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Energy equation for irrotational theories of
gas-liquid flow:: viscous potential flow

(VPF), viscous potential flow with pressure
correction (VCVPF), dissipation method

(DM)

12.1 Viscous potential flow (VPF)

The effects of viscosity on the irrotational motions of spherical cap bubble, Taylor bubbles in round tubes,
Rayleigh-Taylor and Kelvin-Helmholtz instability described in previous chapters were obtained by evaluating
the viscous normal stress on potential flow. In gas-liquid flows, the viscous normal stress does not vanish and it
can be evaluated on the potential. It can be said that in the case of gas-liquid flow, the appropriate formulation
of the irrotational problem is the same as the conventional one for inviscid fluids with the caveat that the viscous
normal stress is included in the normal stress balance. This formulation of viscous potential flow is not at all
subtle; it is the natural and obvious way to express the equations of balance when the flow is irrotational and
the fluid viscous.

We shall use the acronym VPF, viscous potential flow, to stand for the irrotational theory in which the
viscous normal stresses are evaluated on the potential.

In gas-liquid flows we may assume that the shear stress in the gas is negligible so that no condition need be
enforced on the tangential velocity at the free surface, but the shear stress must be zero. The condition that the
shear stress is zero at each point on the free surface is dropped in the irrotational approximations. In general,
you get an irrotational shear stress from the irrotational analysis. The discrepancy between this shear stress
and the zero shear stress required for exact solutions will generate a vorticity layer. In many cases this layer is
thin and its influence on the bulk motion and on the irrotational effects of viscosity is minor. Exact solutions
cannot be the same as any irrotational approximation for cases in which the irrotational shear stress does not
vanish.

12.2 Dissipation method according to Lamb

Another purely irrotational theory of flow of viscous fluids is associated with the dissipation method. The
acronym DM is used for the dissipation method. The DM extracts information from evaluating the equation
governing the evolution of energy and dissipation on irrotational flow. VPF does not rely on arguments about
energy and dissipation and the results of the two irrotational theories, DM and VPF, are usually different.

The dissipation method was used by Lamb (1932) to compute the decay of irrotational waves due to viscosity.
This method can be traced back to Stokes (1851). A pressure correction was not introduced in these studies.
Lamb presented some exact solutions from which the irrotational approximation can be evaluated and the nature
of the boundary layer rigorously examined. Lamb (1932) studied the viscous decay of free oscillatory waves on
deep water § 348 and small oscillations of a mass of liquid about the spherical form § 355, using the dissipation
method. Lamb showed that in these cases the rate of dissipation can be calculated with sufficient accuracy by
regarding the motion as irrotational.

Lamb’s (1932) calculations are based on the assumption that the speed of a progressive wave is the same
as in an inviscid fluid. Padrino (Padrino and Joseph 2006, §14.2.4 and 14.3.1) noticed that a more complete
calculation of the dissipation method yields a different result; the growth rates are the same as in Lamb’s
calculation but the speed of the wave depends on the viscosity of the liquid.
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12.3 Drag on a spherical gas bubble calculated from the viscous dissipation of an irrotational
flow

The computation of the drag D on a sphere in potential flow using the dissipation method seems to have been
given first by Bateman in 1932 (see Dryden, Murnaghan, and Bateman 1956) and repeated by Ackeret (1952).
They found that D = 12πaµU where µ is the viscosity, a radius of the sphere and U its velocity. This drag is
twice the Stokes drag and is in better agreement with the measured drag for Reynolds numbers in excess of
about 8.

The drag on a spherical gas bubble of radius a rising in a viscous liquid at modestly high Reynolds numbers
was calculated, using the dissipation method by various investigators beginning with Levich (1949), who obtained
the value 12πaµU or equivalently the drag coefficient 48/R, where R = 2aUρ/µ is the Reynolds number, by
calculating the dissipation of the irrotational flow around the bubble. Moore (1959) calculated the drag directly
by integrating the pressure and viscous normal stress of the potential flow and neglecting the viscous shear
stress (which physically should be zero), obtaining the value 8πaµU .

