiron and Saffman (1983),

Miksis et al. (1981),

Oguz and Prosperetti (1989),

Oguz and Prosperetti (1993),

Oguz and Prosperetti (1990),

Pullin (1982),

Rodriguez-Rodriguez et al.
(2006),

Verdon et al. (1982),

Wrobel (1993),

Davila and Vassilicos (2003),

Chen et al. (2006),

Vassilicos et al. (2005),

Yoo (1973),

Banerjee and Butterfield
(1981),

Brebbia et al. (1984),

Georgescu et al. (2002),

Kellogg (1929),

Machane and Canot (1997),

Pozrikidis (1992),

Scardovelli and Zaleski (1999),

Tsai and Yue (1996),

Truesdell (1953),

Yeung (1982),

Padrino and Joseph (2006a),

A2.3 addition on August 4

Joseph (1973),

Joseph et al. (1992),

Schwartz (1974),

Sangani (1991),

Sangani and Didwania (1993),

Longuet-Higgins (1992),

Longuet-Higgins (1997),

Ruvinsky and Freidman
(1985a),

Ruvinsky and Freidman
(1985b),

Ruvinsky and Freidman
(1987),

Ruvinsky et al. (1991),

Pedley (1967),

Ponstein (1959),

Lundgren and Mansour (1991),

Birkhoff (1954),

Binnie (1953),

Plesset (1954),

Spivak et al. (2002),

Lundgren and Joseph (2006),

Yariv and 2003 (2003),

Yariv and Brenner (2004),

Chorin (1973),

Chorin (1978),

Wrobel (2002),

Jaswon and Symm (1977),

Larson (1988),

A2.4 addition on August 10

Ciliberto and Gollub (1985),

Douady and Fauve (1988),

Feng and Sethna (1989),

Gu and Sethna (1987),

Miles (1967),

Miles (1984),

Ockendon and Ockendon
(1973),

Rayleigh (1877),

Rayleigh (1883a),

Rayleigh (1883b),

Simonelli and Gollub (1989),

Higuera and Knobloch (2006),

Higuera et al. (2005),

Vega et al. (2001),

Jeffery (1915),

Homann (1936),

Kojo and Ueno (2006),

Taylor (1923),

Dabiri et al. (2006),

Funada et al. (2006),

Loiseleux et al. (1998),

Ashgriz and Mashayek (1995),

Shi et al. (1994),

Spiegelberg et al. (1994a),

Joseph (2006c),
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apparently are 0.977, 0.942, 19.42 and 142.3 mPa s respectively. 40

8.4 Photographs (unpublished, courtesy of F.Viana & R.Pardo) of Taylor bubbles rising in concentric
annular space of 76.2 mm inside diameter pipe and different rod diameter (ID) filled with different
viscous liquids: a) Water (1 mPa s, 997 kg/m3), ID=12.7 mm; b) Water, ID=25.4 mm; c) Water,
ID=38.1 mm; d) Silicone oil (1300 mPa s, 970 kg/m3), ID=12.7 mm; e) Silicone oil (1300 mPa s,
970 kg/m3), ID=25.4 mm. The gas bubbles do not wrap all the way around the inner cylinder; a
channel is opened for liquid drainage. 41
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8.5 An ellipsoid bubble moving with a uniform velocity U in the z direction of Cartesian coordinates
(x, y, z). An ovary ellipsoid is depicted in the left-hand side and a planetary ellipsoid is in the
right-hand side, which are of the major semiaxis a, the minor semiaxis b, the aspect ratio e = c/a,
c2 = a2 − b2, and in a liquid (water) of density ρ, viscosity µ, with the surface tension σ at the
surface given by ξ = ξ0 and under the acceleration due to gravity g. 41

8.6 Photographs of Taylor bubbles rising through 76.2 mm inside diameter pipe filled with different
viscosity liquids. This figure is quoted from Viana et al. (2003). 48

8.7 log Fr versus log RG for 12 values of Eo. The lines - - -, – – –, ——– are plots of (8.2.33) with e(Eo)
selected for best fit as described in table 8.1. 50

8.8 log Eo versus log e; 2 denotes the data given in table 8.1. The solid curve denotes the border Fr = 0
given by (8.2.37), above which one positive solution of Fr may exist and below which there arise
two negative sollutions or complex solutions which are meaningless. The dashed line is for Eo = 4.
The dotted line denotes log e = 0.0865513 log Eo − 0.356762 for which eo = E0.0866

o /0.357. 51

8.9 Comparison of Brown’s 1965 measurements of the shape of a large Taylor bubble rising in a round
tube with an ovary ellipsoid (denoted by the dashed line) with e = c/a = 0.6, b = a

√
1− e2 = 0.8a,

a = 1.10. Ovary ellipsoids with smaller e are more spherical. 51

8.10 e(Eo, RG) versus log Eo for various values of RG. The curves ——– are obtained by the simultaneous
equations (8.1.3) and (8.2.33). The solution of (8.4.1) and (8.4.2) is shown as - - - - -; all the
solutions (8.1.3) and (8.2.33) coincide with - - - - - when RG > 104. 52

9.1 RT instability: (a) the liquid in the containers at rest is stable under gravity (Rayleigh 1890) but
if the container is turned upside down as in (c) the liquid falls out. The liquid at rest in container
can be destabilized by downward acceleration of the liquid a > g away from gas as in (b) and in
the upside down case the liquid can be prevented from falling out by accelerating downward with
V̇ > g as in (d). If we open up the container and accelerates the liquid downward with V̇ > g,
the top surface which accelerates away from the gas is unstable but the bottom surface which
accelerates into the gas is stabilized as in (e), with the opposite effect when the acceleration is
reversed as in (f). 54

9.2 Growth rate curve. 58

9.3 Time-displacement graph giving the acceleration of drops from the experiment of JBB 1999. 59

9.4 n (sec−1) vs. k (cm−1) for viscous potential flow; shock Mach number = 2. 60

9.5 n (sec−1) vs. k (cm−1) for viscous potential flow; shock Mach number = 3. 61

9.6 Rayleigh-Taylor Waves in Water. The tick marks on the photographs locate wave troughs. 61

9.7 Rayleigh-Taylor Waves in Silicone Oil (0.1 kg/msec). The tick marks on the photographs locate
wave troughs. 62

9.8 Rayleigh-Taylor waves in glycerine. The tick marks on the photographs locate wave troughs. 63

9.9 (JBF, figure 14) (a) Rayleigh-Taylor waves in 2% aqueous polyox in the flow behind a Mach 2.9
shockwave. Time (in µs) after passage of shock: (i) 30, (ii) 35, (iii) 40, (iv) 45. (b) Movie frames
corresponding to the contrast-enhanced images of (a). 64

9.10 Stages in the breakup of a water drop (diameter = 2.6 mm) in the flow behind a Mach 2 shock
wave. Air velocity = 432 m/s; dynamic pressure = 158.0 kPa; Weber No. = 11,700. Time (µs): (a)
0, (b) 45, (c) 70, (d) 135, (e) 170, (f) 290. 65

