Direct Simulation of Interfacial Waves in a High Viscosity Ratio
and Axisymmetric Core Annular Flow
By Runyuan Bait, Kanchan Kelkarz and Daniel D. Josepht
1Department of Aerospace Engineering and Mechanics, University of Minnesota,
Minneapolis, MN 55455, USA
2]nnovative Research, Inc., 2800 University Ave. SE., Minneapolis, MN 55414, USA

Abstract

A direct numerica simulation of spatialy periodic wavy core flows is carried out
under the assumption that the densities of the two fluids are identical and that the viscosity
of the il coreis so large that it moves as arigid solid which may nevertheless be deformed
by pressure forces in the water. The waves which develop are asymmetric with steep
dopesin the high pressure region at the front face of the wave crest and shallower slopes a
low pressure region at lee side of the crest. The simulation gives excellent agreement with
the experiments of Bal et al.[1992] on up flow in vertical core flow where axisymmetric
bamboo waves are observed. We find a threshold Reynolds number; the pressure force of
the water on the core relative to a fixed reference pressure is negative for Reynolds
numbers below the threshold and is positive above. The wave length increases with the
holdup ratio when the Reynolds number is smaller than a second threshold and decreases
for larger Reynolds numbers. We verify that very high pressures are generated a
stagnation points on the wave front. It is suggested that the positive pressure force is
required to levitate the core off the wall when the densities are not matched and to center the
core when they are. A further conjecture is that the principal features which govern wavy

core flows cannot be obtained from any theory in which inertiais neglected.



1. Introduction

Lubricated pipelining of viscous materials like heavy crude, durries and capsules is
robustly stable and has a high economic potential. The viscous materiad does not touch the
wall. Inthe case of crude ail, the drag reduction which can be achieved by lubrication is of
the order of the viscosity ratio with increased throughputs of ten thousand or more (for
more background see Joseph and Renardy 1992). These lubricated flows are caled core

flows because the viscous material flowsin a core lubricated al around by water.

A surprising property of core flow isthat the flow in a horizontal line will Iubricate
with the core levitated off the wall even if the core is lighter or heavier than lubricating
water. This levitation could not take place without a hydrodynamic lifting action due to
waves sculpted on the core surface. In the case of very viscous liquids, the waves are
basically standing waves which are convected with the core asit moves downstream. This
picture suggests a lubrication mechanism for the levitation of the core analogous to
mechanisms which levitate loaded dider leavings at low Reynolds numbers. Ooms, Segal,
Vander Wees, Meerhoff and Oliemans[1984] and Oliemans and Ooms [1986] gave a semi-
empirical model of thistype and showed that it generated buoyant forces proportional to the
first power of the velocity to balance gravity. In thistheory, the shape of the wave must be

given asempirical input.

Consider water lubricated pipelining of crude oil. The il rises up againgt the pipe
wall because it is lighter than the water. It continues to flow because it is lubricated by
waves. However, the conventional mechanisms of lubrication cannot work. The saw
tooth waves shown in Figure 1.1 are like an array of dipper bearings and the stationary oil
core is pushed off the top wall by lubrication forces. If W were reversed, the core would

be sucked into the wall, so the dipper bearing picture is obligatory if you want levitation.



Figure 1.1. (after Ooms et al., Int. J. Multiphase Flow, 10, 41-60, 1984). The

coreisat rest and the pipe wall movesto the | eft.

Obviously the saw tooth waves are unstable since the pressure is highest just where
the gap is smallest, so the wave must steepen where it was gentle, and smooth where it was
sharp. Thisleads us to the cartoon in Figure 1.2. To get a lift from this kind of wave it
appears that we need inertia, as in flying. Liu's [1982] formula for capsule lift-off in a
pipeine in which the critical lift off velocity is proportional to the square root of gravity
times the density differenceisaninertial criterion. It is likely that inertial dynamicsis aso
involved in lubricated oil and dlurry lines. At high speeds the core flows may literaly "fly"
down the tube. In dl of this, the position of the viscous points of stagnation where the

pressures are high is of critical importance.

In this paper we confine our attention to the direct numerica smulation of
axisymmetric core flows. The shape of the interface and the secondary motions which
developina"flying" core flow are consistent with the picture arising intuition (see Figure

1.2).
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Figure 1.2. (After Feng, Huang & Joseph [1995]) (&) The interface
resembles a dipper bearing with the gentle slope propagating into the water. (b) The high
pressure a the front of the wave crest steepens the interface and the low pressure a the
back makes the interface less steep. (c) The pressure distribution in the trough drives one
eddy in each trough.

Lessintuitiveisthe existence of athreshold Reynolds number corresponding to a
change in the sign of the pressure force on the core, from suction a Reynolds numbers
below the threshold, asin the reversed dipper bearing in which the dipper is sucked to the
wall, to compression for Reynolds numbers greater than the threshold as in flying core

flow in which the core can be pushed off the wall by stagnation pressure.



2. Governing equations

Consider two concentric immiscible fluids flowing down an infinite horizontal
pipeling; the coreis occupied by fluid 1 and the annulus by fluid 2. Assume aso that the
core is axisymmetric with interfacial waves. The waves are periodic aong the axis and

move at certain uniform speed c. The governing equations are
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where (u,v) aretheradial and axia velocity, and

P =-Bx+ p(r,x,t) + C,(t) (2.2)

isthe pressure, (3 isthedriving pressure gradient, (u,,p,) are the viscosity and density in
thecore i =1 and annulus i =2. We seek a periodic solution in which thetimet enters
only asx-ct in a wave which propagates with a constant speed c. Then, we can express
the condition that motion be periodic with period L in x asfollow:

u=u(x-ct,r) =u(x+L-ct,r)

v=v(x—ctr)=v(x+L-ctr)
p(x—ct,r) = p(x+L-ct,r).

