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ABSTRACT

Cavitation is investigated over a range of regimes
from inception to developed cavitation for various flow
configurations. Cavitation inception is investigated for
two configurations; shear layer of a backward–facing step
and vortex pair interaction. Flow over a backward–facing
step is simulated at Reτ = 800 and inception is observed
in streamwise vortices in the shear layer. Interaction of
the counter–rotating vortex pair is studied at Re = 2×
105 and the mechanism for inception is explained as a
three–phase process. The developed cavitation regimes
are investigated for two configurations; a sharp wedge and
a circular cylinder. Flow over a sharp wedge is studied in
the experimental configuration of Ganesh et al. (2016).
Physical mechanisms of cavity transition observed in the
experiments; i.e. re–entrant jet and bubbly shock waves,
are both captured in the LES. In addition, very good
comparison to the experiments is observed on several
fronts; vapor volume fractions, shock speed and shedding
frequency. Cavitating flow over a circular cylinder is
investigated for cyclic, transitional and non–cavitating
regimes. Dynamic mode decomposition (DMD) is used
to investigate wake characteristics at Re = 200. At Re =
3900, vorticity production is analysed and is found to
decrease with cavitation number reduction.

INTRODUCTION

Cavitation in marine applications (e.g. marine propellers,
hydrofoils) exists over different regimes – ranging from
inception to massive regions of vapor. Cavitation over
marine propellers is shown as an illustration in figure 1.

Cavitation inception is commonly observed in the
turbulent shear layers, tip vortices and wakes of marine
geometries (e.g. hydrofoils, propeller blades etc). Tip
vortex cavitation has been widely studied (Arndt, 2002)
and it mainly occurs when the base (static) pressure
of the tip vortex core drops below the vapor pressure.
Inception in regions where multiple vortices interact
(wake of hydrofoils, propellers blades etc.) is a relatively

less explored area. Interestingly, in such flows, the
vortices whose strength is much less than the neighboring
vortices are often observed to incept first. For example,
in turbulent shear layers, depending upon the flow
conditions cavitation inception can often be observed in
quasi streamwise vortices at higher ambient pressures
as compared to stronger spanwise vortices (O’Hern,
1990). To study inception in such complicated flows,
it is essential to understand interaction between unequal
strength vortices through canonical problems. One such
experimental study was done by Chang et al. (2012) for
flow over a pair of hydrofoils. Vortex pair of different
strengths was generated downstream of the hydrofoils
by varying the angle of attack and weaker vortex was
observed to incept first for certain cases. Core stretching
is one of the two factors causing a drop in its pressure and
the other factor was hypothesized to be generation of axial
jet in the core.

(a) (b)

Figure 1: Propeller cavitation. (a) Cavitation inception
due to interacting tip leakage and trailing edge vortices
(Chesnakas and Jessup, 2003). (b) Massive sheet/cloud
cavitation (Mitchell et al., 2013).

With the reduction in cavitation number (σ = 2(p∞−
pv)/ρU∞), vapor regions grow in size forming large
sheet like structures on the suction side of the body.
The transition of this sheet cavity into to the cloud
is referred as “sheet to cloud”. The sheet to cloud
transition depends on the geometry of the body, cavitation
number, confinement etc. Re–entrant jet and bubbly
shock waves have been shown as instability mechanisms
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for the transition (Callenaere et al., 2001; Ganesh et al.,
2016). For bluff–bodies, vapor is formed inside the low
pressure region of a vortex core and is shed along with
it. As σ is reduced further, the cavities grow in size and
the passage of a bubbly shock dominates the shedding
mechanism. This behavior has been observed in flows
over different configurations like: wedge (Ganesh et al.,
2016), hydrofoil (Bhatt et al., 2018), cylinder (Brandao
et al., 2020) and triangular prism (Ganesh et al., 2018).

The present study is aimed at investigating cavitation
over a range of regimes. Cavitation inception is studied
for flow over a backward-facing step and for unequal
strength vortex pair interactions. Developed cavitation
is studied using a sharp wedge and a circular cylinder
configurations. The paper is organized as follows. First,
we describe the governing equations, physical model and
numerical method. This is followed by a discussion of the
problem setup for each configuration. The results for each
problem are then discussed. The paper concludes with a
brief summary.

CAVITATION INCEPTION

Numerical method
Incompressible Navier–Stokes equations are solved

for the problems concerning inception - LES of shear
layer and DNS of a vortex pair interaction. The unfiltered
equations are given by

∂ui

∂xi
= 0 (1)

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+ν

∂ 2ui

∂x2 . (2)

These equations are solved using a finite-volume
algorithm developed by Mahesh et al. (2004) which
ensures robustness without any added numerical
dissipation. This algorithm has been validated for a
variety of problems. It is based on a predictor–corrector
approach. The Cartesian velocities (ui) and pressure (p)
are stored at cell centers and the face normal velocities
are stored at the center of the faces. The velocities
are first predicted at cell centers and then interpolated
to obtain the face–normal velocities. The face–normal
velocity is projected to discretely satisfy the continuity
equation. This yields a pressure Poisson equation which
is solved using a multi–grid approach and then the
pressure gradients ( ∂ p