9.11 Stages in the breakup of a water drop (diameter = 2.5 mm) in the flow behind a Mach 3 shock
wave. Air velocity = 764 m/s; dynamic pressure = 606.4 kPa; Weber No. = 43,330. Time (µs): (a)
0, (b) 15, (c) 30, (d) 40, (e) 95, (f) 135. 65
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9.12 Stages in the breakup of a drop of glycerine (diameter = 2.4 mm) in the flow behind a Mach 3
shock wave. Air velocity = 758 m/s; dynamic pressure = 554.0 kPa; Weber No. = 42,220. Time
(µs): (a) 0, (b) 35, (c) 50, (d) 70, (e) 90, (f) 125, (g) 150, (h) 185. 66

9.13 Snapshots of the sedimentation of 5040 (a; b, W =8 cm) and 7560 (c, W = 12 cm) disks of diameter
14/192 cm in two dimensions. The initial lattice is square. 67

9.14 Snapshots of the sedimentation of 4800 (a; b) and 6400 (c; d) disks in two dimensions (W = 8 cm).
The diameter of disks in (a), (b) and (c) is 10/192 cm and the diameter of disks in (d) is 16/192
cm. The initial lattice is rectangular. 68

10.1 A cylinder with radius a near the wall x = 0. 69

10.2 The absolute values of the coefficients for the force |Cx| and |Cy| as functions of the ratio b/a. The
Reynolds number is taken as 1 when computing Cy. 71

10.3 The lift coefficient Cx as a function of the ratio b/a. The five curves correspond to five values of
the parameter 2πκ/(aV ): -1, -0.5, 0, 1 and 2. 74

10.4 The drag coefficient Cy as a function of the ratio b/a. The five curves correspond to five values of
the parameter 2πκ/(aV ): -1, -0.5, 0, 1 and 2. The Reynolds number is taken as 1 here. 75

10.5 The lift coefficient Cx as a function of 2πκ/(aV ). The two curves are for b/a =1.5 and 2, respectively. 75

10.6 The drag coefficient Cy as a function of 2πκ/(aV ). The two curves are for b/a =1.5 and 2,
respectively. The Reynolds number is taken as 1 here. 76

11.1 The speed of the fluid above is greater. The pressure is greater at crests (a) than at troughs (b).
The upper part of the interface is carried by upper fluid causing the interface to overturn. 77

11.2 A KH instability rendered visible by clouds over Mount Duval in Australia. 78

11.3 Neutral curves and growth rate curves when surface tension γ 6= 0. (a) Flow is stable for short and
long waves. (b) Flow is stable for short waves but not long waves. 80

11.4 Neutral curves and growth rate curves when γ = 0. (a) µ > 0. The flow is unstable as k → 0 but
not Hadamard unstable. (b) µ = 0, the flow is Hadamard unstable σR →∞ with k. 80

11.5 Kelvin Helmholtz instability due to a discontinuity of velocity of air above liquid in a rectangular
channel. The no-slip condition is not enforced in viscous potential flow so that the two dimensional
solution satisfies the side-wall boundary conditions. 81

11.6 Neutral curves for air and water (µ̂ = 0.018, see table 11.1 and figure 11.8); α = ĥa is the gas
fraction. As in the usual manner, the disturbances will grow above the neutral, but decay below it.
For α larger than about 0.2, there arises the critical velocity Vc below which all the disturbances
will decay. 87

11.7 Neutral curves for inviscid fluids (µ̂ = ρ̂ = 0.0012) for different gas fractions α = ĥa. This
neutral curve arose for the special case µ̂ = ρ̂ = 0.0012 = µa/µl with µa = 0.00018 poise; hence
µl = 0.15 poise. Surprisingly it is identical to the case µa = µl = 0 (see table 11.2 and figure 11.8).
The neutral curves for viscous fluids with µl > 15 cp are essentially the same as these (c.f. table
11.2 and 11.3). 88

11.8 Critical velocity V vs. µ̂ for α = 0.5. The critical velocity is the minimum value on the neutral
curve. The vertical line is µ̂ = ρ̂ = 0.0012 and the horizontal line at V = 635.9 cm/sec is the critical
value for inviscid fluids. The vertical dashed line at µ̂ = 0.018 is for air and water. Typical values
for a high viscosity liquid are given in table 11.3 below. 89
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11.9 The real part of growth rate σR sec−1 vs. k cm−1 for µ̂ = 0.018 (water, µl = 1 cp), V = 1500 cm/sec.
The graphs are top to bottom α = 0.2, 0.5, 0.8. The curves of σR sec−1 along the line of
V =1500 cm/sec in figure 11.6, are drawn here for respective values of α. Instability may arise for
all the disturbances of wavenumbers below the cut-off wavenumber kC . The maximum growth rate
σRm and the corresponding wavenumber km = 2π/λm for V = 1500 and 900 cm/sec are listed with
wave velocity C̃Rm in table 11.4 below. 90

11.10 j∗ vs. α is for marginal stability of air and water in a frame in which the water velocity is zero.
The heavy line through 2 = air-water, our result with γ = 60 dynes/cm from table 11.1; ¦ =
inviscid fluid from table 11.2. j∗ = α3/2 is the long wave criterion for an inviscid fluid put forward
by Wallis & Dobson (1973). j∗ = 0.5α3/2 was proposed by them as best fit to the experiments
f1.1 through f1.9 described in their paper. The shaded region is from experiments by Kordyban &
Ranov (1970). Also shown are experimental data in rectangular conduits j ∗ vs.1 − h/H = α and
in round pipes j ∗ vs.1− h/D = α (Lin & Hanratty 1986, figure 4). 93

11.11 (After Andritsos & Hanratty 1987.) The borders between smooth stratified flow and disturbed flow
are observed in experiment. The water-air data is well below the cluster of high viscosity data that
is bunched together. 94

11.12 Local liquid velocity UL versus local gas velocity UG for PDVSA-Intevep data from 0.508 m i.d.
flow loop with air and 0.404 Pa s lube oil. The identified flow patterns are SS (open circles),
SW (open squares). Straftified to non-stratified flow transition theories after different authors are
compared; TD: stars, BT: +, FJ: broken line, Funada and Joseph multiplied by α (2001) FJ ×α
heavy line. Constant void fraction α lines are indicated. Notice that the curves FJ and FJ ×α
sharply drop around UB5 m/s, separating SS data from SW data. 96

11.13 Nonlinear effects. The Taitel-Dukler 1976 correction (multiply by α). 97

11.14 (Varga et al. 2003) Schematic of the development of the liquid jet breakup process. 97

11.15 (Varga et al. 2003) Sketch of the gas and liquid streamlines in the liquid tongue formation process. 98

11.16 (Varga et al. 2003) Instantaneous flow image with identified Rayleigh-Taylor wavelengths, Dl =0.32
mm, We =37, λmeasured = 200µm. (cf. figures 9.6-9.8) 98

11.17 (Varga et al. 2003) Instantaneous flow image with identified Rayleigh-Taylor wavelengths, Dl =0.32
mm, We =47, λmeasured = 185µm. (cf. Figs. 9.6-9.8) 98