(2.3)



We next introduce new variables

z=x-ct (2.4)
and w(z,r)=v(x-ct,r)—c,
u(z,r) =u(x-ct,r), (2.5)
P(z,r) = P(x—ct,r) =—B(z+ct) + p(r,z) + C,(t).
The system of equations arising from (2.1), (2.4) and (2.5) isto be time independent
C,(t)—pBct=C
where C,; isconstant. In these new variables, z replacesx in (2.1) and
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Atthepipewall r = R,
u=0, w=-c, (2.7)
and at the center of thecore r =0 we require
u=0, ow_ 0. (2.8)
0z
Theinterface is given by
r="1(z)=f(z+L). (2.9)



Here, between the water and oil, the kinematics condition is

and the velocity conditionis [[0]] =0, where [[*]] = (*), = (*), and
U= (u,w).

The normal stress condition is

(-[[PI] +2Ho) + n-[[2uD[U]]]-n =0,

and the shear stress condition is

t+ [[2uD[U]]] * n = 0f

(2.10)

(2.11)

(2.12)

(2.13)

where D[U]:%(DU+DUT), 2H is the sum of the principa curvatures, o is the

coefficient of interfacial tension, n=n,, is the normal from liquid 1 to 2, and t is the

tangent vector.

In addition, we prescribe the oil flow rate

Q= %‘E{%’anv(r,z)dr}dz,

and water flow rate

L R

Q, = %{{Iva(r,z)dr} dz.

(2.14)

(2.15)



3. Rigid Deformable Core flow

In many situations, the viscosity of the oil is much greater than the viscosity of
water. We shall assume that the core is solid with standing waves on the interface. A

consequence of this assumption is that non-rigid motions of the core may be neglected. In

this rigid deformable core model, the core is stationary (ljl =0) and water moves. The

velocity for wavy core flow can be written ( Figure 3.1) as
U =ue +we, =U n+Ut (3.1

where U, is normal component and Us is tangential component of the velocity on the

interface r=1(2).

Figure 3.1. The velocity components arein different coordinates.

The continuity of the shear stressgivesrise to

Uy _ M, 0Ug, _ mo"Us2 ' (3.2)
on [, on on

So, no matter what is the value % =0(1), % ~O(m).

For heavy crudes in water m=%:O(10‘5) is very small, compatible with the

1

assumption that L]l is effectively zero.



From continuity of velocity on the interface, [[0]] =0, we also obtain that the water

velocity iszero on the interface.  Since the relative velocity in the solid core vanishes, the

speed c of the advected wave, in coordinates in which the wall is stationary, is exactly the

core velocity c=w(r,z) which is constant, independent of r and z when r < f(2). In this

case (2.14) reduces to
Q, = 1R'c,

L
and R :%Ifz(z)dz.
0

The viscous part of the normal stress on the interface vanishes:
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Therefore, the normal stress balance (2.12) reducesto

[[P]] =2H0.

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

Although the core is assumed to be a deformable rigid body, thereis a mass flow of

oil inthe pipeline, which is driven by pressure 3z . The pressurein the coreis

P, =-pz+ Cpl,

while the pressure in the annulus is

P, =—=pz+p(r,2) +C,,.

(3.8)

(3.9)



Since the pressure level isindeterminate we may, without loss of generality, put

C,, =0. (3.10)

Inthe water, f <r < R,, we have
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The normal stressbalanceat r = f whichisgiven by (3.8), then becomes
d2f
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To solve our problem we must prescribe 3, and compute ¢, or we may give ¢ and
compute 8. Since the momentum change in one wavelength is zero, we may relate ¢ and

[ by the force balance shown in Figure 3.2 and expressed as

ABL=F, = 27'[10Sl f(nP, +tr)* eds= 27TJ'0L(nP2 +17)* e f+/1+ (df /dz)*dz,

_ 27TJ’0L(sti N6 + 1c0s8) f/1+ (df /dz)2dz (3.14)
df

where tanf=—, (3.15)
dz
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and SL is the pressure drop, A isthe area of the cross section of the core, § isthe arc
length in one wavelength r=f, n isthe unit normal vector, t is the unit tangent vector, e,

isthe unit vector in the axial direction, and T isthe shear stress.

c

Figure 3.2. Force balance on the wave core is based on one wavelength. The
pressuredrop is BL and ABL = F, istheforce.

The pressure P, and shear stress 17 depend on ¢ implicitly; we give ¢ and compute

P, and 7. Thecorresponding S is given by iteration using (3.14).

We must now solve (3.11) for L periodic functions u, w, p subject to the
conditions that w=c, a r=R, w=u=0 a r=f(z) where Q, is prescribed by (2.15), the
pressure and interfacial tension arerelated by (3.12) and 8 and ¢ arerelated by (3.14). To
solve this, we first prescribe the shape fy(z) of the wave with a prescribed mean R; and,
of course, itslength L, and the speed c. We next construct a sequence of iterations in
which ¢, Ry, and Q,, arefixed. Wefirst computeu, w and p satisfying al the conditions
except (3.12). The pressure p,, belonging to f,(z), then determines a new shape f,(z) to
satisfy (3.12). A certain constant C, isrequired to maintain the value of R, in the iteration.

At the next stage we repeat the calculation of u,, w; and p,. Thisgivesanew f,(z) and C,

and so on.

We can, therefore, caculate convergent solutions corresponding to each and every

triplet (c, R, Q,,) . Wedo not expect al these solutionsto be stable. In experiments we get
one R, when we prescribe the inputs Q, and @, or c. This should be equivaent to

prescribing two other independent bits of data, say ¢ and R,. Then we would expect one

11



Qu foreachc and R, to appear in experiments, but we calculate a family of solutions for
thegivenc and R, and any Q,,. When the parameters are taken for perfect core flow, we
get perfect core flow from our simulation; most of these perfect core flows are actually
unstable. Our ssimulation then can be regarded as giving rise to a one parameter family of

wavy core flows whose stability isyet to be tested.