12.4 The idea of a pressure correction

The discrepancy between the two drag values led G. K. Batchelor, as reported by Moore (1963), to suggest
the idea discrepancy could be resolved by introducing a viscous correction to the irrotational pressure. We do
not know whether we should praise or blame Batchelor for this idea since it comes to us second hand. There
is no doubt that the pressure in the liquid depends on the viscosity and it could take on its largest values in
boundary layer next to the free surface but the velocity there could also come to depend on the viscosity. Moore
(1963) performed a boundary layer analysis and his pressure correction is readily obtained by setting y = 0 in
his equation (2.37):

pv = (4/R) (1− cos θ)2 (2 + cos θ) / sin2 θ (12.4.1)

which is singular at the separation point where θ = π. The presence of separation is a problem for the application
of boundary layers to the calculation of drag on solid bodies. To find the drag coefficient Moore (1963) calculated
the momentum defect, and obtained the Levich value 48/R plus contributions of order R−3/2 or lower.

Kang & Leal (1988a, b) put the shear stress of the potential flow on the bubble surface to zero and calcu-
lated a pressure correction. They obtained the drag coefficient given by Levich’s dissipation approximation by
direct integration of the normal viscous stress and pressure over the bubble surface. They accomplished this by
expanding the pressure correction as a spherical harmonic series and noting that only one term of this series
contributes to the drag, no appeal to the boundary-layer approximation being necessary. A similar result was
obtained by Joseph & Wang (2004a) using their theory described below, for computing a pressure correction.

The accepted idea, starting with Batchelor, is that the pressure correction is a real viscous pressure which
varies from the pressure in the irrotational flow outside a narrow vorticity layer near the gas-liquid surface, to
the required value at the interface. This boundary layer has not been computed. Maybe the idea is not quite
correct. In the case of the decay of free irrotational gravity waves computed by Lamb (1932), a viscous pressure
correction does not appear. The pressure correction computed by Wang & Joseph (2006d) as shown in §14.1
gives the same result as the dissipation method and is in excellent agreement with the exact solution but it is
not a viscous correction in a boundary layer of the exact solution.

12.5 Energy equation for irrotational flow of a viscous fluid

Consider the equations of motion for an incompressible Newtonian fluid with gravity as a body force per unit
mass

ρ
du
dt

= −∇Φ + µ∇2u (12.5.1)

where

Φ = p + ρgz. (12.5.2)

The stress is given by

T = −p1 + τ (12.5.3)
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where

τ = 2µD[u]

and

∇ · τ = µ∇2u

The mechanical energy equation corresponding to (12.5.1) is given by

d
dt

∫

Ω

ρ

2
|u|2 dΩ =

∫

S

n · T̃ · udS − 2µ

∫

Ω

D : D dΩ, (12.5.4)

where S is the boundary of Ω, with outward normal n. On solid boundaries no-slip is imposed; say u = 0 there,
and on the free surface

z = η(x, y, t)

and the shear stress

n ·T · es = 0, (12.5.5)

where es is any vector tangent to the free surface Sf . On Sf we have
∫

S

n · T̃ · udS =
∫

Sf

n · T̃ · udS

where

T̃ = T− ρgη1, (12.5.6)

n ·T · n = −γ∇II · n. (12.5.7)

Hence, on Sf

n · T̃ · n = −ρgη − γ∇II · n. (12.5.8)

and, since the shear stress vanishes on Sf

n · T̃ · u = n · T̃ · (unn + uses)

= −(ρgη + γ∇II · n)un. (12.5.9)

Hence, (12.5.4) may be written as

d
dt

∫

Ω

ρ

2
|u|2 dΩ = −

∫

Sf

(ρgη + γ∇II · n)undSf − 2µ

∫

Ω

D : D dΩ, (12.5.10)

Equation (12.5.10) holds for viscous fluids satisfying the Navier–Stokes equations (12.5.1) subject to the van-
ishing shear stress condition (12.5.5).