13.1 (Matsumoto et al. 1999 ADD TO REFERENCE LIST) Photograph of a toroidal gas bubble in
water. 109

13.2 Evolution of the ring radius a and velocity U with time t, according to Pedley. The data for
Pedley’s solution for U are extracted from figure 3 in Pedley (1968). —¤— inviscid solution for
a, —¦— Pedley’s viscous solution for a, —4— inviscid solution for U , —×— Pedley’s viscous
solution for U . FIGURE CROPPED NEED NEW FIGURE 110

13.3 Meridional section of the toroidal bubble. 111

13.4 Evolution of the ring radius a with time. The dash-dotted line represents the inviscid solution
obtained by putting ν = 0 in (13.5.16). The solid line represents the viscous solution of (13.5.16)
with the initial conditions (13.5.19) and (13.5.20). The symbol 2 represents the viscous solution of
(13.5.21) with the initial condition (13.5.19). 115

13.5 Evolution of the rise velocity U computed from (13.5.5) with time. The dash-dotted line represents
the inviscid solution obtained by putting ν = 0 in (13.5.16). The solid line represents the viscous
solution of (13.5.16) with the initial conditions (13.5.19) and (13.5.20). The symbol 2 represents
the viscous solution of (13.5.21) with the initial condition (13.5.19). 115
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13.6 The height of rise h − h0 against the ring radius a. The dash-dotted line represents the inviscid
solution obtained by putting ν = 0 in (13.5.16). The solid line represents the viscous solution of
(13.5.16) with the initial conditions (13.5.19) and (13.5.20). The symbol 2 represents the viscous
solution of (13.5.21) with the initial condition (13.5.19). 116

13.7 The ratio between the ring expansion velocity ȧ and the rise velocity U obtained from the solution
of (13.5.16). 116

13.8 Growth rate σ̂ as a function of the wavenumber k̂ for a cylindrical bubble with circulation Γ̂2.
Instability takes place for the results shown. Four values of the parameter J are selected. The
definition of the dimensionless quantities σ̂, k̂ and Γ̂ is given in (13.5.45) and J = ργa/µ2. 119

13.9 The path of the cylinder at different Reynolds numbers. —: Re →∞; —: Re=100; —: Re=20. 122

14.1 Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the
decay rate −2νk2 for VCVPF is in good agreement with the exact solution, whereas the decay rate
−νk2 for VPF is only half of the exact solution. When k > kc, n has two real solutions in each
theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and (14.1.44).
The exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for VPF is in
agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only half of the
exact solution. 130

14.2 Decay rate −Re(n) vs. wave number k for water, ν = 10−6 m2/s. Re(n) is computed for the exact
solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k > kc, n
has two real solutions in each theory. In this figure, we plot the decay rate n2 corresponding to
(14.1.35), (14.1.40) and (14.1.45). The decay rate for the exact solution can be approximated by
−0.91νk2; the decay rate ≈ −2νk2 for VPF is closer to the exact solution than the decay rate
≈ −4νk2 for VCVPF. 131

14.3 Im(n), i.e. the wave-velocity multiplied by k, vs. wave number k for water, ν=10−6m2/s. Im(n)
is computed for the exact solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from
(14.1.41). When k < kc, the three theories give almost the same wave-velocity. When k > kc, all
the three theories give zero imaginary part of n. 131

14.4 Decay rate −Re(n) vs. wave number k for glycerin, ν = 6.21 × 10−4m2/s. Re(n) is computed for
the exact solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When
k < kc, the decay rate −2νk2 for VCVPF is in good agreement with the exact solution, whereas the
decay rate −νk2 for VPF is only half of the exact solution. When k > kc, n has two real solutions
in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and
(14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay rate
−g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for
VCVPF is only half of the exact solution. 132

14.5 Decay rate −Re(n) vs. wave number k for SO10000 oil, ν = 1.03× 10−2 m2/s. Re(n) is computed
for the exact solution from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When
k < kc, the decay rate −2νk2 for VCVPF is in good agreement with the exact solution, whereas the
decay rate −νk2 for VPF is only half of the exact solution. When k > kc, n has two real solutions
in each theory. In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and
(14.1.44). The decay rate for the exact solution can be approximated by −g/(2νk); the decay rate
−g/(2νk) for VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for
VCVPF is only half of the exact solution. 132
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14.6 Decay rate −Re(n) vs. wave number k for ν=10 m2/s. Re(n) is computed for the exact solution
from (14.1.32), for VPF from (14.1.36) and for VCVPF from (14.1.41). When k < kc, the decay
rate −2νk2 for VCVPF is in good agreement with the exact solution, whereas the decay rate −νk2

for VPF is only half of the exact solution. When k > kc, n has two real solutions in each theory.
In this figure, we plot the decay rate n1 corresponding to (14.1.34), (14.1.39) and (14.1.44). The
decay rate for the exact solution can be approximated by −g/(2νk); the decay rate −g/(2νk) for
VPF is in agreement with the exact solution, whereas the decay rate −g/(4νk) for VCVPF is only
half of the exact solution. 133

14.7 Critical Reynolds number Jc as a function of the mode number ` for a drop and a bubble. At a
given `, for J > Jc progressive decaying waves (oscillations) are predicted (i.e. the eigenvalues σ̂
are complex), whereas for J ≤ Jc monotonically decaying waves are obtained (i.e. the eigenvalues
σ̂ are real). The results are presented for VPF, VCVPF and the exact solution. Notice that the
exact solution does not provide a crossover value, since the imaginary part is never identically zero. 146

14.8 Decay rate and wave frequency for the fundamental mode ` = 2 as function of the Reynolds number
J for a drop from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by IPF is
identically zero for all `. 147

14.9 Decay rate and wave frequency for the fundamental mode ` = 2 as function of the Reynolds number
J for a bubble from the exact solution, VPF, VCVPF and IPF. The decay rate predicted by IPF is
identically zero for all `. 148

14.10 Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 10−3 versus the mode number ` for a drop.
For the interval of ` shown, the eigenvalues from the viscous theories are real and different. The
lowest decay rate is plotted in (a) and the trend exhibited by Im(σ̂1) is shown in (b) for IPF, which
predicts oscillatory waves with constant amplitude. 150

14.11 Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 40 versus the mode number ` for a drop. In
this case, the eigenvalues are a pair of complex conjugates for the interval of ` < `c and they are
real and different for ` ≥ `c. For the latter case, the lowest decay rate is plotted in (a). The symbol
`c stands for the highest value of ` for which a non-zero imaginary part is obtained, i.e. progressive
waves occur. For instance, `exact = `c from fully viscous flow theory (exact solution); analogous
definitions can be set for VPF (`VPF) and VCVPF (`VCVPF). 151

14.12 Decay rate Re(σ̂1) and wave frequency Im(σ̂1) for J = 106 versus the mode number ` for a drop.
In this case, the eigenvalues are a pair of complex conjugates for the interval of ` considered in this
study. 152