12



4. The holdup ratio in wavy core flow

The holdup ratio h is the ratio Qy/Q,, of volume flow rates to the ratio Vy/V,, of

volumein the pipe:

_Q/Q, - Q/Q,
h==¢ = 0 , 4.1
V.1V,  R(R-R) 41

The holdup ratio depends on the fluid properties and flow parameters but is most strongly

influenced by flow type. Equation (4.1) can be represented as the ratio of superficia

velocities
(owr 2 R @2
where ¢, = nQF;f , (43)
= R (4.4

and c=c, for rigid core flow.

Here, we consider the holdup ratio in perfect core flow and wavy core flow. A
perfect core annular flow has a perfectly cylindrical interface of uniform radius without
waves and is perfectly centered on the pipe axis with an annulus of lubricating water al

around. Thevelocity W and flow rate Q of aperfect coreflow is

_ B B
Wo(r) = (R -r?) e (R -RE), (4.5)
WW(r):4L;2(R22—r2), (4.6)
R
_ o BB 4. B 202t
QO—ZH‘([rWOdr—ZH%Rl +8u2(R2R1 Rl)%’ (4.7)
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—2R2w ar =2mAL—(Rg - RE)?
Qu = n{r wir)dr =2n (R - )

(4.7) and (4.8) can be written as

Q= —%(m+2(a2 —1)),

and Qu=- %’:21(2 1)

Theratio of the flow rates, theinput ratio, is

:QO

Q, _m+2(a’-1)

Q  (@-1°

y

where m=¥z, a=e= | 1+ (1+\/1+m)
Hy R\

The oil fraction is given by

0RO i: 1
E@E a’ (1+ 1+my),
y
while the water fraction is given by
1 _ 1+\1+my

oo

1-n?=1-

The volumeratio is proportiona to the fraction ratio. Hence

2

Mo_ 1" _ y
vV, 1-n* 1+ 1+my’

w

The equation for the holdup ratio is therefore

14

1+)1/(1+\Tmy) y+1+ylemy

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



heQ/Qu_
V,/V, y
1+.1+my

=1+\1+my. (4.15)

For very viscous oil, m=0, and h= 2.

Now let us consider the holdup ratio for wavy core flow in the system of
coordinates in which the wall is stationary. Given a periodic function f(x-ct) =f(z) with

wave length L, the average diameter of the ail coreis R, where

%!fz(z)dz: R (4.16)

Theinput rate for arigid coreisrelated to the wave speed by

Q = R’ = %TJL’ £2(2)dz (4.17)

Since both water and oil flow rates are specified, the total flow rate at each cross section is

constant:

R

Qo =Q, +Q, = 1f?(2)c+ 27TfrV(r,Z)dr (4.18)
f(2)

where Vv(r,z) = @O rr::fl?zz) and the flow inputs Q, and Q,, are independent of z

Then, the water input can be written as

Q=Quu Q= nc[fz(z) - R?] + 27Tfrv(r,z)dr (4.19)

(2)
independent of z.

Equation (4.19) gives an interesting z dependent decomposition of the constant
water input Q,,. We may write (4.19) as

15



Q,=®(29 + ¥(2), (4.20)

where @ =nC[*(2) - R] (4.21)

R
and Y(z) = 2n_[rv(r,z)dr : (4.22)
(2)

Suppose that a wave crest at z=0 just touches the pipe wall, f(z2=R,. In this case, the

water flow Q,, isentirely dueto the forward motion of the water trapped in troughs and

W(z)=0, @(0)=m[R -R]

so that @(z) can be said to represent the trapped water. On the other hand, for perfect core
flow @ =0 forall z

When Q, and Q,, are given, the wave speed ¢ and the average diameter of the oil
core depends on the wave shape f(z). The holdup ratio for wavy core flow is then given
by

h= 2QO/2Q_W 2y R R Rzz_lez' (4.23)
R/R-R) nc[fz—Rf]+27TJ'rvdr R

For perfect core annular flow, the flow rate of trapped water is zero since the core
radiusisuniform f? = R?. Using W from (4.8) we get h=2 . Let us focus on the flow
rates & the cross section of the wave crest, where f = f__ and assume that f,_ = R,.
Then the integral in (4.23) vanishes and the holdup ratio is 1. Therefore, the holdup ratio

for wavy core flow is between 1 and 2.

In the trangition from a perfect core flow to awavy core flow, the wave troughs
will carry extra water even if the average diameter of the oil core is unchanged; this
increases the water flow rate. However, when the water flow rate is fixed, the system can

not increase the water flow rate. Therefore, the average diameter of the core will increase,

16



reducing the water flow rate. Inthe wavy flow, more ail is in the pipe than in perfect core
flow, and the holdup ratio is less than 2. Of course, the speed of the core must decrease

when thereis more oil and oil flow rateis fixed.

The pressure gradient 3 isrelated to the difference in area of the core at a crest and

average areg, thisis measured by
d = f*(0) - RY]. (4.24)

The gap between the pipe wall and wave crest is smaller when d islarger, provided that the
volume of ail inthe pipeisfixed. Smaller gaps imply high friction and large values of the

pressure gradient.
5. Comparison with experiments

Our simulations are for the case in which the density of oil and water are the same;
when they are not the same and the pipe in horizontal, the oil core will rise or sink. Some
representative wave shapes, which look like those in experiments, are for density matched

flowsin Figure 5.1.
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Figure5.1. Selected wave shapes for water |ubricated axisymmetric flow of oil and
water with the same density p=1.0g/cm3, »=0.01 poise and o=26dyne/cm for oil and

water. The pipe diameter is R,=1.0cm. Q, and Q, are in cm3/sec. The data for each
frame is given as the triplet (R,, Qo, Qu), a (0.37, 4.30, 2.73), b (0.37, 8.6, 547 ), c
(0.37, 17.2, 10.93), d (0.41, 10.56, 3.67), e (0.41, 18.48, 6.43), f (0.41, 26.41, 9.19),
g (0.43, 34.85, 8.76), h (0.43, 43.57, 10.96) and i (0.43, 69.71, 17.53). The core is

stationary and the wall moves to the right.