We turn now to potential flow u = ∇φ, ∇2φ = 0. In this case, ∇2u = 0 but the dissipation does not vanish.
How can this be? In Chapter 4 we showed that the irrotational viscous stress is self-equilibrated and does give
rise to a force density term ∇2∇φ = 0; however, the power of self-equilibrated irrotational viscous stresses

∫

Sf

n · 2µ∇⊗∇φ · udSf

does not vanish, and it gives rise to an irrotational viscous dissipation

2µ

∫

Ω

D[u] : D[u]dΩ = 2µ
∫

Ω

∂2φ

∂xi∂xj

∂2φ

∂xi∂xj
dΩ = 2µ

∫

S

nj
∂2φ

∂xj∂xi
uidS

= 2µ

∫

Sf

n ·D[∇φ] · udSf = 2µ

∫

Sf

n ·D · (unn + uses) dSf

=
∫

Sf

(
2µ

∂2φ

∂n2
un + τsus

)
dSf (12.5.11)
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where τs is an irrotational shear stress

τs = 2µn ·D[∇φ] · es,

us = u · es. (12.5.12)

Turning next to the inertial terms, we have

(u · ∇)u = ∇|u|
2

2

and

d
dt

∫

Ω

ρ

2
|u|2dΩ =

∫

Ω

ρ

(
u · ∂u

∂t
+ u · ∇|u|

2

2

)
dΩ

=
∫

Ω

ρ

[
∂φ

∂xi

∂

∂xi

∂φ

∂t
+∇ ·

(
u
|u|2
2

)]
dΩ

=
∫

Sf

ρun

(
∂φ

∂t
+
|∇φ|2

2

)
dSf (12.5.13)

Collecting the results (12.5.9), (12.5.11), (12.5.12) and (12.5.13) we need to evaluate the energy equation (12.5.4)
for (12.5.1) when u = ∇φ; we find that

∫

Sf

un

[
ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
+ 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = −

∫

Sf

τsusdSf . (12.5.14)

Equation (12.5.14) was derived by Joseph; it is the energy equation for the irrotational flow of a viscous fluid.
As in the case of the radial motion of a spherical gas bubble (6.0.8), the normal stress balance converts into the
energy equation for viscous irrotational flow.

12.6 Viscous correction of viscous potential flow

The viscous pressure pv for VCVPF can be defined by the equation
∫

Sf

(−pv)undSf =
∫

Sf

τsusdSf . (12.6.1)

This equation can be said to arise from the condition that the shear stress should vanish but it does not vanish
in the irrotational approximation. Batchelor’s idea, as reported by Moore (1963), is that the additional drag
4πaµU on a spherical gas-bubble needed to obtain the Levich drag 12πaµU from the value 8πaµU , computed
using the viscous normal stress, arises from a real viscous pressure in a thin boundary layer at the surface of
the bubble.

Our interpretation of Batchelor’s idea is to replace the unwanted shear stress term in the energy equation
with an additional contribution to the normal stress in the form of a viscous pressure satisfying (12.6.1). An
identical interpretation of Batchelor’s idea, with a different implementation, has been proposed by Kang and
Leal (1988b) and is discussed in §13.1.1.

Suppose now that there is such a pressure correction and Bernoulli equation

pi + ρ

(
∂φ

∂t
+
|∇φ|2

2
+ gη

)
= C

holds. Since

C

∫

S

u · ndS = C

∫

Ω

∇ · udΩ = 0

we obtain
∫

Sf

un

[
−pi − pv + 2µ

∂2φ

∂n2
+ γ∇II · n

]
dSf = 0 (12.6.2)

The normal stress balance for VCVPF is

− pi − pv + 2µ
∂2φ

∂n2
+ γ∇II · n = 0 (12.6.3)
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Equation (12.6.3) is a working equation in the VCVPF theory only if pv can be calculated. In the problems
discussed in this book, pv and a velocity correction uv are coupled in a linear equation

ρ
∂uv

∂t
= −∇pv + µ∇2uv, ∇ · uv = 0, (12.6.4)

and since uv is harmonic ∇2pv = 0 and pv can be represented by a series of harmonics functions. In most of
the problems in this book, orthogonality conditions show that all the terms in the series but one are zero and
this one term is completely determined by (12.6.1). In other problems, such as the flow over bodies studied in
Chapter 13, (12.6.1) determines the coefficient of the term in the harmonic series that enters into the direct
calculation of the drag; the other coefficients remain undetermined.

