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We study the stability of stratified gas-liquid flow in a horizontal rectangular channel using viscous potential
flow. The analysis leads to an explicit dispersion relation in which the effects of surface tension and viscosity on
the normal stress are not neglected but the effect of shear stresses are neglected. Formulas for the growth rates,
wave speeds and neutral stability curve are given in general and applied to experiments in air-water flows. The
effects of surface tension are always important and actually determine the stability limits for the cases in which
the volume fraction of gas is not too small. The stability criterion for viscous potential flow is expressed by
a critical value of the relative velocity. The maximum critical value is when the viscosity ratio is equal to the
density ratio; surprisingly the neutral curve for this viscous fluid is the same as the neutral curve for inviscid
fluids. The maximum critical value of the velocity of all viscous fluids is given by inviscid fluids. For air at 20◦C
and liquids with density ρ = 1 g/cm3 the liquid viscosity for the critical conditions is 15 cp; the critical velocity
for liquids with viscosities larger than 15 cp are only slightly smaller but the critical velocity for liquids with
viscosities smaller than 15 cp, like water, can be much lower. The viscosity of the liquid has a strong affect on
the growth rate. The viscous potential flow theory fits the experimental data for air and water well when the
gas fraction is greater than about 70%.

1. Introduction
It is well known that the Navier-Stokes equations are satisfied by potential flow; the viscous term is identically

zero when the vorticity is zero but the viscous stresses are not zero (Joseph & Liao 1994). It is not possible to
satisfy the no-slip condition at a solid boundary or the continuity of the tangential component of velocity and
shear stress at a fluid-fluid boundary when the velocity is given by a potential. The viscous stresses enter into the
viscous potential flow analysis of free surface problems through the normal stress balance (2.9) at the interface.
Viscous potential flow analysis gives good approximations to fully viscous flows in cases where the shears from
the gas flow are negligible; the Rayleigh-Plesset bubble is a potential flow which satisfies the Navier-Stokes
equations and all the interface conditions. Joseph, Belanger & Beavers (1999) constructed a viscous potential
flow analysis of the Rayleigh-Taylor instability which can scarcely be distinguished from the exact fully viscous
analysis.

The success of viscous potential flow in the analysis of Rayleigh-Taylor instability has motivated the analysis
of Kelvin-Helmholtz (KH) theory given here. It is well known that the instability that arises when surface
tension and viscosity are neglected is catastrophic; short waves with wave lengths λ = 2π/k amplify without
control like ekt. The instability grows exponentially as the wavenumber k → ∞ no matter how small time
t. This kind of catastrophic instability is called Hadamard instability (Joseph & Saut 1990). In the case of
inviscid fluids this instability is regularized by surface tension which stabilizes the short waves; surface tension
is very important. The question is whether viscosity, without surface tension, would regularize the Hadamard
instability of a vortex sheet on an unbounded domain. Unlike surface tension, viscosity will not cause the small
waves to decay; they still grow but their growth is limited and the growth rate Re [σ(k)] does not go to infinity
with k as in Hadamard instability. The positive growth rate is given by

Re [σ+] =
ρaµ2

l + ρlµ
2
a

2 (µl + µa)3
(Ua − Ul)

2
k → ∞

where [ρ, µ, U ] = [density, viscosity, velocity].
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The present paper gives a detailed report of the viscous potential flow analysis of KH instability in a rect-
angular duct together with a comparison of theory and experiment in the case of air-water flow. As we have
already mentioned potential flow requires that we neglect the no-slip condition at solid surfaces. In the rectan-
gular channel the top and bottom walls are perpendicular to gravity; the bottom wall is under the liquid and
parallel to the undisturbed uniform stream; the top wall contacts gas only. The side walls are totally inactive;
there is no motion perpendicular to the side walls unless it is created initially and since the two fluids slip at the
walls all the conditions required in the analysis of three dimensions can be satisfied by flow in two dimensions
which is analyzed here.

The viscosity in viscous potential flow enters into the normal stress balance rather than tangential stress
balance. Air over liquid induces small viscous stresses that may be confined to boundary layer and may be less
and less important as the viscosity of the liquid increases. At a flat, free surface z = 0 with velocity components
(u, w) corresponding to (x, z) the shear stress is given by

µ

(
∂u

∂z
+

∂w

∂x

)

and the normal stress is

2µ
∂w

∂z
.

The normal stress is an extensional rather than a shear stress and it is activated by waves on the liquid; the
waves are induced more by pressure than by shear. For this reason, we could argue that the neglect of shear
could be justified in wave motions in which the viscous resistance to wave motion is not negligible; this is the
situation which may be well approximated by viscous potential flow.

2. Formulation of the problem
A channel of rectangular cross section with height H and width W and of length L is set horizontally, in

which a gas layer is over a liquid layer (see Fig.1): the two-layer Newtonian incompressible fluids are immiscible.
The undisturbed interface is taken at z = 0 with the z-axis of Cartesian coordinates (x, y, z). We denote velocity
by (u, w), pressure p, density ρ, viscosity µ and acceleration due to gravity (0,−g); the y component is ignored
herein.

In the undisturbed state, the gas (air) with a uniform flow (Ua, 0) is in 0 < z < ha, and the liquid with a
uniform flow (Ul, 0) is in −hl < z < 0 (H = hl + ha); the pressure has an equilibrium distribution due to the
gravity. We consider Kelvin-Helmholtz instability of small disturbances against the undisturbed state.

The prescription of a discontinuity in velocity across z = 0 is not compatible with the no-slip condition of
Navier-Stokes viscous fluid mechanics. The discontinuous prescription of data in the study of Kelvin-Helmholtz
instability is a viscous potential flow solution of the Navier-Stokes in which no-slip conditions at walls and no
slip and continuity of shear stress across the gas liquid interface are neglected. Usually the analysis of Kelvin-
Helmholtz instability is done using potential flow for an inviscid fluid but this procedure leaves out certain
effects of viscosity which can be included with complete rigor. This kind of analysis using viscous potential flow
is carried out here. An exact study of, say air over water requires the inclusion of all of the effects of viscosity,
and even the prescription of a basic flow is much more complicated. Problems of superposed viscous fluids have
been considered, for example, in the monograph on two-fluid mechanics by Joseph & Renardy (1991) and more
recently in the paper and references therein of Charru & Hinch (2000).