Bai, Chen and Joseph [1992] did experiments and calculated stability results for
vertical axisymmetric core flow in the case when the buoyant force and pressure force on

the oil are both against gravity (up flow). They observed "bamboo" waves for ther oil

00=0.905g/cm3 and L1,=6.01 poise in water with p,=0.995g/cm3 and 14,=0.01 poise. We

have smulated the same flow, with the same parameters except that our core is infinitely

viscous. The results show that 11,=6.01 is not yet asymptoticaly infinitely viscous, but

neverthel ess the agreements are satisfactory.

The equations that we used for our smulation are follow. In the water, we have

11(ru)+@:0

ror oz |
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The pressure in the water is

P,(r,z) =-Pz+ p(r,z) - p,gz+C, (5.2)
while the pressure in the coreis

P, =-Bz-p9z+C (5.3)

where gisgravity and p, isthe composite density of the mixture

p. =pn° +(1-n*)p,, (5.4)
_R
d SR
an n RZ

We compared wavelengths, wave speeds and wave shapes from our computation
with experiments and the linear theory of stability in Bai, Chen & Joseph [1992]. In our
comparison, the flow parameters are based on the experimental information, such as flow
rates of oil and water, oil volume ratio and holdup ratio. In Bai, Chen and Joseph [1992],
the holdup ratio is a congtant 1.39 and the volume ratio of the oil yields the following

formula:

1
1+072(Q/Q,)

(5.5)
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Theresultsare givenin Table 5.1.

ingut flowrate computations | experiments | 1
Q Qv L(cm)| c(cm/s)| L(cm) | c(cm/s)|L(cm) | c(cm/s)| L(cm) | c(cn/s)
25.38| 13.17] 1.32 | 55.59| 1.21 | 57.7 | 0.82 | 79.84| 0.79 | 52.02
18.19| 13.17| 1.66 | 46.45| 1.31 | 43.28| 0.92 | 80.21| 0.96 | 42.54
11.01] 13.17| 1.70 | 37.30] 1.41 | 35.65| 1.22 | 79.76] 1.22 | 33.51
7.42| 13.17| 1.33 | 32.73| 1.22 | 27.81| 1.65 | 77.00| 1.33 | 29.42
742| 6.46| 1.77 | 20.88| 1.374| 19.16| 1.56 | 58.91| 1.25 | 17.94
11.01| 6.46| 1.66 | 25.45]| 1.79 | 22.90| 1.23 | 58.12| 1.16 | 22.17
14.60| 6.46] 1.39 | 30.02| 1.34 | 28.22| 1.05 | 54.80| 1.02 | 26.68
18.19| 6.46] 1.15 | 34.59] 1.17 | 31.06]| 0.95 | 50.85]| 0.87 | 31.33
21.78| 6.46] 0.96 | 39.17| 0.90 | 36.25| 0.86 | 49.38| 0.79 | 35.71
Table5.1. Comparison of computed and measured values of the wave speed ¢ and
wave length L with theory of stability. Incolumn| and 11, data from Bai, Chen & Joseph

[1992] were computed by linear theory of stability. In column |, the computations were
carried out for the vaues of Q, and Q, prescribed in the experiments. In column Il, the

calculations were done the prescribed Q, and measured value of R; corresponding to the
observed holdup ratio h=1.39.

-
°©

O 00 N & |0 [ JWw N |-

The comparison of computed and measured values of the wave speed and
wavelength of bamboo waves is given in Table 5.1. The computed values are dightly
larger than the measured values, due to the fact that motion in the core is neglected with

better agreement for faster flow.

Computed wave shapes and the observed shapes of bamboo waves are compared in
Figure 5.2-5.3. The pictures were taken in a vertica pipdine with motor ail
(p, =0.905gm/ cm?, i, = 6.01poise) and water (p,, =0.995gm/cm’, u,, = 0.01poise).
Both water and oil flow against gravity. The water flow rate is fixed a 200 cm3/min
while ail flow rate is 429, 825 and 1216 cm3/min respectively.

21



a b

Figure 5.2. Computed waves (a) and bamboo waves (b) when [Qu, Qo] =
[200, 429] cm3/min.
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a b

Figure 5.3. Computed waves (a) and bamboo waves (b) [Qu, Qo] = [200,
825] cm3/min.
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a b

Figure 5.4. Computed waves (a) and bamboo waves (b) [Qu, Qo] = [200,
1216] cmd/min.
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The computed and observed shapes are dike. In fast flow, the velocity in the ail
core is small compared with the velocity in the annulus and the oil core can be considered to
be arigid deformable body. In slower flow (Figure 5.2), the flow inside the core is not so
much smdler than the flow in annulus and the stems of the waves are more readily

stretched by buoyancy. Even in this case the agreements are satisfactory.

6. Dimensionless equations

Analysis of this simulation is most useful when carried out in terms of
dimensionless variables. In the dimensiona equations, we used following parameters:

(RZ’ Rl! IJ2’ p2! O-’ QO’ Qw)

In the dimensionless formulation, the lengths are scaled with the pipe radius R,, pressures

are scaled by p,U?, and velocities are scaled with U. Therefore

u=ua (6.1)
w=UW (6.2)
r.z,f,L=RF,RzRf,RL, (6.3)
2_1L 2 _R22E'2 =

R—Ilfdz—fjo'fdz (6.4)
2_R12_1E'2 =

n __Z_ic[f dz. (6.5)
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N
where R =

We prefer the Reynolds number

Rd;f p.(R, —R)c ’
H;

hence; the relationship between U and ¢ is

(R-R) 1-n’

and adimensionless wall speedis

1

<
U 1-n

c=—-=

At the boundary

a r=f,

=]
I
=
I
o
=l

cl
I
A

w=-1_  ar=L
1-n

The normal stress bal ance equation becomes

Sdzf
=2 - —dzZ
1+Dde2 E;l+DdeD3
Jzd o Hzhp
o J
where S= ==,
pUR,  R?
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(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.14)

(6.15)



and 1=PRI (6.16)

_ L
g, =2 :%Ifzdz:ncnzz m_ (6.17)
0

isdetermined if n isgiven.