14.13 Experimental and theoretical time evolution of shape oscillations of an air bubble in water with
oscillation mode (`,m) = (15,0) under ultrasonic vibration of 20 kHz. The bar at the top of the left
frame in (a) corresponds to 1.0 mm (Kojo and Ueno 2006). 153

15.1 Floquet theory a = eσtb(t) for Faraday waves on an inviscid fluid (N = 0); ρ = 0.97 g/cm3,
γ = 21 dyne/cm, g = 981 cm/sec2, ω = 2π × 15.87 sec−1, f = g cm/sec2. (a) ln (a) vs t/ (2π), (b)
ae−σt = b(t) = b(t + 2π) vs t/ (2π), (c) σ(Nν) vs k. σm = 11.1274 sec−1 at km = 2.4246 cm−1. 162

15.2 Floquet theory a = eσtb(t) for Faraday waves on a viscous liquid ν = 1 cm2/sec with N = 2 (VPF);
ρ = 0.97 g/cm3, γ = 21 dyne/cm, g = 981 cm/sec2, ω = 2π× 15.87 sec−1, f = g cm/sec2. (a) ln (a)
vs t/ (2π), (b) ae−σt = b(t) = b(t + 2π), (c) σ vs k. σm = 5.8790 sec−1 at km = 2.1874 cm−1. The
dissipation theory with N = 4 (VCVPF) is stable <{σ} < 0. 163

15.3 σm versus ν cm2/sec. 163

15.4 km versus ν cm2/sec. 164

15.5 (a) km versus f/g and (b) σm versus f/g, for ν = 1 cm2/sec. (c), (d) σ versus k for N = 4 in a
transition region, in which the mark ∗ denotes the maximum growth rate. 166

15.6 (a) km versus f/g and (b) σm versus f/g, for ν = 100 cm2/sec. 167
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15.7 (a) km versus f/g and (b) σm versus f/g, for ν = 300 cm2/sec. For small values of f/g the potential
flow solutions for Faraday waves are stable, σm < 0 but N = 2 is less stable and more like RT
waves than N = 4. 168

15.8 Dispersion relation for glycerine-water mixture in contact with air at atmospheric pressure. Fitting
the experimental data (Edwards & Fauve 1993) with the results of the FHS (solid lines) leads to
γ = 67.6 × 10−3 N/m. Inset: Fitting of the experimental data for the stability threshold leads to
ν = 1.02× 10−4 m2/sec. 169

15.9 fC/g versus ω/(2π). Based on the data of λC = λC(ω/(2π)) for their exact solution in figure 15.8
of Kumar & Tuckerman(1994), the critical value fC/g is estimated for VCVPF and VPF. VPF
is closer to the eact solution than VCVPF. ρ = 1.1848 g/cm3, h = 0.29 cm, ν = 1.02 cm2/sec,
γ = 67.6 dnye/cm. 170

16.1 Capillary instability. The force γ/r drives fluid away from the throat, leading to collapse. 173

16.2 (a) The growth rate σ vs. k for case 1, mercury in water. The three potential flow based analyses
agree with the exact solution well but deviate from it slightly when k ¿ 1. (b) The vorticities ω∗l
and ω∗a vs. k for case 1. The magnitude of the vorticity is large when k ¿ 1 and small when k
is about 1. (c) The two ratios fl and fa vs. k for case 1. The irrotational parts dominate when
k is close to 1; the irrotational and rotational parts are comparable when k ¿ 1 or k ≈ 2. The
dominance of the irrotational part in the maximum growth region is understandable because the
Reynolds number is very high, 2.080×107. Both the vorticities and the two ratios could help to
understand the deviation of the potential based analyses from the exact solution when k ¿ 1. 181

16.3 (a) The growth rate σ vs. k for case 2, water in benzene. The three potential flow based analyses
agree with the exact solution in the maximum growth region but deviate from it considerably when
k is small. (b) The vorticities ω∗l and ω∗a vs. k for case 2. The magnitude of the vorticity is large
when k ¿ 1 and small in the maximum growth region. (c) The two ratios fl and fa vs. k for case
2. The ratios are high when k is close to 1 but close to 1 when k ¿ 1 or k ≈ 2. The maximum value
of fl is 10.37 here, smaller than the value 66.82 in case 1. The reason is that the Reynolds number
in case 2 is smaller than in case 1. Both the vorticities and the two ratios could help to understand
the good agreement in the maximum growth region and poor agreement when k ¿ 1 as shown in (a).182

16.4 (a) The growth rate σ vs. k for case 3, glycerin in mercury. In the maximum region, IPF and VPF
overestimate the growth rate whereas VCVPF gives almost the same value as EXACT. IPF, VPF
and VCVPF deviate from the exact solution considerably when k ¿ 1. (b) The vorticities ω∗l and
ω∗a vs. k for case 3. The magnitude of the vorticity is large when k ¿ 1 and small in the maximum
growth region. (c) The two ratios fl and fa vs. k for case 3. The ratios are high when k is close to
1 but close to 1 when k ¿ 1 or k ≈ 2. The maximum value of fl is 1.83, much smaller than in case
1 and case 2. At the same time the Reynolds number is also much smaller than in case 1 and case
2. It is noted that the maximum value of fa is 17.19, much larger than fl. The reason is that the
value of fa should correspond to the Reynolds number based on ρa and µa, which is 2.08×107 in
case 3. Both the vorticities and the two ratios could help to understand the good agreement in the
maximum growth region and poor agreement when k ¿ 1 as shown in (a). 183

16.5 (a) The growth rate σ vs. k for case 4, goldensyrup in paraffin. IPF and VPF deviate from the
exact solution considerably in the whole range of k ≤ kc = 2. VCVPF is still in good agreement
with the exact solution in the maximum growth region. (b) The vorticities ω∗l and ω∗a vs. k for case
4. The magnitude of the vorticity is large at almost all the values of k except when k is very close
to kc = 2. (c) The two ratios fl and fa vs. k for case 4. The maximum value of fl and fa does not
exceed 1.3, indicating that the rotational parts are important in the whole range of k. This could
explain the deviation of IPF and VPF from the exact solution in the whole range. At the same
time, the curve for fa shows that the ratio is higher in the maximum growth region than in the
region where k ¿ 1 or k ≈ 2. This may help to understand the good agreement between VCVPF
and the exact solution in the neighborhood of the maximum growth rate. 184
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16.6 (a) The growth rate σ vs. k for case 5, goldensyrup in BBoil. The agreement between IPF, VPF
and VCVPF with the exact solution is poor at almost all the values of k. (b) The vorticities ω∗l
and ω∗a vs. k for case 5. The magnitude of the vorticity is relatively large at almost all the values
of k, and becomes small only when k is very close to kc = 2. (c) The two ratios fl and fa vs. k for
case 5. The maximum value of fl and fa does not exceed 1.000035, indicating that the irrotational
and rotational parts are almost equally important in the whole range of k. Both the vorticities and
the two ratios could help to understand the poor agreement between IPF, VPF and VCVPF with
the exact solution shown in (a). 185