2.1. Viscous potential flow analysis
We already noted that if the fluids are allowed to slip at the walls, then the two-dimensional solution will satisfy
the three-dimensional equations and we may reduce the analysis to flow between parallel plates. We found
by computing that three-dimensional are more stable than two-dimensional disturbances. We now consider
two-dimensional disturbances, for which the velocity potential φ ≡ φ(x, z, t) gives (u, w) = ∇φ.

The potential is subject to the equation of continuity:

∂u

∂x
+

∂w

∂z
= 0 → ∂2φ

∂x2
+

∂2φ

∂z2
= 0; (2.1)
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Figure 1. Kelvin Helmholtz instability due to a discontinuity of velocity of air above liquid in a rectangular channel.
The no-slip condition is not enforced in viscous potential flow so that the two dimensional solution satisfies the side-wall
boundary conditions.

thus the potentials for the respective fluids are given by

∂2φa

∂x2
+

∂2φa

∂z2
= 0 in 0 < z < ha, (2.2)

∂2φl

∂x2
+

∂2φl

∂z2
= 0 in − hl < z < 0. (2.3)

Boundary conditions at the interface (at z = h, where h ≡ h(x, t) is the interface elevation) are given by

∂h

∂t
+ Ua

∂h

∂x
= wa,

∂h

∂t
+ Ul

∂h

∂x
= wl, (2.4a, b)

and the conditions on the walls are given by

wa = 0 at z = ha, (2.5)

wl = 0 at z = −hl. (2.6)

The potential φa that satisfies (2.2) and (2.5) for the air and the potential φl that satisfies (2.3) and (2.6)
for the liquid are given, respectively, by

φa = Aa cosh [k (z − ha)] exp (σt + ikx) + c.c., (2.7a)

φl = Al cosh [k (z + hl)] exp (σt + ikx) + c.c., (2.7b)
and the interface elevation may be given by

h = A0 exp (σt + ikx) + c.c., (2.7c)

where Aa, Al and A0 denote the complex amplitude, and c.c. stands for the complex conjugate of the preceding
expression; σ is the complex growth rate and k > 0 denotes the wavenumber; i =

√−1. From the kinematic
conditions (2.4a, b), we have the following equations for the complex amplitudes:

(σ + ikUa)A0 = −kAa sinh (kha) , (2.8a)

(σ + ikUl)A0 = kAl sinh (khl) . (2.8b)

The other boundary condition is the normal stress balance (with the normal viscous stress) at the interface:

−pa + 2µa
∂wa

∂z
+ ρagh −

(
−pl + 2µl

∂wl

∂z
+ ρlgh

)
= −γ

∂2h

∂x2
, (2.9)

in which γ denotes the surface tension. Noting that the pressure is solely subject to the Laplace equation derived
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from the equation of motion for small disturbances, the pressure terms in (2.9) may be eliminated using the
equations of motion in which the viscous terms vanish identically when u = ∇φ; µ∇2u = µ∇ (∇2φ

) ≡ 0. Thus
pa may be written, from the equation of motion without the viscous term, as

ρa

(
∂ua

∂t
+ Ua

∂ua

∂x

)
= −∂pa

∂x
, (2.10a)

and with the aid of the equation of continuity, we have the expression of pa

ρa

(
∂2wa

∂t∂z
+ Ua

∂2wa

∂x∂z

)
=

∂2pa

∂x2
; (2.10b)

the pressure pl may be written as

ρl

(
∂2wl

∂t∂z
+ Ul

∂2wl

∂x∂z

)
=

∂2pl

∂x2
. (2.11)

Thus the normal stress balance is now written as

−ρa

(
∂2wa

∂t∂z
+ Ua

∂2wa

∂x∂z

)
+2µa

∂3wa

∂x2∂z
+ ρl

(
∂2wl

∂t∂z
+ Ul

∂2wl

∂x∂z

)
− 2µl

∂3wl

∂x2∂z
− (ρl − ρa) g

∂2h

∂x2
= −γ

∂4h

∂x4
, (2.12)

hence we have the equation of σ, using (2.7) and (2.8):[
ρa (σ + ikUa)2 + 2µak2 (σ + ikUa)

]
coth (kha) +

[
ρl (σ + ikUl)

2 + 2µlk
2 (σ + ikUl)

]
coth (khl)

+ (ρl − ρa) gk + γk3 = 0. (2.13)

2.2. Dispersion relation
From (2.13) the dispersion relation is given as

Aσ2 + 2Bσ + C = 0, (2.14)

where the coefficients A, B and C are defined as

A = ρl coth (khl) + ρa coth (kha) , (2.15a)

B = ik [ρlUl coth (khl) + ρaUa coth (kha)] + k2 [µl coth (khl) + µa coth (kha)] = BR + iBI , (2.15b)

C = (ρl − ρa) gk − k2
[
ρlU

2
l coth (khl) + ρaU2

a coth (kha)
]
+ γk3

+2ik3 [µlUl coth (khl) + µaUa coth (kha)] = CR + iCI . (2.15c)

The solution σ may be expressed as

σ = −B

A
±

√
B2

A2
− C

A
→ σR + iσI = −BR + iBI

A
±

√
D

A
(2.16)

where D is given by

D = DR + iDI = (BR + iBI)
2 − A (CR + iCI) , (2.17a)

DR = ρlρa (Ua − Ul)
2 k2 coth (khl) coth (kha) + k4 [µl coth (khl) + µa coth (kha)]2

− [ρl coth (khl) + ρa coth (kha)]
[
(ρl − ρa) gk + γk3

]
, (2.17b)

DI = 2k3 (ρaµl − ρlµa) (Ua − Ul) coth (khl) coth (kha) . (2.17c)

When ρaµl = ρlµa for which DI = 0, and if DR ≥ 0, we have

σR =
−BR ±√

DR

A
, σI = −BI

A
. (2.18a, b)

This is a typical case where the real and imaginary parts of σ can be expressed most clearly.
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If the top and bottom are far away hl → ∞, ha → ∞, then (2.14) gives rise to

σ = − ik (ρaUa + ρlUl) + k2 (µa + µl)
(ρa + ρl)

±
[

ρaρlk
2 (Ua − Ul)

2

(ρa + ρl)
2 − (ρl − ρa) gk + γk3

(ρa + ρl)
+

k4 (µa + µl)
2

(ρa + ρl)
2 +2ik3 (ρaµl − ρlµa) (Ua − Ul)

(ρa + ρl)
2

]1/2

,

which is reduced, for a particular case that ρaµl = ρlµa, to

σR = −k2 (µa + µl)
(ρa + ρl)

±
[

ρaρlk
2 (Ua − Ul)

2

(ρa + ρl)
2 − (ρl − ρa) gk + γk3

(ρa + ρl)
+

k4 (µa + µl)
2

(ρa + ρl)
2

]1/2

, (2.19a)

σI = −k (ρaUa + ρlUl)
(ρa + ρl)

. (2.19b)

Here, it is easy to find that the equation σR = 0 gives a relation being irrespective of viscosity. In other words,
the relation holds even for inviscid fluids; this is much suggestive for the problem to be considered herein.