The dimensionless water flow rate may be expressed by the holdup ratio h using (4.2)

Ry

5 - Q Ly g = A=) _ i+ )
Q= f 27w, dr _EJ; rcrd . (6.19)

RU RzU (1-mh h

Therefore, only four parameters are required for a complete description of our
problem:

R,n,J andh.

All possible problems of scale up can be solved in this set of parameters.

7. Variation of the flow properties with parameters

Now we shall show how wavelength, pressure gradients, pressure distributions on

the interface and wave shape vary with R, n, h, J.

We have adready established that for ahighly viscous core in which the oil moves as
arigid body, the holdup ratio varies between h=2 for perfect core flow and h=1 for the
“waviest” possible coreflow. Inexperiments, asingle unique h is selected when the flow
inputs are prescribed so that al but one of the family of solutionsfor 1<h<2 are apparently
unstable. The stable flow selectsacertain h=h and a certain wave length L =L(Q,.Q,.h).

This wavelength appears to be associated to a degree with the length of wave that leads to
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the maximum rate of growth of small disturbances perturbing perfect core annular flow (see
Table 6.1). The holdup ratio for the bamboo waves which appear in up flow in the vertical
pipeline studied in the experiments of Bai, Chen and Joseph [1992] was about 1.39
independent of the inputs Q,, and Q, and the same h=1.39 isattained in down flow &t large
Reynolds numbers. These observations have motivated us to compute many results for

h=1.4.

In our computation we choose J=13x104 corresponding to the actual physical

parametersin wavy core flow in water in which 1,=0.01 poise p=1 g/cm3, 0=26 dyne/cm,
in a pipe of a 1cm diameter. A vaue of n=0.8 is farly typical of experiments. The

definition of the dimensionless parameter p* and gradient * are

= HIDDPA0.0) g
and p=PRp

u

We remind the reader that the overall pressure as such as to make p*=0 at the crest of the

wave.

Figure 7.1 shows that the wavelength decreases with R and the pressure gradient

increases linearly with R for fixed values of n, hand J.

Figures 7.2 and 7.3 show that the wave steepens at the front and relaxes at the back
of awave crest a the Reynolds number is increased. The stegpening is produced by the
high pressures at the stagnation point on the wave front (of Figure 7.16). The pressure
force, the area under the pressure curve, changes sign for 10<R <150. The variation of the
pressure force and pressure peak with Ris very nearly linear. We expected inertia to lead
to a variation with R2 but evidently the high pressures that are generated by inertia are

dissipated by deforming the interface, at least when R< 750.
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Figures 7.4, 7.5 and 7.6 show how the wavelength, the pressure gradient, pressure
distribution and wave forms vary with hwhen [n, R, J] = [0.8, 600, 13x104]. The wave
shape is more unsymmetric and the pressure force is greater when h is close to 1. The
wavelength is a decreasing function of h when R=600, but is an increasing function of h

when R=0 for the same parameters (cf. Figure 7.12).

Figures 7.7, 7.8 and 7.9 shown how the wavelength, the pressure gradient and
wave forms vary with n when [R, h, J] = [600, 1.4, 13x104]. The wavelength decreases
and the positive pressure peak and wave front sope dl increase as the gap get smaller.
This suggests that the levitating pressure force will intensify as the gap gets smaller when

the density of the oil and water are different.

Figures 7.10, 7.11 and 7.12 show how the wavelength, the pressure gradient,
pressure distribution and wave forms vary with hwhen [n, R, J] =[0.8, 0, 13x104]. The

wave shape is more unsymmetric and the pressure force is greater when h is close to 1.

The wavelength is an increasing function of h when R=0.

Figures 7.13, 7.14 and 7.15 show how the wavelength, the pressure gradient and
wave forms vary with n where [h, R, J] = [1.4, 0, 13x104]. The pressure force is
negative under al conditions, and it is even more negative when gap is small. The wave
forms nevertheless are steeper on the front than on the rear face, though this asymmetry is

less pronounced than at higher Reynolds numbers.
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Figure 7.1. (a) Dimensionless wavelength L vs Reynolds number R (6.8) for [n,
h, J] =[0.8, 1.4, 13x10%]; (b) Pressure gradient 3* vsR under same conditions.
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Figure 7.2. (a) Pressure distributions on the interface p* (z/ L) for R =0, 10, 150
when [, h, J] = [0.8, 1.4, 13x104]. Note that the pressure force, the area under the
pressure curve, is negative for R =0, 10 and is positive when R =150. (b) Pressure

distributions on the interface for R =250, 450, 750 when [n, h, J] = [0.8, 1.4, 13x104].
All the pressure forces are positive with the greatest pressure a the forward points of
stagnation.
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Figure 7.3. Waveshape (f /L vs z/ L) for three R =250, 450, 750 when [, h,
J) = [0.8, 1.4, 13x104].
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Figure 7.4. (a) Wavelength L vs h for [n, R , J] = [0.8, 600, 13x104]; (b)
Pressure gradient 8* vs h under the same conditions.
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Figure 7.5. Pressure distributions on the interface for different hwhen[n, R, J] =
[0.8, 600, 13x104].
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Figure 7.7. (a) Wavelength L vs n for [R, h, J = [600, 1.4, 13x104]; (b)
Pressure gradient 8* vsn under the same conditions.
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Figure 7.10. (a) Wavelength L vs h for [n, R, J = [0.8, 0, 13x104]; (b)
Pressure gradient 8* vs h under the same conditions.
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Figure 7.11. Pressure distributions on the interface for different h when [n, R, J]
=[0.8, 0, 13x104].
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Figure 7.14. Pressure distributions on the interface for different n when [R , h, J]
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d
Figure 7.16. Secondary motionsfor (a) [R, n, h, J] =[0, 0.8, 1.4, 13x104], (b)