16.7 The growth rate σ vs. k for case 3, SO100 in air. IPF and VPF slightly overestimate the
growth rate in the region near the peak; the curve for the corrected solution (VCPVF) is almost
indistinguishable from the exact solution (ES). FVF in the figure should be replaces by ES. 189

16.8 The growth rate σ vs. k for case 4, glycerine in air (a) and for case 5, SO10000 in air (b). The
growth rates computed from IPF and VPF deviate considerably from the exact solution (ES), but
the growth rates from the corrected solution (VCVPF) are nearly the same as the exact solution
(see table 16.4). FVF in the figure should be replaces by ES. 189

16.9 The growth rate σ vs. k for case 5 (inverse), air in SO10000. The growth rate by IPF is significantly
larger than that by ES; the results by VPF, VCVPF and ES are almost the same (see table 16.2).
FVF in the figure should be replaces by ES. 190

16.10 Functions α, ba, b and αa versus real k; these functions tend to one for k > 10. The neutral curves
of inviscid and viscous potential flow for ` = m are identical when k > 10; this will be seen in
(16.2.33). The functions for k > 10 will lead to the asymptotic forms (16.2.23), (16.2.24) and
(16.2.39)-(16.2.46). 194

16.11 Example of a growth rate curve defined in section 16.2.4, showing the main features: the shape,
maximum ωIm, km and the cut-off wavenumber kc. 195

16.12 (a) ωIm versus W−1 and (b) km versus W−1, for ` = 0 (solid line), 0.0012 (broken line), 0.012
(dashed line), 0.1 (dotted line), 0.3455 (broken dotted line), 0.5 (dash dotted line). For large W−1

and ` 6= 0, the curves approach the asymptotic form given respectively by (16.2.23) and (16.2.24). 197

16.13 (a) ωIm versus W−1 (= ρ2aU2/γ) and (b) kc (the upper curves) and km (the lower curves) versus
W−1 for R = 100; the solid curve is for ` = 0 and m = 0, the broken line for ` = 0.0012 and
m = 0, the dashed line for ` = 0.0012 and m = 0.018, the dotted line for ` = 0 and m = 0.018.
Kelvin-Helmholtz (KH) instability for the liquid jet corresponds to γ → 0 or W−1 → ∞. The
neutral curve is independent of the Reynolds number R. If surface tension and gravity are zero, KH
flows are unstable for all k (see equation (2.27) in Funada & Joseph 2001). When U → 0, we get
capillary instability which is unstable to all waves with 0 < k < 2. The interval of unstable wave
0 < k < kc increases as the Weber number decreases (larger U , smaller γ). In general, the neutral
curve for viscous potential flow lies above that for inviscid potential flow with equality for a given
k when mαba = `bαa and for large k > 10, when ` = m (ν = νa) (see eqs(16.2.36)–(16.2.38)). The
values km(W−1) for which the growth is maximum depends on R. The maximum growth rates
ωIm are finite for W → 0 but the associated wavenumbers are proportional to 1/W for small W . 199

16.14 (a) ωIm versus W−1 and (b) km versus W−1 for R = 100, m = 0 and various `; ` = 0 (solid line),
0.0012 (broken line), 0.012 (dashed line), 0.1 (dotted line), 0.5 (broken dotted line), 1 (dash dotted
line). For large W−1 and ` 6= 0, the curves approach the asymptotic form given by (16.2.46). 201

16.15 (a) ωIm versus W−1 and (b) km versus W−1 for R = 100, and m = 0; ` = 0.012 and n = 0 (solid
line), ` = 0.012 and n = 1 (broken line), ` = 0.5 and n = 0 (solid line), ` = 0.5 and n = 1 (broken
line). 203
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16.16 Linear impulse response. (a) Linearly stable flow; (b) linearly convectively unstable flow; (c)
marginally convectively/absolutely unstable flow; (d) absolutely unstable flow (after Huerre 2000,
figure 8). The pictures here are for a response to a linear impulses; stability cannot be determined
from the evolution of impulses alone. Convectively unstable flows in (b) are also temporally
unstable; at any x, real wavenumbers exist for which disturbances outside the unstable wedge in
(b) will grow. 206

16.17 kI versus kR for ` = 0, R = 100, β = 4.934, and m = 0. Equation (16.2.14) gives rise to three
complex roots k for each prescribed set of parameters; for each of the three k’s there is one value
of ωI whose sign is marked on the figure. The value β = 4.934 < βc = 5.134 is subcritical. The
singular point D = 0 and ĉ = 0 (or c = ∂ωR/∂kR = 0) has ωI > 0 in the subcritical case and the
flow is absolutely unstable; this point is not shown but the points • that will merge into a pinch
point • in figure 8.2 are identified. The solid curves are given by D = 0 and ωI = 0. The dashed
curves are for D = 0, ωR = 1.7178 and ωI ≥ 0. 211

16.18 kI versus kR for ` = 0, R = 100, m = 0, and β = βc = 5.134 is critical and identified by •. At this
point D = 0, ĉ = 0, (ωR, ωI) = (1.7304, 0) and (kR, kI) = (2.392,−0.496). The dashed curve D = 0
and ωR = 1.7304 passes through the critical point and has ωI ≤ 0. 211

16.19 kI versus kR for ` = 0, R = 100, m = 0, and β = 5.334 > βc is supercritical. The singular point is
shown as a dot • and ωI < 0 there. On dashed curves ωR = 1.743. 212

16.20 Cusp point (ωR, ωI) = (1.7304, 0). ωI versus ωR for ` = 0, β = 5.134, R = 100 and m = 0; the solid
curves are for D = 0 and ĉ = 0, which passes through the pinch point (kR, kI) = (2.392,−0.496) in
the (kR, kI) plane (see figure 16.18). 212

16.21 βc versus ` when m = 0; R = 2000 (∗), 200 (×), 100 (+). 212

16.22 βc versus ` when m = 0.5; R = 2000 (∗), 200 (×), 100 (+). 213

16.23 Locus of singular points D = 0, ĉ = 0 for m = 0, ` = 0, R = 100 (dashed line), R = 200 (dash dot
line), R → ∞ (solid line) for 10−3 ≤ β ≤ 10. Critical singular points are those for which ωI = 0.
β = 10−3 ×, βc = 6.246 ◦, βc = 5.134 2, βc = 5.493 + and β = 10 4. (a) kI versus kR, (b)
ωI versus ωR, (c)

(
∂2ω/∂k2

)
I

versus β. β < βc is subcritical, β > βc > 0 is supercritical. The
supercritical inviscid branch R → ∞, β > 6.246 is degenerate

(
∂2ω/∂k2

)
I

= ωI = kI = 0 there.
Disturbances with zero group velocity are neutrally stable. The values of β on the upper branches
kI > 0 of the (kR, kI) plane are less than βc = 6.246 and ωI < 0. These branches are subcritical
and spatially and temporally damped. The lower branches kI < 0 go from subcritical values
10−3 < β < βc for ωI > 0 (for which the disturbances are spatially and temporally amplified) to
supercritical values β > βc: βc = 6.246 for R →∞ and ωI = 0, kI = 0 for β > 6.246, βc = 5.134 for
R = 200 and ωI < 0 there, βc = 5.493 for R = 100 and ωI < 0 there. Disturbances with zero group
velocity are temporally damped but spatially amplified (ωI < 0, kI < 0) for supercritical values of β.215