2.3. Growth rates and wave speeds
In terms of σ = σR + iσI , (2.14) is also written, for the real and imaginary parts, as

A
(
σ2

R − σ2
I

)
+ 2 (BRσR − BIσI) + CR = 0, σI = − 2BIσR + CI

2 (AσR + BR)
. (2.20a, b)

Eliminating σI from the above, we have a quartic equation for σR:

a4σ
4
R + a3σ

3
R + a2σ

2
R + a1σR + a0 = 0, (2.21)

where the coefficients are given as

a4 = A3, a3 = 4A2BR, a2 = 5AB2
R + AB2

I + A2CR, (2.22a, b, c)

a1 = 2B3
R + 2BRB2

I + 2ABRCR, a0 = −1
4
AC2

I + BRBICI + B2
RCR. (2.22d, e)

The quartic equation (2.21) can be solved analytically. Neutral states for which σR = 0 are described in terms
of the solution to the equation a0 = 0. The peak value (the maximum growth rate) σm and the corresponding
wavenumber km are obtained by solving (2.21). It is usually true, but unproven, that λm = 2π/km will be the
length of unstable waves observed in experiments.

The complex values of σ are frequently expressed in terms of a complex frequency ω with

σR + iσI = σ = −iω = −iωR + ωI . (2.23)

Hence

σR = ωI ; σI = −ωR. (2.24)

The wave speed for the mode with wavenumber k is

C̃R = ωR/k = −σI/k. (2.25)

The set of wavenumbers for which unstable flows are stable is also of interest. The wavelengths corresponding
to these wavenumbers will not appear in the spectrum. Cut-off wavenumbers kC separate the unstable and
stable parts of the spectrum.

2.4. Neutral curves
Neutral curves define values of the parameters for which σR(k) = 0. These curves may be obtained by putting
a0 = 0

−ρlµ
2
a coth (khl) coth2 (kha) + ρaµ2

l coth2 (khl) coth (kha)
[µl coth (khl) + µa coth (kha)]2

kV 2 + (ρl − ρa) g + γk2 = 0, (2.26)
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where the relative velocity V is defined by V ≡ Ua − Ul. This equation may be solved for V 2 where

V 2(k) =
[µl coth (khl) + µa coth (kha)]2

ρlµ2
a coth (khl) coth2 (kha) + ρaµ2

l coth2 (khl) coth (kha)
1
k

[
(ρl − ρa) g + γk2

]
. (2.27)

The lowest point on the neutral curve V 2(k) is

V 2
c =

min

k ≥ 0
V 2(k) ≡ V 2(kc) (2.28)

where λc = 2π/kc is the wave length that makes V 2 minimum. The flow is unstable when

V 2 = (−V )2 > V 2
c . (2.29)

This criterion is symmetric with respect to V and −V , depending only on the absolute value of the difference.
This feature stems from Galilean invariance; the flow seen by the observer moving with gas is the same as the
one seen by an observer moving with the liquid.

By recalling the results obtained by computing, it is interesting to note here that the three dimensional
disturbances in the sense of the viscous potential flow lead to the relative velocity V3D, which can be expressed
in terms of (2.27) as

V 2
3D ≡ (k · Ua − k · U l)

2

k2
x

=
k2

k2
x

V 2(k), (2.30)

only if we regard the 3D-wavenumber vector k = (kx, ky) as

k =
√

k2
x + k2

y, ky = 0, ± π

W
, ±2π

W
, · · · . (2.31a, b)

It is evident in (2.30) that V 2
3D is larger than V 2(k) if ky �= 0; the most dangerous three-dimensional disturbance

is two-dimensional with ky = 0.

3. K-H Instability of Inviscid Fluid
For inviscid fluids (µa = µl = 0), we have BR = 0 and CI = 0; thus a3 = a1 = a0 = 0 and (2.21) reduces to

a4σ
4
R + a2σ

2
R = 0, (3.1)

thus we have

a4σ
2
R + a2 = 0, (3.2)

and

σI = −BI

A
= −k [ρlUl coth (khl) + ρaUa coth (kha)]

ρl coth (khl) + ρa coth (kha)
. (3.3)

It should be noted here that the neutral curve was given by the equation a0 = 0 in the viscous potential analysis
((2.26) and (2.27)), whereas the neutral curve in this K-H instability is given by the equation a2 = 0. It is also
noted that σI is the same as (2.18b), though σR may be different, in general, from (2.18a). But the equation
σR = 0 in (3.2) is the same that σR = 0 in (2.18a); for the case of ρaµl = ρlµa.

From (3.2) with a2 < 0, the growth rate σR is expressed as

σR = ±
√

ρlρak2 coth (khl) coth (kha)V 2 − [ρl coth (khl) + ρa coth (kha)] [(ρl − ρa) gk + γk3]
ρl coth (khl) + ρa coth (kha)

. (3.4)

At the neutral state σR = 0 for which a2 = 0, we have

ρlρak coth (khl) coth (kha)
ρl coth (khl) + ρa coth (kha)

V 2 − [
(ρl − ρa) g + γk2

]
= 0. (3.5)

Instability arises if

V 2 >

[
tanh (khl)

ρl
+

tanh (kha)
ρa

]
1
k

[
(ρl − ρa) g + γk2

] ≡ V 2
i (k). (3.6)
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In the stable case for which a2 > 0, the wave velocity C̃R is given by

−kC̃R = σI = −BI

A
±

√
B2

I

A2
+

CR

A
. (3.7)

4. Dimensionless form of the dispersion equation
The dimensionless variables are designated with a roof and are listed below

k̂ = kH,

ĥa =
ha

H
≡ α,

ĥl =
hl

H
= 1 − ĥa,

ρ̂ =
ρa

ρl
,

µ̂ =
µa

µl
,

γ̂ =
γ

ρlgH2
,

Ûa =
Ua

Q
,

Ûl =
Ul

Q
,

V̂ = Ûa − Ûl

σ̂ =
σH

Q
,

θ =
µl

ρlHQ
,

where

Q =
[
(1 − ρ̂)gH

ρ̂

]1/2

.

