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I have been doing some work to support the interpretation of the results from shock tube
studies for Douglas R. Sommerville as specified under Schedule of Supplies/ Services on
the second page of the purchase order.

I have analyzed Rayleigh-Taylor stability of breaking drops in a high speed air stream
behind a shock wave.  The analysis is given in the paper “Breakup of a liquid drop
suddenly exposed to a high speed airstream” by Joseph, Belanger & Beavers which is
here submitted for documentation in this second invoice.  The analysis in this paper is
mathematically rigorous and in excellent agreement with experiments.  The analysis leads
to a statement of the smallest size of drops which can arise from RT instability (see
equations [39] and [35] of the enclosed paper).

A revised and improved paper on breakup mentioned in the last paragraph has been
accepted for publication in the International Journal of Multiphase Flow and will be
published in November.  This paper is included here as documentation for this final
report.

The breakup paper did not explain the experimental measurements in the case of
viscoelastic (thickened) liquid.

The experimental results we found for the thickened liquids were unexpected. The time to
breakup was much smaller than the time to breakup Newtonian liquid and the drop
fragments after breakup were larger and stringier than the Newtonian case.  I carried out
an analysis of Rayleigh-Taylor instability using the popular Oldroyd B model of
viscoelastic fluid.  First, I did an analysis of viscoelastic potential flow and found that the
analysis given in our paper on “Breakup of a liquid drop suddenly exposed to a high
speed airstream” for Newtonian fluids could be corrected by replacing the viscosity with
the viscosity times the factor:
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Where n  is the growth rate for 1,λnte  is the relaxation time and 2λ  the retardation time
of an Oldroyd B fluid.  This replacement is made in equation [28] of the enclosed
manuscript.



I also calculated the dispersion relation for the fully viscoelastic case.  The relation was
calculated for 2% Polyox; the relevant material and dynamic parameters are given in
Table 1 and 2 (the relaxation time was measured on our wave speed meter) of the
enclosed manuscript.  The dispersion relations are given in the two figures A and B in
this report.  There is no essential difference in the dispersion relations, but the potential
flow analysis is much easier.  The growth rates are much larger implying shorter breakup
times in viscoelastic fluids in agreement with observations.  The analysis also predicts
much shorter wave lengths than in a Newtonian fluid with the same viscosity.

To check the foregoing prediction we image processed the polyox drop (Figure C) and
found an instability wave length of approximately 0.25 mm.  We are able to match this
wave length using measured values of acceleration, viscosity and the relaxation time with
a retardation time 1/1000 times the relaxation time 1000/12 λλ = .  All the qualitative
features of the drop breakup are obtained by analysis.