16.24 Border between absolute and convective instability in the inviscid case R → ∞, m = 0. The
value of ` = 0.3455 is asymptotic. The inviscid case is degenerate because the imaginary part
of ∂2ω/∂k2 = 0 at the singular point. The consequence of this degeneracy is that at criticality
(ωI , kI) = (0, 0) for all ` < 0.3455. The condition ωI < 0 at the pinch point cannot be realized; ωI

at ∂ωR/∂kR = 0. 216

16.25 Critical Weber number βc (= W−1
c ) versus Reynolds number R from the literature: Leib &

Goldstein (1986a) for inviscid jet in an inviscid fluid, βc = 6.3 for ` = 0, denoted by dashed line;
solid lines are for viscous jets in an inviscid fluid (m = 0) for ` = 0 (Leib & Goldstein 1986b) and
` = 0.0013 and ` = 0.03 (Lin & Lian 1989). 217

16.26 βc versus R comparing viscous flow (lower two curves) computed from the theory in section 16.2.10
for m = 0, ` = 0.0013 ∗ and ` = 0.03 2 with viscous potential flow (upper two curves) for the same
values (` = 0.0013 +, ` = 0.03 ×, m = 0). 218

16.27 ωI vs k and ωR vs k for ν = 0 and ν = 0.1. The problem considered by Batchelor and Gill 1962 is
Hadamard unstable eωIt →∞ as k →∞, no matter how small is t. n = 0 above 223
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16.28 Piecewise continuous velocity modeling a shear layer. 223

17.1 Flow through an aperture in a flat plate. 229

17.2 (a). The stream and potential functions in the z plane. The x and y coordinates are normalized
as (x/`, y/`). The stream and potential functions are in the range −Cc < ψ/(`U) < 0 and
−0.375 < φ/(`U) < 1.75, respectively. The contraction coefficient Cc = π/(2 + π) = 0.611 and the
edge of the nozzle is at (x/`, y/`) = (−1, 0). (b) The velocity in the z plane. Only half of the flow
field is shown due to the symmetry. 232

17.3 Contour plot for (p − pv)/(ρU2/2) in the (x/`, y/`) plane, (a) K = 10; (b) K = 1000. In the flow
field, p− pv > 0 everywhere. Thus there is no cavitation according to the pressure criterion. 233

17.4 Contour plot for (T11 + pv)/(ρU2/2) in the (x/`, y/`) plane, (a) K = 10 and Re = 1; (b) K = 10
and Re = 5. Cavitation occurs inside the curve on which T11 + pv = 0. Figure 17.3(a) and 17.4(a)
can be compared to show the effect of the viscous stress cavitation. 234

17.5 The cavitation threshold curves on which T11 + pv = 0 in different flows with Re = 1, 2, 5, 10, 20,
50 and 100. The cavitation number is fixed at K = 1 in (a) and K = 100 in (b). Cavitation occurs
inside the curve on which T11 + pv = 0. 235

17.6 The curve on which T11 + pv = 0 at the point (x/` = −1.01, y/` = 0) in the Re vs K plane. Below
the curve, T11 + pv > 0 and cavitation occurs at the point; above the curve, T11 + pv < 0 and there
is no cavitation at the point. 235

17.7 Viscous stress contours for Navier-Stokes solution (solid lines) compared to viscous potential flow
solution (dashed lines) for ρ-ratio=1e−4 and µ-ratio=1.5e−4 (Top): Re =500, (Bottom): Re =100. 236

17.8 Viscous stress contours for Navier-Stokes solution (solid lines) compared to viscous potential flow
solution (dashed lines) for ρ-ratio=1e−4 and µ-ratio=1.5e−4 (Top): Re =10, (Bottom): Re =1. 237

17.9 Schematic view of the orientation of the principal directions in the plane of motion for irrotational
flow of a viscous fluid according to (17.3.13) on the surface of the sphere. The major axis in the
ellipse represents the maximum tensile stress. The angle α puts the direction defined by the unit
outward normal vector er into the principal direction of the maximum tensile stress. 240

17.10 Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to
the maximum tension criterion for a Reynolds number Re = 0.01 from (a) Stokes flow; (b) the
irrotational flow of a viscous fluid (17.3.17), and (c) numerical solution; the pressure criterion
given by Kc = −cp is shown in (d) using the numerical pressure field. The cavitation number K
is defined in terms of the dynamic pressure ρU2/2. For a given cavitation number K, cavitation
occurs in the region where K < Kc. A different normalization of the cavitation number and of the
critical cavitation number is used for Stokes flow rather than the normalization used for the other
cases (17.3.18). The contour lines for the normalization of p∞ − pc with the viscous-stress scale
µU/a are presented in parenthesis in (a). The ratio of the normalization factors is Re/2. 241

17.11 Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to the
maximum tension criterion for a Reynolds number Re = 10 from (a) the irrotational flow of a
viscous fluid (17.3.17), and (b) numerical solution; the pressure criterion given by Kc = −cp is
shown in (c) using the numerical pressure field. The cavitation number K is defined in terms of the
dynamic pressure ρU2/2. For a given cavitation number K, cavitation occurs in the region where
K < Kc. 242

17.12 Contours of critical cavitation number Kc given by the condition T11 + pc = 0 according to the
maximum tension criterion for a Reynolds number Re = 100 from (a) the irrotational flow of a
viscous fluid (17.3.17), and (b) numerical solution; the pressure criterion given by Kc = −cp is
shown in (c) using the numerical pressure field. The cavitation number K is defined in terms of the
dynamic pressure ρU2/2. For a given cavitation number K, cavitation occurs in the region where
K < Kc. 243
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17.13 Periodic structure of stagnation points as a cartoon of the dynamics of capillary collapse. The
collapse will give rise to a periodic string of liquid drops. The analysis here is local focusing on
dynamics of collapse at z = 0. 246

17.14 (Ashgritz and Mashayek, 1995) Time evolution of the instability of a capillary liquid jet, ε0 = 0.05:
(a) k = 0.2, Re = 200, (b) k = 0.45, Re = 200, (c) k = 0.7, Re = 200, (d) k = 0.9, Re = 200, (e)
k = 0.2, Re = 10, (f) k = 0.45, Re = 10, (g) k = 0.7, Re = 10, (h) k = 0.9, Re = 10, (i) k = 0.2,
Re = 0.1, (j) k = 0.45, Re = 0.1, (k) k = 0.7, Re = 0.1, (l) k = 0.9, Re = 0.1. The numbers on the
figures indicate the corresponding times. 252