The dimensionless form of (2.14) is given by[
coth(k̂ĥl) + ρ̂ coth(k̂ĥa)

]
σ̂2

+ 2σ̂
{

ik̂
[
Ûl coth(k̂ĥl) + ρ̂Ûa coth(k̂ĥa)

]
+ θk̂2

[
coth(k̂ĥl) + µ̂ coth(k̂ĥa)

]}
− k̂2

[
Û2

l coth(k̂ĥl) + ρ̂Û2
a coth(k̂ĥa)

]
+ 2ik̂3θ

[
Ûl coth(k̂ĥl) + µ̂Ûa coth(k̂ĥa)

]

+ k̂

[
1 +

γ̂k̂2

(1 − ρ̂)

]
= 0. (4.1)

The expression (2.27) for the neutral curve σ̂R(k̂) = 0 is written in dimensionless variables as

V̂ 2 =

[
tanh(k̂ĥa) + µ̂ tanh(k̂ĥl)

]2

tanh(k̂ĥa) + (µ̂2/ρ̂) tanh(k̂ĥl)

1

k̂

[
1 +

γ̂k̂2

(1 − ρ̂)

]
. (4.2)

Notice that the growth rate parameter θ = µl/(ρlHQ), which depends linearly on the kinematic viscosity
νl = µl/ρl of the liquid does not appear in (4.2). Note also that the value of (1 − ρ̂) is close to unity, since
ρ̂ = 0.0012 for air-water.

The neutral curves for an inviscid fluid (3.5) can be obtained by putting µ̂ = ρ̂ or µl/ρl = µa/ρa. This gives
from (4.2) the following expression

V̂ 2 =
[
tanh(k̂ĥa) + ρ̂ tanh(k̂ĥl)

] 1

k̂

[
1 +

γ̂k̂2

1 − ρ̂

]
(4.3)

which is the dimensionless form of (3.6). Though this reduction is immediate it is surprising.
Evaluating (4.2) for µ̂ = 0, we get

V̂ 2 = tanh(k̂ĥa)
1
k̂

[
1 +

γ̂k̂2

1 − ρ̂

]
. (4.4)
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Evaluating (4.2) for µ̂ = ∞ we get

V̂ 2 = ρ̂ tanh(k̂hl)
1

k̂

[
1 +

γ̂k̂2

1 − ρ̂

]
. (4.5)

It is easy to verify that V̂ 2 is maximum at µ̂ = ρ̂, for inviscid fluids. Viscosity in viscous potential flow is
destabilizing; however, large viscosities are less destabilizing than small viscosities.

Since ρ̂ = 0.0012, it is very small, the variation in the stability is large as µ̂ varies between ρ̂ and ∞, and is
very small as µ̂ varies between ρ̂ and zero. The value µ̂ = 0.018 > ρ̂ = 0.0012, and is in the interval in which
V̂ 2 is rapidly varying (see figure 4).

In the literature on gas liquid flows a long wave approximation is often made to obtain stability limits. For
long waves k̂ → 0 and tanh(k̂ĥ) → k̂ĥ and (4.2) reduces to

V̂ 2 =
(ĥa + µ̂ĥl)2

ĥa + (µ̂2/ρ̂)ĥl

[
1 +

γ̂k̂2

1 − ρ̂

]
. (4.6)

The effect of surface tension disappears in this limit but the effects of viscosity are important. To get the long
wave limit in the inviscid case put µ̂ = ρ̂.

The regularization of short waves by surface tension is an important physical effect. For short waves, k̂ → ∞,
tanh(k̂ĥ) → 1 and

V̂ 2 =
(µ̂ + 1)2

1 + µ̂2/ρ̂

1
k̂

[
1 +

γ̂k̂2

(1 − ρ̂)

]
. (4.7)

To get the short wave limit in the inviscid case put µ̂ = ρ̂.
The effects of surface tension may be computed from (4.6) and (4.7). The stability limit for long waves k̂ → 0

is independent of γ̂. For short waves (4.6) has a minimum at k̂ =
√

(1 − ρ̂)/γ̂ with a value there given by

V̂ 2 =
2(µ̂ + 1)2

1 + µ̂2/ρ̂

√
γ̂

1 − ρ̂
. (4.8)

Equation (4.8) shows that short waves are stabilized by increasing γ̂. For small γ̂ instability is for long waves.

5. The effect of liquid viscosity and surface tension
on growth rates and neutral curves

For air and water at 20◦C

ρa = 0.0012 g/cm3
, ρl = 1 g/cm3

, ρ̂ = ρa/ρl = 0.0012,

µa = 0.00018 poise, µl = 0.01 poise, µ̂ = µa/µl = 0.018.

The surface tension of air and pure water is γ = 72.8 dynes/cm. Usually the water is slightly contaminated and
γ = 60 dynes/cm is more probable for the water-air tension in experiments. For all kinds of organic liquids a
number like γ = 30 dynes/cm is close to the mark.

Neutral curves for µ̂ = 0.018 (air/water) and µ̂ = ρ̂ = 0.0012 (inviscid flow) and µ̂ = 3.6×10−6 (µl = 50 poise)
with γ = 60 dynes/cm are picked up here; the former two are shown in figures 2 and 3. The liquid viscosities
µl = ρlµa/ρa corresponding to these three cases are µl = 0.01 poise, 0.15 poise and 50 poise. The neutral
curves for µ̂ ≥ ρ̂ are nearly identical. The neutral curves for µ̂ = 0.018 (air/water) are to be compared with
experiments. We have identified the minimum values of (4.2) over k̂ ≥ 0 in the air/water case, and in tables 1, 2
and 3 the critical velocity Vc = V (kc), the critical wave number kc (and wave length λc = 2π/kc) and associated
wave speeds C̃Rc = C̃R(kc) are listed. In the tables, Vs and C̃Rs denote the values taken at k = 10−3 cm−1,
which may be representative of values in the limit of long wave, k → 0. The variation of the critical velocity
with the viscosity ratio µ̂ = µa/µl for a representative gas fraction α = 0.5 is shown in figure 4. The vertical line
µ̂ = ρ̂ identifies the stability limit for inviscid fluids. Points to the left of this line have high liquid viscosities
µl > 0.15 poise, and for points to the right, µl < 0.15 poise.
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Figure 2. Neutral curves for air and water (µ̂ = 0.018, see table 1 and figure 4); α = ĥa is the gas fraction. As in the
usual manner, the disturbances will grow above the neutral, but decay below the neutral. For α larger than about 0.2,
there arises the critical velocity Vc below which all the disturbances will decay.