[R, n, h, J =[750, 0.8, 1.4, 13x104]; The pressure at the stagnation point on the steep
dope a the right corresponds to the pressure maximum shown in Figure 7.2(b), (c) the
eddies for Stokes flow as the same condition of (a), (d) the eddies as the same condition of

(b).
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When the flow is driven by pressure, there is friction between the core and wall
which induces a secondary motion most easily seen in a frame moving with the core.
Figure 7.16 shows these secondary motions for R=0 and R=750. The pressure
distributions are shown in Figure 7.2 for R=0 and for R=750. The flow has two parts; a
more or less straight flow from left to right and an eddy. There are two points where the
flow separates or rgjoins the main flow. The high pressure at the front of the crest of the
wave propagating into the water appearsto be associated with a dividing streamline, while
the low pressure at the back of the crest of the wave is related to rgjoining the streamline.
The pressure is high and positive at separation point and low and negative at the
reattachment point. The wave forms are more symmetric when R=0 and the pressure
variations are moderate with positive pressure on the right a separation points and dightly
larger negative pressures at the left, at reattachment points. Overall, the pressure force for
R=0 is negative and the eddy is more or less centrally located. When R=750, the wave
form, the secondary motion and the pressure distribution are profoundly influenced by
inertia. The forward slope of the wave steepens and the rearward slope relaxes, the eddy
moves down and to the forward face; the stagnation pressures there grow hugely while the

reattachment pressures decline. All thisresultsin a strongly positive pressure force.

Figure 7.17 shows that the wavelength increases with surface tension, which

smooths the wave.
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Figure 7.17. Wavdength L vsJ (8 [R, n, h] = [0, 0.8, 1.4]; (b) [R, n, h] =
[600, 0.8, 1.4].

8. Threshold Reynolds numbers and levitation of wavy core flows

The total pressure force on the core is an integral of the pressure on the core
surface, the area under the pressure curves shown, say, in Figures 7.2, 7.5, 7.8, 7.11 and
7.14. Thetotal pressureforceis negative at zero and small Reynolds numbers, and is more
and more positive as the Reynolds number isincreased past athreshold. Figure 8.1 shows
that the wavelength L (h) is an increasing function of h when R =0 and is a decreasing

function of h when R is greater than some threshold.
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Figure8.1. Wavelength L vshfor (a) [n, R, J] =[0.8, 0, 13x104], and for (b)
[n, R, J] =[0.8, 600, 13x104]

The concept of athreshold may be formulated in terms of the pressure force

S

L xneq OS 8.1
{pnerﬁdz (8.1)

21T

Fo=2

where nisthe normal to the core S is the arc length. Figure 8.2 gives the locus of points
on where F, =0, with F, <0 below and F, >0 above. The threshold value is aways
positive though it decreases with h, since F, <0 for Stokes flow. In Figure 8.3 we plotted
F, for h=1.9 where n=0.9. This is a case in which lubrication theory might be used;
however, R. is about 2.25 so that the pressure force is negative for lubrication theory (see

section 9).
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Figure 8.3. Pressure force due to pressure on the interface vs R for [, h, J] =
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Figure 8.4. The slope dL/dh of the wavelength changes with holdup ratio for [n,
R, J=[0.8, 100, 13x104].

We may argue that a positive levitation of alighter or aheavier than water core flow
requires a positive pressure force to push the core away from wall. The pressure forces are
associated with the form of waves that they generate. Waves also develop in Stokes flow,
but the pressure forces associated with these waves are negative like those on the reversed
dipper bearing which pull the dipper to the wall. When the Reynolds number is higher
than the threshold, high positive pressures are generated, especialy at the stagnation point

on the steep part of the wave front (Figure 7.16).

In the axisymmetric problem with matched density considered here, lateral motions
of the core off center are not generated by pressure forces, whether they be positive or
negative, because the same pressure acts al around the core. We may consider what might
happen if the core moved to a dightly eccentric position due to a small difference in
density. The pressure distribution in the narrow part of gap would intensify and the

pressure in the wide part of the gap would relax according to the predicted variation of



pressure with . shown in Figure 7.8. In this case a more positive pressure would be
generated in the narrow gap which would levitate the core. The equilibrium position of the
core would then be determined by a balance between buoyancy and levitation by pressure
forces which, in the case of matched densities, would center the core. In eccentric
horizontal core flows of lighter-than-water oils which are in experiments, the waves in the
small gap near the top wall are shorter and the positive pressures are higher than in the large
gap at the bottom (see Figure 8.5), the speed of the core isincreased, the core moves to the

center and the shape of the wave tends to the axisymmetric ones studied here.

Figure 8.5. The core moves from right to left. Steep crests propagate into the
water. Thelighter core levitated off the top wall by high pressures produced at stagnation
points at the steep slope on thetop. The wave crests are closer together at the top than the

bottom.



9. Lubrication theory

Lubrication theory isvaid when inertia is neglected (Stokes flow), when the wave

amplitude is small and the radial velocity u and ow/oz are negligible. The last conditions
imply that secondary motions are not present or are very weak. The required conditions
can be achieved in the limit in which R and 2-h tend to zero, in Stokes flows which perturb
perfect core flows. Small gaps are one way to achieve small R, but other possibilities are
compatible with lubrication theory. It isof value to examine the lubrication theory in bright
light since it is very popular with applied mathematicians and has played an historicaly

important role in the development of the theory of core flows.