17.15 Liquid-bridge evolution starting from an unstable configuration. The disk diameter is 3.8 cm, the
Reynolds number is 3.7×10−3. The outer fluid, which eliminates buoyancy forces, has a viscosity
approximately 1000 times smaller than the inner fluid. (Spiegelberg, Gaudet, and McKinley, 1994). 253

17.16 A drop of a glycerol and water mixture, 100 times as viscous as water, falling from a nozzle 1.5 mm
in diameter. As opposed to the case of water, a long neck is produced (Shi, Brenner, and Nagel,
1994). 254

18.1 The flow past a circular cylinder (a) without separation of the boundary layer; (b) with separation
of the boundary layer. 257

18.2 The pressure drag coefficient CDp at different radial position r/(2a) computed from numerical
simulation (18.1.62) for Re=400: dash-double-dotted line - q/U0= 4; dashed line - q/U0= 5;
dash-dotted line - q/U0= 6. The solid straight line gives CDp

computed from (18.1.61) for Re=400.
Each curve for CDp

(r) has two intersections with the straight line, at which CDp
given by (18.1.61)

is equal to CDp
computed from numerical simulation at r = a + δ. 266

18.3 A symmetrical airfoil moving in a liquid at an angle of attack β with a constant velocity U0. The
additional drag on the airfoil computed using the dissipation method is opposite to the moving
direction of the airfoil and is defined as negative. 268

18.4 The uniform streaming flow past a rotating cylinder. 272

18.5 Comparison of the coefficient for the pressure drag CDp
as a function of the radial position. (a)

Re=400, q/U0=4. Our boundary layer analysis: dashed line – using δ/a = 0.17; solid line – using
δ/a = 0.2. The results of numerical simulation: 2. (b) Re=400, q/U0=5. Our boundary layer
analysis: dashed line – using δ/a = 0.15; solid line – using δ/a = 0.16. The results of numerical
simulation: 2. (c) Re=400, q/U0=6. Our boundary layer analysis usingδ/a = 0.14: solid line. The
results of numerical simulation: 2. CDp

from our boundary layer analysis can only be computed
inside the boundary layer: a ≤ r ≤ a + δ; CDp

from numerical simulation is plotted up to r = 2a. 287

18.6 Comparison of the coefficient for the pressure lift CLp
as a function of the radial position for

Re=400. Our boundary layer analysis: dash-dotted line – q/U0=4; dashed line – q/U0=5; solid line
– q/U0=6. Numerical simulation: 2 – q/U0=4; ∇ – q/U0=5; ♦ – q/U0=6. CLp from our boundary
layer analysis can only be computed inside the boundary layer: a ≤ r ≤ a + δ; CLp

from numerical
simulation is plotted up to r = 2a. 300

18.7 Scheme of the computational domain showing the Cartesian and polar reference coordinate systems.
The boundary conditions correspond to: Λ1, inflow; Λ2, outflow; Λ3, zero-shear stress boundaries,
and Λ4, wall with prescribed velocity and no-slip condition. 300

18.8 Influence of the dimensionless position of the outer boundaries (inlet and outlet) H̃ on the lift,
drag and torque coefficients for Re = 400 and q̃ = 5.0 (solid line with M) and Re = 1000 and q̃ =
3.0 (dashed line with •). 301

18.9 O-type mesh used in the numerical simulations (M125). 301

18.10 Dimensionless vorticity profiles on the surface of the rotating cylinder for Re = 200. Present
computations: solid line - q̃ = 3; dashed line - q̃ = 4; dash-dotted line - q̃ = 5. Results of Mittal &
Kumar (2003): M - q̃ = 3; ¦ - q̃ = 4; 2 - q̃ = 5. 302
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18.11 Pressure coefficient profiles on the surface of the rotating cylinder for Re = 200. Present
computations: solid line - q̃ = 3; dashed line - q̃ = 4; dash-dotted line - q̃ = 5. Results of Mittal &
Kumar (2003): M - q̃ = 3; ¦ - q̃ = 4; 2 - q̃ = 5. 302

18.12 Streamlines for various pairs of Re and q̃. The rotation of the cylinder is counter-clockwise while
the streaming flow is from left to right. The stagnation point lies above the cylinder. The stagnation
point moves upwards as the peripheral speed q̃ increases for a fixed Re. 303

18.13 Vorticity contours for various pairs of Re and q̃. The negative vorticity is shown as dashed lines.
The rotation of the cylinder is counter-clockwise while the streaming flow is from left to right. 304

18.14 Caption in the next page. 305

18.14 Variable vortical region thickness as a function of the angular position θ (solid line) for various
pairs of Re and q̃ obtained applying the 1% criterion. In addition, the uniform vortical region
thickness δ1%/a (dashed line) computed as the average of the profile is included. 306

18.15 Position of the outer edge of the vortical region based on the 1% criterion. The thick-solid line
represents the edge of the vortical region with variable thickness. The thick dash-dotted line
represents the edge of the vortical region with uniform thickness δ1%/a. The thin-solid lines
represent contours of positive vorticity while the thin-dashed lines represent contours of negative
vorticity. The contours only show levels of vorticity with magnitude greater than or equal to
1% of the maximum vorticity magnitude in the fluid domain. The rotation of the cylinder is
counter-clockwise while the streaming flow is from left to right. 307

18.16 Caption on the next page. 308

18.16 Pressure coefficient cp as a function of the radial position r̃ from the surface of the rotating cylinder
for various pairs of Re and q̃ for a fixed angle θ: 0◦ - thin solid line; 45◦ - solid line with 4; 90◦

- dashed line; 135◦ - dashed line with 2; 180◦ - dashed line with ◦; 225◦ - solid line with /; 270◦

- dashed-dotted line; 315◦ - dashed line with ×. The pressure coefficient profile given in (18.3.7)
from the exact solution of the equations of motion for a purely rotary flow due to the spinning
of the cylinder under the absence of the free stream is also presented (thick solid line). This
pressure profile is independent of θ. The average position of the outer edge of the vortical region
r̃δ corresponding to the 1% criterion is included (vertical dashed line). 309

19.1 The form of a typical graph of the growth rate ωI versus k. ωIm is the maximum growth,
λm = 2π/km is the wavelength of the fastest growing wave. kc is the cut-off wavenumber. ωIm and
km are called peak values. 318

19.2 The growth rate ωI versus k in the axisymmetric n = 0 mode for IPF, using the material parameters
(table 19.2) for stationary water and air with Ua = 0, 30, 100 and 310.38 m/sec. The values can be
converted into dimensionless form (M, W ) using table 19.3. 320

19.3 Maximum growth rate ωIm and the associated wavenumber km as a function of M for µ` = 0,
1 cP, 300 cP, 8000 cP. The solid line denotes the axisymmetric case (n = 0), and the dashed line
in figures for µ` =8000 cP denotes n = 1. 323