Table 1. Typical values of the neutral curves in figure 2 for air-water with ρa =0.0012 g/cm3, µa =0.00018 poise,
ρl =1.0 g/cm3, µl =0.01 poise, g =980.0 cm/sec2, γ =60.0 dynes/cm, H =2.54 cm. (This table was based upon the
results of computation that the neutral curves with α =0.1 and 0.2 in figure 2 increase monotonically from the values
Vs cm/sec at k =10−3 cm−1; the curve with α =0.3 in figure 2 increases from the value Vs cm/sec at k =10−3 cm−1,
takes a maximum V =651.3 cm/sec at k =0.692 cm−1, and then takes a minimum Vc =572.5 cm/sec (the critical) at
kc =3.893 cm−1; for the other values of α, the corresponding curves give the critical Vc at kc.)

ĥa Vs cm/sec C̃Rs cm/sec kc cm−1 λc cm Vc cm/sec C̃Rc cm/sec

0.01 76.04 198.6 0.649 9.676 72.92 155.9
0.1 285.6 43.22
0.2 478.5 20.82
0.3 643.4 12.50 0.692 9.076 651.3 9.432

3.893 1.614 572.5 5.510
0.4 788.8 8.150 4.020 1.563 573.9 5.484
0.5 919.4 5.481 4.052 1.551 574.1 5.481
0.6 1039 3.676 4.052 1.551 574.1 5.479
0.7 1149 2.373 4.052 1.551 574.3 5.459
0.8 1252 1.389 4.117 1.526 575.7 5.319
0.9 1348 0.619 4.354 1.443 585.3 4.415
0.99 1430 0.056 4.150 1.514 628.0 0.585

In all cases the critical velocity is influenced by surface tension; the critical velocity is given by long waves
only when α is small (small air gaps). For larger values of α (say α > 0.2), the most dangerous neutrally unstable
wave is identified by a sharp minimum determined by surface tension, which is identified in table 1 (c.f. equation
(4.8)).
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Figure 3. Neutral curves for inviscid fluids (µ̂ = ρ̂ = 0.0012) for different gas fractions α = ĥa. This neutral curve arose
for the special case µ̂ = ρ̂ = 0.0012 = µa/µl with µa = 0.00018 poise; hence µl = 0.15 poise. Surprisingly it is identical
to the case µa = µl = 0 (see table 2 and figure 4). The neutral curves for viscous fluids with µl > 15 cp are essentially
the same as these (c.f. table 2 and 3).

Table 2. Typical values of the neutral curves in figure 3 for air-water (as inviscid fluids) with ρa =0.0012 g/cm3,
µa =0.0 poise, ρl =1.0 g/cm3, µl =0.0 poise, g =980.0 cm/sec2, γ =60.0 dynes/cm, H =2.54 cm.

ĥa Vs cm/sec C̃Rs cm/sec kc cm−1 λc cm Vc cm/sec C̃Rc cm/sec

0.01 152.2 16.17 0.629 9.990 150.6 9.725
0.1 457.6 4.890
0.2 645.3 3.082 2.990 2.101 619.8 0.818
0.3 789.5 2.204 3.924 1.601 634.4 0.764
0.4 911.2 1.637 4.020 1.563 635.7 0.762
0.5 1018 1.221 4.052 1.551 635.9 0.762
0.6 1115 0.892 4.052 1.551 635.9 0.762
0.7 1205 0.619 4.052 1.551 635.9 0.759
0.8 1288 0.386 4.052 1.551 635.9 0.738
0.9 1366 0.182 4.052 1.551 635.8 0.590
0.99 1432 0.017 4.052 1.551 635.6 0.078
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Figure 4. Critical velocity V vs. µ̂ for α = 0.5. The critical velocity is the minimum value on the neutral curve. The
vertical line is µ̂ = ρ̂ = 0.0012 and the horizontal line at V = 635.9 cm/sec is the critical value for inviscid fluids. The
vertical dashed line at µ̂ = 0.018 is for air and water. Typical values for a high viscosity liquid are given in table 3 below.

Table 3. Typical values of the neutral curves for air-high viscosity liquid with ρa =0.0012 g/cm3, µa =0.00018 poise,
ρl =1.0 g/cm3, µl =50.0 poise, g =980.0 cm/sec2, γ =60.0 dynes/cm, H =2.54 cm; thus µ̂ = 3.6×10−6 . This corresponds

to a high viscosity case in figure 4. (The curves with ĥa = 0.5 through 0.8 take almost the same minimum value at k = kc,

though the values at k = 10−3 cm−1 change as Vs = 1018-1287 cm/sec and C̃Rs =0.0011-0.0003 cm/sec.) (see table 4 for
the maximum growth rate.)

ĥa Vs cm/sec C̃Rs cm/sec kc cm−1 λc cm Vc cm/sec C̃Rc cm/sec

0.01 144.0 0.1104
0.1 455.2 0.0100
0.2 643.7 0.0045 2.990 2.101 619.4 0.0012
0.3 788.4 0.0026 3.924 1.601 634.1 0.0011
0.4 910.4 0.0017 4.020 1.563 635.4 0.0011
0.5 1018 0.0011 4.052 1.551 635.5 0.0011
0.6 1115 0.0007 4.052 1.551 635.5 0.0011
0.7 1204 0.0005 4.052 1.551 635.5 0.0011
0.8 1287 0.0003 4.052 1.551 635.5 0.0011
0.9 1366 0.0001 4.052 1.551 635.5 0.0009
0.99 1432 1.1×10−5 4.052 1.551 635.5 0.0001
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Figure 5. The real part of growth rate σR sec−1 vs. k cm−1 for µ̂ = 0.018 (water, µl = 1 cp), V = 1500 cm/sec. The
graphs are top to bottom α = 0.2, 0.5, 0.8. Along the line of V =1500 cm/sec in figure 2, the curves of σR sec−1 are
drawn here for respective values of α. Instability may arise for all the disturbances of wavenumbers below the cut-off
wavenumber kC . The maximum growth rate σRm and the corresponding wavenumber km = 2π/λm for V = 1500 and

900 cm/sec are listed with wave velocity C̃Rm in table 4 below.

