Rod Climbing of TBP-Based PBMA and PSBMA Solutions (PBMA-350, PBMA-750, PSBMA-350, PSBMA-700)

Daniel D. Joseph
University of Minnesota, August 2005


Four different TBP-based non-Newtonian solutions were tested in the rod climbing experiments. These solutions were produced by mixing TBP (Tributyl Phosphate) and PBMA (Polybutyl Methacrylate) or PSBMA (Polystyrene-butyl Methacrylate) with specified concentrations by weight. The properties of liquids are shown in table-1.

Solution

Density

Surface Tension

Shear Viscosity at 1.74 shear

Weight Concentration

Note

 

(g/cm3)

(dyn/cm)

(cp)

%

 

PBMA/TBP-350

0.971

27.6

350

2.56

Mixed 5-12-05

PSBMA/TBP-350

0.974

27.8

350

2.60

Mixed 5-12-05

PBMA/TBP-750

0.992

25.6

750

3.20

Mixed 7-21-04

PSBMA/TBP-700

0.974

26.2

700

3.10

Mixed 5-11-05

Table 1. Properties of experimental liquids

 

   
(a)                                                        (e)

   
(b)                                                        (f)

   
(c)                                                        (g)

   
(d)                                                        (h)

Fig. 1 Change in free surface of PBMA/TBP-750 near a steel rod (diameter  cm) as rotational speed is increased; room temperature ºC.

                            (a)           (b)           (c)           (d)           (e)           (f)           (g)          (h) 
Speed (rev/s)       0.0          4.2           6.7         10.0        13.3         20.0        30.0        41.7 

 

   
(a)                                                        (e)

   
(b)                                                        (f)

   
(c)                                                        (g)

   
(d)                                                        (h)

Fig. 2 Change in free surface of PSBMA/TBP-700 near a steel rod (diameter  cm) as rotational speed is increased; room temperature ºC.

                            (a)           (b)           (c)           (d)           (e)           (f)           (g)          (h) 
Speed (rev/s)       0.0          4.2           6.7         10.0        13.3         20.0        30.0        41.7 

 

   
(a)                                                        (e)

   
(b)                                                        (f)

   
(c)                                                        (g)

   
(d)                                                        (h)

Fig. 3 Change in free surface of PBMA/TBP-350 near a steel rod (diameter cm) as rotational speed is increased; room temperature ºC.

                            (a)           (b)           (c)           (d)           (e)           (f)           (g)          (h) 
Speed (rev/s)       0.0          8.3          13.3         20.0        25.0        36.7        50.0        65.8 

 

   
(a)                                                        (c)

   
(b)                                                        (d)

Fig. 4 Change in free surface of PSBMA/TBP-350 near a steel rod (diameter  cm) as rotational speed is increased; room temperature ºC.

                                    (a)                   (b)                  (c)                   (d)   
Speed (rev/s)               0.0                  8.3                 16.7                65.8  

 

A summary of the climbing constants for the TBP-based liquids is shown in table 2.

Solution

h0(a)

h2(a) for Wà0

Climbing constant

-

cm

cm.sec2

g/cm

PBMA/TBP-350

0.13850

0.00070

2.23

PBMA/TBP-750

0.11491

0.00234

7.30

PSBMA/TBP-350

0.11202

0.00042

1.35

PSBMA/TBP-700

0.16727

0.00189

5.89

Table 2. Measured values of climbing constants (the radius of rod a = 0.12 cm)


Last Modified:
AEM home / People / Faculty / Daniel D. Joseph / Exceptional properties of semi-dilute solutions of nanoparticle laden polymers in water
Questions or problems, please contact Bobby at yhaoping@aem.umn.edu.