After applying the assumptions of lubrication theory, the governing equations
(3.11) reduceto

190 owD

Ip
0O=B—-——7—"+ _ 9.1
P oz My ord oo 1)
wherew=0 at r=f(z2) andw=-c at r=R,. Hence
1 dP
c+——2(R-f%z
wr)= =P 2 g2y A dZ ( ) InA-H 9.2)
4u dz InDRZD E?%
Ht b
where P, = —Bz+ p(z) + P,(0), (9.3)
and w =B. (9.4)
The pressure difference is opposed by the integral of the shear stress on the wall,
L
aw(r
BLe R :2nR2I/J2$,:R2 dx (9.5)
0

After combining (9.2) and (9.5), we relate the wave speed ¢ to the pressure gradient
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1 dP

C:‘4—IJZE(R2 f2). (9.6)

This equation can be also obtained from (4.5) with u, - «. For a given speed c, the
pressure gradient is determined by the shape of the core.

@ = —ﬁ+@ = ——4’UC
dz dz R-f%2 - (9.7)

Since p isaperiodic function, the driving pressure gradient is given by

P,(0) - P(L) 1.  4uc

9.8
p= LI R - f? (z) (08

The periodic pressure, afunctional of f(2), is
apc (9.9)

P2~ PO = o= [~

In the perfect core annular flow f(z2)=Ry is uniform and (9.8) and (9.9) show that p(2)-

P,(0)=0 and pressure gradient will be constant.

We carried out an analysis of these equation by assuming f(z) and computing p(z).
Of course, the normal stress balance is not satisfied by the assumed shape but we could

iterate all of the assumed shapes to a unique one which satisfies the reduced normal stress

balance (3.12)
_ (o) of"
Rh = F1+f2 @+ 7)77 619
Here
P, =-pz+ P (0) (9.11)
in the core and (9.7) implies that
~ 4uc
P, = ‘I = _‘; = )dz— P,(0) (9.12)

47



in the annulus. The pressure jump across the interface is then

z 4/1
P,-P,=-fz+ ——=2dz+C_, 9.13
R -
where C, =P,(0)-P,(0).
Our iteration starts with any trial wave, say f1(z). Then we compute

P,-P,= _ﬁZ+IR22 ’“’22 dz+C,

f"(2)
and carry out the first iteration using the normal stress balance to compute f,(2):
oAl __c of )"
—PBz+ dz+C = -
B ‘([RZZ _ flz(z) p f7\/1+ f?.z (1+ f2l2)3/2
We then compute
P-P,=-fBz+ IRZZ 2() dz+C,

and so on. Thisiteration converges to the unique solution shown in Figure 9.1 for each of

three very different guesses for f,(2).
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Figure 9.1. Pressure distribution and wave shape from lubrication theory
when [n, h, J]=[0.8, 1.9, 13x104].



The wave is nearly symmetric, but the pressure force is dightly negative. Figure
9.2 compares the pressure distribution from lubrication theory and Stokes flow; in both
cases the area under the pressure curve is negative. To use lubrication theory as a
predictive tool, it is necessary a least to study the stability of the flow with h near 2, in
most cases they will be unstable. Stable flows may be unstable to off-center perturbations
of the type considered by Huang and Joseph [1994] at smdl but finite Reynolds numbers
since the unbalanced core could possibly be sucked to the wall by the negative pressure

force.

1.000 104

Stokes flow

|ubrication theory

-1.000 10*
0

Figure 9.2. Comparison of pressure distributions when [, h, JJ= [0.8, 1.9,
13x104].

10. Conclusions

Core annular flows of liquids with the same density and a high viscosity ratio were
computed in adirect numerical simulation. It was assumed that flow is axisymmetric and
the core is solid with adveceted periodic standing interfaciad waves fixed on the moving

core. These assumptions reduce the number of parameters defining the problem to four :
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Reynolds number, radius ratio, holdup ratio and surface tension parameter. In dimensional
terms, for given materia parameters, we get solutions when the volume flow rates of oil,
water and the holdup ratio are prescribed. Only the flow rates are given in experiments and
the holdup is then determined by stability, so we are computing a family of the solutions

most of which are unstable.

The numerical solutions have the properties predicted by Joseph in Feng et al. ; the
high pressures on the forward facing dope of the wave, where the water enters into a
converging gap, steepen the wave and reduction of the pressure on the lee side smooths the
wave. Thisleadsto unsymmetric waves unlike those which levitate adipper bearing. The
problem of levitation does not arise in the density matched core, but the pressure
distributions which actually develop in this case seem to be such as to center a dightly
displaced core only when the Reynolds number is greater than a threshold value which
depends on the parameters but in all cases is strictly positive. Levitation of core flow by
inertiaisanew and potentially interesting idea which has been given an explicit predictable

form by the analysis of this paper.
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Appendix — Computational Solution of the Core Annular Flow

The axisymmetric core annular flow with the deformable oil core is governed by
Eqg. (3.11) subject to the norma stress condition specified in Eqg. (3.12) and the force

balance on the ail core described in Eq. (3.14). For each given value of the parameter triplet

(c, R, h), computational solution of these equation is carried out to determine the flow of
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water, the shape and location of the free surface of the ail core, and the wavelength. This
calculation involves an iterative solution between the calculation of the flow filed of water
and the calculation of the free surface shape. In the following discussion, important details

of these two steps and the overall solution algorithm are described.

Computation of the Flow Field of Water

The velocity and the pressure field involve solution of momentum and continuity
equation (Eq. (3.11)) for the specified wave speed ¢ and the available free surface shape

and wavelength. Relevant details of the discretization method and the solution technique

and the procedure for the determination of the pressure gradient 3 are now described.