The growth rates depend strongly on the liquid viscosity unlike the neutral curves. The most dangerous linear
wave is the one whose growth rate σR is maximum at k = km,

σRm = σR(km) =
max

k ≥ 0
σR(k) (5.1)

with an associated wavelength λm = 2π/km and wave speed C̃Rm = C̃R(km). Typical growth rate curves are
shown in figure 5. Maximum growth rate parameters for µ̂ = 0.018 (figure 5), µ̂ = ρ̂ = 0.0012, µl = 15 cp and
µ̂ = 3.6 × 10−6(µl = 50 p) are listed for V = 1500 and 900 cm/sec in table 4.
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Table 4. Wave number, wave length and wave speed for the maximum growth rate (5.1).

µ̂ V cm/sec ĥa km cm−1 λm cm σRm sec−1 C̃Rm cm/sec

0.018 1500 0.01 29.90 0.2101 1448 3.044
0.1-0.9 29.66 0.2118 872.5 2.049
0.99 32.13 0.1955 706.2 1.454

900 0.01 15.40 0.408 615.3 3.046
0.1 10.00 0.628 167.7 1.183
0.2 10.24 0.613 164.2 1.175
0.3-0.8 10.24 0.613 164.2 1.174
0.9 10.33 0.609 163.3 1.164
0.99 11.36 0.553 84.66 0.367

0.0012 1500 0.01 26.95 0.233 1340 3.022
0.1-0.9 27.17 0.231 768 1.798
0.99 30.14 0.209 584.7 1.159

900 0.01 14.45 0.435 585.2 3.064
0.1 9.456 0.665 155.1 1.097
0.2-0.7 9.685 0.649 151.0 1.079
0.8 9.763 0.644 151.0 1.079
0.9 9.841 0.638 149.9 1.064
0.99 10.66 0.589 69.59 0.285

3.6×10−6 1500 0.01 1.821 3.450 295.1 24.55
0.1 0.916 6.861 60.04 4.495
0.2 0.845 7.432 34.43 2.049
0.3 3.087 2.035 21.96 0.086
0.4-0.6 4.4-4.5 1.42-1.40 21.89 0.045-0.04
0.7 4.679 1.343 21.85 0.040
0.8 5.360 1.172 21.61 0.032
0.9 7.743 0.812 20.21 0.017
0.99 20.54 0.306 6.801 0.003

900 0.01 1.323 4.750 145.9 19.64
0.1 0.676 9.297 24.80 3.017
0.2 0.581 10.82 10.48 1.199
0.3 0.984 6.385 4.294 0.135
0.4-0.6 4.02-4.08 1.56-1.51 4.86 0.010
0.7 4.150 1.514 4.840 0.009
0.8 4.460 1.409 4.735 0.008
0.9 5.534 1.135 4.100 0.005
0.99 7.994 0.786 0.741 0.001
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6. Comparison of theory and experiments in rectangular ducts

Kordyban & Ranov (1970) and Wallis & Dobson
(1973) are the only authors to report the results of
experiments in rectangular ducts. Many other exper-
iments have been carried out in round pipes; the re-
sults of these experiments are not perfectly matched
to the analysis done here or elsewhere, and will be
discussed later.

All experimenters are motivated to understand the
transition from stratified flow with a flat smooth in-
terface to slug flow. They note that in many cases the
first transition, which is studied here, is from smooth
stratified flow to small amplitude sinusoidal waves
called capillary waves by Wallis & Dobson (1973).
The data given by these authors is framed as a tran-
sition to slug flow, though the criteria given are for
the loss of stability of smooth stratified flow. The the-
oretical predictions are for the loss of stability, which
may or may not be to slug flow.

Finally we call the reader’s attention to the fact
that all the linear theories that neglect viscosity over-
predict the observed stability limit. Wallis & Dobson
(1973) note that “...as a result of the present experi-
ments it is our view that the various small wave the-
ories are all inappropriate for describing ‘slugging.’
Slugging is the result of the rapid development of a
large wave which rides over the underlying liquid and
can eventually fill the channel to form a slug...” Wallis
& Dobson (1973) also note that “It was found pos-
sible to produce slugs at air fluxes less than those
predicted” by their empirical formula, j∗ < 0.5α3/2.
All this suggests that we may be looking at something
akin to subcritical bifurcation with multiple solutions
and hysteresis.

Turning next to linearized theory we note that
Wallis & Dobson (1973) do an inviscid analysis stat-
ing that “...if waves are ‘long’ (khL � 1, khG � 1)
and surface tension can be neglected, the predicted
instability condition is

(vG − vL)2 > (ρL − ρG) g

(
hG

ρG
+

hL

ρL

)
. (6.1)

If ρG � ρL and vL � vG they may be simplified
further to give

ρGv2
G > g(ρL − ρG)hG (6.2)

which is the same as

j∗G > α3/2 (6.3)

...” Here α = hG/H and

j∗G =
vGα

√
ρG√

gH(ρL − ρG)
> α3/2.

Their criterion (6.1) is identical to ours (4.6) for the
long wave inviscid case µ̂ = ρ̂ and k̂ → 0. They com-
pare their criterion (6.3) with transition observations
that they call “slugging” and note that empirically
the stability limit is well described by

j∗G > 0.5α3/2,

rather than (6.3).
In figures 6 we plotted j∗ vs. α giving j∗G = α3/2

and 0.5α3/2; we give the results from our viscous po-
tential flow theory for the inviscid case in table 2 and
the air water case in table 1 and we show the experi-
mental results presented by Wallis & Dobson (1973)
and Kordyban & Ranov (1970). Our theory fits the
data better than Wallis & Dobson (1973) j∗ = α3/2 ;
it still overpredicts the data for small α but fits the
large α data quite well; we have good agreement when
the water layer is small.