Having obtained pv it is necessary to consider the problem (12.6.4) for uv. This problem is overdetermined;
(12.6.4) is a system of four equations for three unknowns. We must also satisfy the kinematic equation uv =
∂ηv/∂t and the normal stress boundary condition. Wang and Joseph (2006d) showed that a purely irrotational
uv and higher order corrections satisfaying (12.6.1) can be computed in the case in which the normal stress
bpundary condition is not corrected. Their solution procedure leads to a series of purely irrotational velocities
in powers of ν, or reciprocal powers of the Reynolds number (see §14.12). This same kind of special irrotational
solution in reciprocal powers of the Reynolds number was constructed by Funada et al (2005) for capillary
instability of a viscous fluid and by Wang et al (2005b) for a capillary instability of a viscoelastic fluid.

There is no reason to think that the higher order irrotational solutions generated by pv have a hydrodynamical
significance. In general, the solution of potential flow problems with pressure corrections can be expected to
induce vorticity. This is the case for the nonlinear model of capillary collapse and rupture studied in §17.4.2. The
flow from irrotational stagnation points of depletion to irrotational stagnation points of accumulation cannot
occur without generating the vorticity given by (17.4.24) at leading order.

In the direct applications of the dissipation method, a pressure correction is not introduced; the power of the
irrotational shear stress on the right side of (12.5.14) is computed directly. The energy equation for the system
of VCVPF equations with pv is the same as (12.5.14) when the power of pv is replaced by the power of the
shear stress using (12.6.1).

In the case of rising bubbles we may compute the same value for the drag in a direct computation in which
the irrotational shear stress is neglected and pv is included as we get from the dissipation method using (12.5.14)
with τs 6= 0 and pv = 0.

The dissipation method requires that we work with the power generated by the shear usτs and not with a
direct computation using pv. The direct computation of drag with pv = 0 and τs 6= 0 given by potential flow
leads to zero drag (13.1.8). The pressure correction allows us to do direct calculations without using the energy
equations. The two methods lead to the same results by different routes. This feature of energy analysis is
related to the fact that irrotational stresses are self-equilibrated (4.3.1) but do work.

The nature of the construction of VCVPF equations, which have the same energy equations as those used in
the dissipation method, guarantees that the same results will be obtained by these two methods.

The VCVPF theory is perhaps artificial in some cases, like the decay of gravity waves in which no viscous
pressure appears in the exact solution (see §14.1.3). However, in all cases, VCVPF leads to the same results as
the dissipation method.

We have now arrived at the following classification of irrotational solutions:
IPF - inviscid potential flow
VPF - viscous potential flow
VCVPF - viscous correction of viscous potential flow
DM - dissipation method
Recognizing now that DM and VCVPF lead to the same results by different routes, even if pv is not a true

hydrodynamic pressure, we can introduce yet another acronym
VCVPF/DM
and
ES - exact solution.
VCVPF/DM and VPF are different irrotational solutions; they give rise to different results in nearly every

instance except in the case of the limit of very high Reynolds numbers where they tend to the inviscid limit
IPF. At finite Reynolds number VPF and VCVPF/DM can give significantly better results, closer to the exact
solutions than IPF.
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In the sequel, VCVPF means VCVPF/DM. We think that it is possible that either VPF or VCVPF give
(in different situations which we presently cannot specify a priori with precision) the best possible purely
irrotational approximations to the exact solution. The problem of the best purely irrotational approximation
of real flows is related to the problem of the optimal specification of the irrotational flow in the Helmholtz
decomposition studied in Chapter 4.
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