Discretization Method and Solution Technique — The control volume based
computational method of Patankar (1980) is used for the solution of the Navier-Stokes
equations governing the flow of water. In this method, the domain of interest is divided
into a set of control volumes. Vaues of scaar unknowns including pressure are stored a
the main grid points. A staggered grid is used for storing the velocity components to avoid
the occurrence of checker boarding of the pressure field. Thus, a norma velocity
component is stored on each control volume face. This gives rise to momentum control
volumesin the z- or r-directions to be displaced in the z- or r-directions respectively. The
discretization equations for z- or r-direction velocity components are constructed by
integrating the z- and r-direction momentum equations over the control volumes staggered
in z- and r-directions respectively. The continuity equation is discretized over the main
control volume. The convective-diffusive fluxes over the control volume faces ae
computed using the Power-law scheme (Patankar, 1980). The resulting discretization
method expresses perfect conservation over individua control volumes and the entire

domain.
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Two important issues need to be addressed in the application of this discretization
method for predicting the flow field of water — the representation of the free surface and the
treatment of the periodicity conditions. In the present study, an axisymmetric cylindrical
grid is used to discretize the entire domain (0 < r < R,, 0 < x < L). The rigid core is
represented by imposing a zero velocity on the control volumes that lie in the oil core
through the use of a high viscosity. This procedure approximates the wavy interface using
astepped grid. A grid independence study was carried out to determine the size of the grid
necessary for accurate prediction of the water flow and the interface shape using increase
number of grid points until the accuracy of the pressure distribution no significant change.
The prediction of the core annular flow is carried assuming that the deformation of the
wavy interface is spatially periodic. This enables prediction of flow over segment of the
pipe corresponding to one wavelength. Thus, al variablesin Eq. (3.11) are periodic a z =
0 and L. During discretization, the control volume faces at z = 0 and L are treated as
topologically coincident to incorporate this periodicity condition (Patankar, Liu, and

Sparrow, 1977).

The discretized momentum and continuity equations are solved using the SSIMPLER
algorithm (Patankar, 1980) that addresses the velocity-pressure coupling effectively. The
algorithm involves sequential solution of the pressure, momentum, and pressure-correction
equations. The line-by-line method is used for the solution of the discretization equations
for each variable. The circular Tri-Diagonal-Matrix-Algorithm (TDMA) is used for solution

of the discretization equations along linesin the periodic direction.

Determination of the Pressure Gradient 3 — Since we have chosen to
specify the wave speed c, the corresponding pressure gradient 3 in Eq. (3.11) has to be
calculated. The condition of force balance on the oil core expressed in EqQ. (3.14) provides
anatural method for its determination. Thus, in each iteration of the SIMPLER procedure
for calculating the water flow field, the value of B is updated according to Eq. (3.14) based
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on the available pressure P, and the shear stress T on the free surface of the oil core. At

convergence of theinternal iterations for the calculation of the water flow field, the value of

[ isdetermined for the specified wave speed ¢ and the available free surface shape.
Determination of the Free Surface Shape

Computational prediction of the free surface shape involves discretization and
solution of the normal stress equation with an iterative adjustment of the surface shape for

obtaining the prescribed average core radius R, and the holdup ratio h. Important details of

these steps are now described.

Discretization and Solution of the Normal Stress Condition — The shape
of the interface is governed by the normal stress and pressure jump condition reproduced

below.

s
d’f 7 Ogz0 +ED+DﬂD2
dz? f UH' Caz

é’z(cp - p(2)) =0 (A.1)

The solution of thisequation is sought for the available pressure variation p(z) on the free
surface that is determined from calculation of the water flow field. The unknown shape f(2)
is represented by discrete vaues of f a the same locations in z-direction used in the
calculation of the flow field of water. The equations for these values of f(z) are constructed
by integrating the above equation over the main control volumesin the z-direction. The last
term in the equation is treated explicitly as a source term and is assumed to be constant over

the control volume. The resulting discretization equation has the following form.
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af =bf +cf_ +347 (A.2)

Ddf*D2
whee el o=l a-pege 000,
Z,,-7% zz fx
* P

s=ofFangcn)

and 87 = (3., -7.)/2.

Similar to the flow field calculation, the periodicity of f; values is accounted for in the
above equations by recognizing that in the equation for fy, thef,; isreplace by f; while in
the equations for f,, thef,_; isreplaced by fy. Thesingle* in Eq. (A.2) represent available
values that are updated within the inner iteration for determining the free surface shape

while the **s on p, denote that these values are kept constant during the free surface

calculation and updated only in the outer iteration.

Adjustment for Fixed R; and h — The unknown pressure jump Cp and the
wavelength L provide the two degrees of freedom necessary to determine the free surface
shape consistent with the specified vaues of the average plug radius R, and the holdup
ratio h. After each iteration during calculation of thef; values, the value of C,; is increased

or decreased according to whether the available f; values imply a value of R, larger or

smaller than that desired. Similarly, the wavelength L is increased or decreased if the

current value of the holdup ratio hiislarger or smaller than its prescribed vaue. The amount

of adjustment in the values of Cp and L is determined using the secant method. It uses the
predictions from the last two iterations to determine the sensitivity of R, and h to changes

in Cp and L. The sengitivity coefficients are then used for inferring the changesin Cp and L

to be made in the next iteration. At convergence, this procedure provides a free surface

shape and location having the desred R; and h for the surface pressure variation

determined from the flow field calculation.



Overall Solution Algorithm

The overall solution method involves an outer iteration between the flow fidd

caculation for water and the determination of the free surface and is outlined below.

1. Prescribe the values of wave speed c, average core radius R,, and the holdup ratio h.

2. Assume a free surface shape. Calculate the velocity and pressure fields in the water
region for the specified wave speed c. During each iteration of the flow field caculation,
the pressure gradient B is adjusted to satisfy the force balance on the oil plug.

3. The shape of the free surface is determined by solving the equation describing the
normal stress condition for the surface pressure determined from step 2. The wavelength

and the pressure jump are adjusted in each iteration so that at convergence the free surface

shape is determined for the prescribed average core radius R and holdup ratio h.

4. The new free surface is now used in determining the flow field in step 2. Thus, steps 2

and 3 are repeated till convergence to obtain a self-consistent flow field of water and free

surface shape of the oil core for the prescribed values of the parameter triplet (c, R, h).

The overall solution method correctly predicted the perfect core flow. Further, it
predicted the same free surface shape in the flow field of water irrespective of the initia
guess surface. This constituted a rigorous test for the correctness of the computational
technique. Consequently, the above method was applied for computing the details of the

wavy core flow for arange of the parameter triplet (c, R,, h).
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