The predicted wave length and wave speed in ta-
ble 1 can be compared with experiments in princi-
ple, but in practice this comparison is obscured by
the focus on the formation of slugs. For example,
Wallis & Dobson (1973) remarks that “at a certain
minimum air velocity, ripples appeared at the air en-
try end, and slowly spread down the channel. These
waves were about 2-in. (0.05 m) long and were made
up of long wave crests, with three or four capillary
waves riding on the troughs. The long waves trav-
eled faster than the capillary waves.” The speed of
these long waves were reported by Wallis & Dobson
(1973) to be less than 0.3 m/sec in all cases. Theo-
retical results from table 1 show that the wave length
λc increases with the water depth (as in the experi-
ment) and the wave speed varies from 0.1 m/sec to
0.04 m/sec. The predicted spacing of the waves on av-
erage is about 1.5 cm/sec. The predicted wave length
and wave speed from viscous potential flow are ap-
parently in good agreement with the waves Wallis &
Dobson (1973) call capillary waves.

Observations similar to those of Wallis & Dobson
(1973) just cited were made by Andritsos, Williams
& Hanratty (1989) who note that for high viscosity
liquid (80 cp) a region of regular 2D waves barely ex-
ists. “The first disturbances observed with increasing
gas velocity are small-amplitude, small-wavelength,
rather regular 2D waves. With a slight increase in
gas velocity, these give way to a few large-amplitude
waves with steep fronts and smooth troughs, and with
spacing that can vary from a few centimeters to a me-
ter.”
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Figure 6. j∗ vs. α is for marginal stability of air and water in a frame in which the water velocity is zero. The heavy
line through � = air-water, our result with γ = 60 dynes/cm from table 1; � = inviscid fluid from table 2. j∗ = α3/2 is

the long wave criterion for an inviscid fluid put forward by Wallis & Dobson (1973). j∗ = 0.5α3/2 was proposed by them
as best fit to the experiments f1.1 through f1.9 described in their paper. The shaded region is from experiments by
Kordyban & Ranov (1970). Comparison of experimental data in rectangular conduits j ∗ vs.1 − h/H = α and in round
pipes j ∗ vs.1 − h/D = α (Lin & Hanratty 1986, figure 4).

7. Critical viscosity and density ratios

The most interesting aspect of our potential flow
analysis is the surprising importance of the viscosity
ratio µ̂ = µa/µl and density ratio ρ̂ = ρa/ρl; when
µ̂ = ρ̂ the equation (4.2) for marginal stability is iden-
tical to the equation for the neutral stability of an in-
viscid fluid even though µ̂ = ρ̂ in no way implies that
the fluids are inviscid. Moreover, the critical velocity
is a maximum at µ̂ = ρ̂; hence the critical velocity
is smaller for all viscous fluids such that µ̂ �= ρ̂ and
is smaller than the critical velocity for inviscid fluids.
All this may be understood by inspection of figure 4,
which shows that µ̂ = ρ̂ is a distinguished value that
can be said to divide high viscosity liquids with µ̂ < ρ̂
from low viscosity liquids. As a practical matter the
stability limit of high viscosity liquids can hardly be
distinguished from each other while the critical ve-
locity decreases sharply for low viscosity fluids. This
result may be framed in terms of the kinematic vis-
cosity ν = µ/ρ with high viscosities νl > νa. The
condition νa = νl can be written as

µl = µa
ρl

ρa
. (7.1)

For air and water

µl = 0.15 poise. (7.2)

Hence µl > 0.15 poise is a high viscosity liquid and
µl < 0.15 poise is a low viscosity liquid provided that
ρl ≈ 1 g/cm3.

Other authors have noted strange relations be-
tween viscous and inviscid fluids. Barnea & Taitel
(1993) note that “the neutral stability lines obtained
from the viscous Kelvin-Helmholtz analysis and the
inviscid analysis are quite different for the case of low
liquid viscosities, whereas they are quite similar for
high viscosity, contrary to what one would expect.”
Their analysis starts from a two-fluid model and it
leads to different dispersion relations; they do not ob-
tain the critical condition µ̂ = ρ̂. Earlier, Andritsos et
al (1989) noted a “surprising result that the inviscid
theory becomes more accurate as the liquid viscosity
increases.”

Andritsos & Hanratty (1987) have presented flow
regime maps for pipe flows in 2.52 cm and 9.53 cm
pipe for fluids of different viscosity ranging from 1 cp
to 80 cp. These figures present flow boundaries; the
boundaries of interest to us are those that separate
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Figure 7. (After Andritsos & Hanratty 1987.) These lines represent the borders between smooth stratified flow and
disturbed flow observed in experiment. The water-air data is well below the cluster of high viscosity data that is bunched
together.

“smooth” flow from disturbed flow. Liquid holdups
(essentially α) are not specified in these experiments.
We extracted the smooth flow boundaries from fig-
ures in Andritsos & Hanratty (1987) and collected
them in our figure 7. It appears from this figure that
the boundaries of smooth flow for all the liquids with
µl > 15 cp are close together, but the boundary for
water with µl = 1 cp is much lower. The velocities
shown in these figures are superficial velocities; the
average velocities which could be compared with crit-
ical velocities in tables 1, 2 and 3 are larger than the
superficial velocities and are significantly larger than
those in the tables.

Even earlier Francis (1951) observed that even
though the inviscid prediction of the KH instabil-
ity overestimates the onset for air over water, this
prediction is in good agreement with experiments in
rectangular ducts when air is above water.

8. Further comparisons with previous
results

As a practical matter interest in the pipelining
of gas-liquid flow is in round pipes. All experiments
other than those of Kordyban & Ranov (1970) and
Wallis & Dobson (1973) reviewed in section 6 have

been done in round pipes. To our knowledge there
is no other theoretical study in which the stability
of stratified flow in a round pipe is studied with-
out approximations. Theoretical studies of stability of
stratified flow have been presented by Wallis (1969);
Wu et al. (1987), Barnea (1991), Crowley, Wallis
& Barry (1992), Kordyban & Ranov (1970), Wallis
& Dobson (1973), Taitel & Dukler (1976), Mishima
& Ishii (1980), Lin & Hanratty (1986), Andritsos &
Hanratty (1987), Andritsos et al. (1989), Barnea &
Taitel (1993). Viscosity is neglected by Kordyban &
Ranov (1970), Wallis & Dobson (1973), Taitel & Duk-
ler (1976) and Mishima & Ishii (1980). Surface ten-
sion is neglected by Wallis (1969), Kordyban & Ra-
nov (1970), Wallis & Dobson (1973), Taitel & Dukler
(1976), Mishima & Ishii (1980) and Lin & Hanratty
(1986). Wallis (1969), Lin & Hanratty (1986), Wu
et al. (1987), Barnea (1991), Crowley et al. (1992)
and Barnea & Taitel (1993) use one or another of the
forms of two fluids equations. In these equations av-
eraged variables are introduced, the actual geometry
is represented only so far as its area and round, ellip-
tical or rectangular pipes with equal areas are equiv-
alent. The effects of viscosity in these averaged mod-
els are introduced through empirical wall and inter-
facial fraction correlations. All these authors neglect