19.4 Growth rate versus wavenumber for stationary liquid jet (U` = 0) in transonic air. Ua =[1, 2,
3, 4, 5, 6, 7] = [290.08, 302.08, 314.08, 326.08, 340.08, 356.08, 370.08] m/s. (a) µ` = 0.15 cP:
as Ua increases, the maximum growth rate marked by + increases monotonically without limit.
(b) µ` = 0.175 cP: as Ua increases, the maximum growth rate marked by + increases, changes
to another peak, attains the maximun near Ua = 310.38 m/sec (M = 1), and then decreases.
(c) µ` = 0.5 cP: as Ua increases, the maximum growth rate marked by + increases, attains the
maximun near Ua = 310.38 m/sec (M = 1), and then decreases. 324

19.5 (a) The maximum growth rate ωIm versus R and (b) km versus R, for M = 0.5; n = 0 in
compressible gas (solid line) and n = 1 in compressible gas (dashed line). 325
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19.6 (a)The maximum growth rate ωIm versus R and (b) km versus R, for M = 2; n = 0 in compressible
gas (solid line) and n = 1 in compressible gas (dashed line). 326

19.7 (a) The maximum growth rate ωIm versus W−1,(b) km versus W−1. VPF, M = 0.5 for µ` = 300 cP;
n = 0 in compressible gas (solid line) and n = 1 in compressible gas (dashed line). 327

20.1 Cylinders falling in (a) Newtonian fluid (glycerin), and (b) viscoelastic fluid (2% aqueous PEO
solution). In (a), the cylinder is turned horizontal by inertia; in (b), it is turned vertical by
viscoelastic pressures 336

20.2 (a) Spheres in Newtonian Fluids. Spheres settling in glycerin draft (i-ii), kiss (iii), and tumble
(iv-vi). They tumble because a pair of kissing spheres acts like a long body, which is unstable when
its long axis is parallel to the stream. The forces in a Newtonian fluid are dispersive; the tumbling
spheres are pushed apart by pressures at stagnation points between the spheres (v-vi). (b) Spheres
in non-Newtonian Fluids. Spheres falling in a 2% aqueous PEO solution draft, kiss, and chain.
They chain because the forces in a viscoelastic fluid are aggregative. A chain of spheres turn just
like the solid cylinder in Figure 20.1.b (i-vi). Reversing time, we see that chaining, kissing, and
drafting in b(vi-i) are like drafting, kissing, and tumbling in a(i-vi). 337

20.3 (a1, a2) Side-by-side sphere-sphere interactions; (b1, b2) Sphere-wall interactions; (c) A sphere in
a viscoelastic liquid is sucked to a tilted wall; (d) Spheres dropped between widely-spaced walls.
The dotted line is the critical distance dcr for wall-sphere interaction. When d < dcr, the sphere
goes to the wall. When d > dcr, the sphere seeks the center. 337

20.4 A 2% suspension of glass spheres (60-70 µm in size) in a highly viscoelastic polymer solution of
0.5% polyacrylamide in deionized water. (a) After loading - the particles are randomly distributed.
(b) After a sideways movement on the top plate of about 3 cm. (c) After the top plate had been
moved back and forth several times. (d) After further and faster movement of the top plate. (From
Michele et al. 1977) 338

20.5 10% suspension of glass spheres (60-70 µm) in a polyisobutylene solution. (a) After movement on
the top plate back and forth. (b) After further movement. The lines of spheres in (a) are more or
less equally spaced. Further association is observed in (b) where two lines come together. (Michele
et al. 1977) 339

20.6 Flow induced microstructure. Spheres line up in the direction of flow (a) Extensional flow, (60-
70 µm spheres) (b) fluidization (3 cm spheres) and (c) sedimentation (3 cm spheres) in a 1%
aqueous PEO solution. 339

20.7 The dimensionless normal stress T ∗rr as a function of the angle θ. Parameters of the liquid M1 are
used in the calculation: ρ = 0.895 g/cm3, α1 = −3 and α2 = 5.34 g/cm. The three curves in the
figure correspond to Re = 1, a = 1 cm; Re = 0.05, a = 1 cm; and Re = 1, a = 0.5 cm, respectively. 340

20.8 The streamlines of the flow over an ellipse. (a) The angle of attack α = 0◦; (b) α = 60◦. 341

20.9 The dimensionless normal stresses T ∗nn at the front and rear stagnation points as functions of the
Reynolds number. The other two parameters are fixed: −α1/

(
ρa2

)
= 3 and a/b = 1.67. 343

20.10 The distribution of the dimensionless normal stress T ∗nn at the surface of the ellipse in flows with
−α1/

(
ρa2

)
= 3 and a/b = 1.67. The Reynolds number is 1.0 in figures (a) and (b), and is 0.05 in

figures (c) and (d). The normal stress is represented by vectors at the surface of the ellipse in (a)
and (c), and is plotted against the polar angle θ in (b) and (d). 343

20.11 The dimensionless normal stresses T ∗nn at the front and rear stagnation points as functions of the
parameter −α1/

(
ρa2

)
. The other two parameters are fixed: Re = 0.1 and a/b = 1.67. 344

20.12 The dimensionless normal stresses T ∗nn at the front and rear stagnation points as functions of the
aspect ratio a/b. The other two parameters are fixed: Re = 0.1 and −α1/

(
ρa2

)
= 3. 344
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20.13 The distribution of the dimensionless normal stress T ∗nn at the surface of the ellipse in flows with
Re = 0.1 and −α1/

(
ρa2

)
= 3. The aspect ratio is 5.0 in figures (a) and (b), and is 1.1 in figures

(c) and (d). The normal stress is represented by vectors at the surface of the ellipse in (a) and (c),
and is plotted against the polar angle θ in (b) and (d). 345

20.14 The moment on the ellipse in potential flow. (a) In an inviscid fluid, the high pressures at the
stagnation points turn the ellipse broadside-on (across the stream); (b) In a second order fluid,
the normal stresses at the two edges where the streamlines are most crowded are compressive and
tend to turn the ellipse into the stream. At the two stagnation points, the stresses may change
from compression to tension. Here we illustrate the situation in which the stress is compression
at the front stagnation point and tension at the rear stagnation point; this pair of stresses gives
rise to the moment which tends to turn the ellipse into the stream. Our calculation shows that the
resultant moment of the normal stress tends to turn the broad side of the ellipse into the stream
when inertia is not dominant. 345

20.15 The moment on the ellipse by the normal stress as a function of the attack angle α in the range
[0, π/2]. The six curves correspond to six values of the parameter −α1/

(
ρa2

)
: 0, 1, 2, 3, 4 and 5;

the aspect ratio is fixed at a/b = 1.67. 346

20.16 The moment on the ellipse by the normal stress as a function of the attack angle α in the range
[0, π/2]. The five curves correspond to five values of the aspect ratio a/b = 1.1, 4, 6, 8 and 10; the
parameter −α1/

(
ρa2

)
is fixed at 3. 346

20.17 Two orthogonal views showing the cusped (a) and broad (b) shape of the trailing edge of an air
bubble (2 cm3), rising in a viscoelastic liquid (S1). The two photographs are from Liu, Liao &
Joseph (1995). 349

20.18 The mapping planes for a Joukowski airfoil. In the ζ plane, the center of the circle is displaced a
distance m from the origin at an angle δ from the x axis and it is in the second quadrant. The
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