Viscous potential flow analysis of KH instability in a channel 17

the normal component of viscous stress (extensional
stresses are neglected). The approach of Andritsos &
Hanratty (1987), Andritsos et al. (1989) is different;
all the main physical effects are represented in anal-
ysis of the plane flow which is later applied to flow in
round pipes. The disturbance equations for the liq-
uid are solved exactly except that the shear of basic
liquid flow is neglected using a plug flow assumption.
The effects of the gas on the liquid are represented
through empirical correlations and further approxi-
mations are required for round pipes.

The viscous analysis of Andritsos & Hanratty
(1987) for stability of stratified flow indicates that
the critical velocity increases with increasing viscos-
ity unlike the present analysis which predicts no such
increase when νl > νa. The discrepancy may be due
to the approximations made by Andritsos & Hanratty
(1987).

Experiments on the stability of stratified flow have
been reported by Kordyban & Ranov (1970), Wal-
lis & Dobson (1973), Taitel & Dukler (1976), Lin &
Hanratty (1986), Crowley et al. (1992) and Andrit-
sos & Hanratty (1987). The experiments of Lin &
Hanratty (1986) and Andritsos & Hanratty (1987)
do not have data giving the height of the liquid and
gas layers. Kordyban & Ranov (1970) and Wallis &
Dobson (1973) did experiments in rectangular ducts,
the geometry analyzed in this paper, the other ex-
periments were done in round pipes. Authors Lin &
Hanratty (1986), Crowley et al. (1992) and Andrit-
sos & Hanratty (1987) are the only experimenters to
report results for fluids with different viscosities.

There is difficulty in comparing the results of ex-
periments in round pipes and rectangular channels.
The common practice for round pipes is to express
results in terms of h/D where D is the pipe diame-
ter and h is the height above the bottom of the pipe;
h/H is the liquid fraction in rectangular pipes and
α = 1 − h/H is the gas fraction, but h/D is not the
liquid fraction in round pipes and 1− h/D is not the
gas fraction in round pipes. Lin & Hanratty (1986)
presented experimental results for thin liquid films
in round pipes giving (their figure 4) h/Dvs.j∗; we
converted their results to j ∗ vs.1 − h/D and com-
pared them in figure 6 with the results for rectangular
pipes. The experimental results for round pipes are
much lower than those for rectangular pipes. All this
points to the necessity of taking care when compar-
ing results between round and rectangular pipes and
interpreting results of analysis for one experiment to
the other.

In general we do not expect viscous potential flow
to work well in two-liquid problems; we get good re-

sults only when one of the fluids is a gas so that
retarding effects of the second liquid can be ne-
glected. However, the case of Holmboe waves studied
by Pouliquen, Chomaz & Huerre (1994) may have a
bearing on the two-liquid case. These waves appear
only near our critical condition of equal kinematic
viscosity. They account for viscosity by replacing the
vortex sheet with layers of constant vorticity across
which no slip conditions and the continuity of shear
stress is enforced for the basic flow but the distur-
bance is inviscid. Of course, they could not entertain
the notion that an inviscid analysis is just what would
emerge from the condition of equal kinematic viscos-
ity for viscous potential flow.

9. Nonlinear effects
None of the theories agree with experiments. At-

tempts to represent the effects of viscosity are only
partial, as in our theory of viscous potential flow,
or they require empirical data on wall and interfa-
cial friction, which are not known exactly and may
be adjusted to fit the data. Some choices for empir-
ical inputs underpredict and others overpredict the
experimental data.

It is widely acknowledged that nonlinear effects at
play in the transition from stratified to slug flow are
not well understood. The well-known criterion of Tai-
tel & Dukler (1976), based on a heuristic adjustment
of the linear inviscid long wave theory for nonlinear
effects, is possibly the most accurate predictor of ex-
periments. Their criterion replaces j∗ = α3/2 with
j∗ = α5/2. We can obtain the same heuristic adjust-
ment for nonlinear effects on viscous potential flow by
multiplying the critical value of velocity in table 1 by
α. Plots of j∗ = α3/2, j∗ = α5/2 and the heuristic ad-
justment of viscous potential flow, together with the
experimental values of Wallis & Dobson (1973) and
Kordyban & Ranov (1970) are shown in figure 8. The
good agreement in evidence there lacks a convincing
foundation.

10. Conclusion
We studied Kelvin-Helmholtz stability of super-

posed uniform streams in rectangular ducts using vis-
cous potential flow. Viscous potential flows satisfy the
Navier-Stokes equations. Because the no-slip condi-
tion can not be satisfied the effects of shear stresses
are neglected, but the effects of extensional stresses
at the interface on the normal stresses are fully repre-
sented. The solution presented is complete and math-
ematically rigorous. The effects of shear stresses are
neglected at the outset; after that no empirical inputs
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Figure 8. Nonlinear effects. The Taitel-Dukler 1976 correction (multiply by α).

are introduced. The main result of the analysis is the
emergence of a critical value of velocity, discussed in
the paper abstract and in section 7. The main con-
sequence of this result is that for air-liquid systems
the critical values of velocity for liquids with viscosi-
ties greater than 15 cp are essentially independent of
viscosity and the same as for an inviscid fluid, but
for liquids with viscosities less than 15 cp the stabil-
ity limits are much lower. The criterion for stability
of stratified flow given by viscous potential flow is
in good agreement with experiments when the liquid
layer is thin, but it overpredicts the data when the
liquid layer is thick. Though viscous potential flow
neglects the effects of shear the qualitative prediction
of the peculiar effects of liquid viscosity has been ob-

tained by other authors using other methods of anal-
ysis in which shear is not neglected.

A rather accurate predictor of experimental results
is given by applying the nonlinear correction factor to
account for the effect of finite amplitude wave on the
results of viscous potential flow.
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