∂n ) are obtained using a least–squares
formulation. Finally, these pressure gradients are used
to correct the velocities at cell centers. Implicit time
advancement is performed using the Crank–Nicolson
scheme. For the study of inception in a backstep
configuration, we treat vapor as a passive scalar. The

main idea is that since inception is a stochastic process
that generates small amounts of vapor for short periods
of time, the effects of these small regions of vapor on
the flow dynamics and liquid density are negligible. The
algorithm is based on the work of Muppidi and Mahesh
(2008) for passive scalar in jets. The transport equation
for the passive scalar is given in equation 3. Here, the
passive scalar is taken as the concentration of vapor,
C = ρYv, and the cavitation source terms are obtained
from Saito et al. (2007). The volume fraction of vapor
can be obtained by dividing its concentration by the vapor
density, αv = ρYv/ρv. The Schmidt number for vapor in
water is Sc = 500 and ρ is the mixture density, which is
assumed constant. Here, it is important to mention that
the Dynamic Smagorinsky model (DSM) is employed for
the momentum and continuity equation only and DNS
is done for the transport equation of a passive scalar.
Addition of subgrid models for the passive scalar is under
development.

∂C
∂xi

+
∂Cu j

∂x j
− ν

Sc
∂ 2C
∂x2

j
= Se−Sc (3)

a) Inception in shear layer
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Figure 2: Turbulent boundary layer colored by axial
velocity (a). Mean values of axial velocity (b) and values
of Reynolds stresses (c) at Reτ = 800. Simulation results
(lines) compared against data from Schlatter and Örlü
(2010) (symbols). Black, red, blue and orange lines and
symbols in (c) represent, respectively,

√
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Figure 3: Instantaneous flow field at center plane (a) and
at positions x = 1S (b) and x = 3S (c) downstream of the
step. S represents the step height.
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Figure 4: Comparison between numerical (lines) and
experimental (symbols) velocity profiles at x = 1S (left)
and x = 3S (right) downstream of the step. S represents
the step height.

Inception in shear layers is studied using the backstep
configuration with step height of S = 10mm of Agarwal
et al. (2018) at Reτ = 800. A turbulent boundary
layer is generated on a separated plane through the
recycle–rescale method of Lund et al. (1998), later
extended to unstructured grids by Kumar and Mahesh
(2016), and used as an inflow boundary condition for
the backstep. The work of Agarwal et al. (2018) studies
different values of σ , but does not observe inception for
Reτ = 800. Thus, in the present work we have reduced σ

to values below those employed by Agarwal et al. (2018),
until

cavitating structures became considerable and hence
σ = 0.25. The computational mesh has approximately
127 million cells and the proximity of the corner is refined
with ∆y+ = 0.38 and ∆x+ = 20. Grid size is uniform in
spanwise direction with ∆z+ = 10. The grid was chosen
based on the value of uτ obtained in the boundary layer
simulation. No grid refinement study was necessary since
the following results obtained with this mesh already
provided good comparison.

Results

In order to obtain the same condition as the experiments
in the shear layer, we must first obtain the correct
behavior of the incoming turbulent boundary–layer. This
turbulent boundary–layer is generated on a separated
flat plane following the procedure in Lund et al. (1998)
and validated against the data of Schlatter and Örlü
(2010). Figure 2 shows the boundary–layer colored by
axial velocity and its validation at Reτ = 800. This
boundary–layer is then used as an inflow for the backstep.
Figure 3 shows the instantaneous flow field in the center
plane and at different positions downstream of the step.
The flow separating at the step corner and forming a
recirculating region can be observed. Velocity profiles at
some locations downstream of the step are displayed in
figure 4 and show very good agreement with experimental
data of Agarwal et al. (2018).

Figure 5(a) shows isosurfaces of Q–criterion. Observe
the presence of an elongated vortical structure in the
axial direction, indicated by the arrow, at a random
location in the shear layer. From figure 5(b), it becomes
evident that the instantaneous small values of pressure are
scattered throughout vortical structures in the shear layer,
as expected. More specifically, it can be observed that
the lowest value belongs to the elongated axial vortex
indicated by the arrow. Figure 5(c) confirms that this
structure cavitates first. This agrees well with the behavior
observed experimentally (O’Hern, 1990; Agarwal et al.,
2018).
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Figure 5: Q–criterion colored by axial velocity (a) and
pressure (b). Isosurface of αv = 0.1 showing inception
in streamwise vortical structure (c). The arrow indicates
the cavitating streamwise vortex. Flow is in the positive
x–axis.
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Figure 6: Mean (a) and fluctuation (b) values of
vapor mass fraction for Reτ = 800. The x–axis is
non–dimensionalized with the reattachment length.

Figure 6 shows mean and fluctuation values of vapor

mass fraction. It can be observed that the peak values
are very small, indicating inception and that the changes
in the liquid density are negligible. Although inception
is not observed experimentally at Reτ = 800, the work
of Agarwal et al. (2018) reports that at different higher
Reτ and at different σ , the location where inception is
most likely to occur is at 0.45 < x/Lr < 0.75. In our
simulation, figure 6 reveals that cavitation is active at
around 0.4 < x/Lr < 0.8 along the shear layer, showing
good agreement with the experiments.

b) Vortex pair interaction

Figure 7: Setup for the vortex pair interaction.

The setup consists of two unequal strength
counter–rotating Lamb–Oseen vortex columns of
circulation strengths Γp and Γs and radii rp and rs
respectively with axis along z (where p - Primary, s -
Secondary). Periodic boundary conditions are used along
z axis and Neumann boundary conditions are used in x
and y directions which account for Γnet 6= 0 in the entire
domain. The domain size used is −8b≤ x,y≤ 6b, where
b is the unperturbed distance between the vortex centers.
The domain length along z and the initial perturbations
on each column in the x− y plane are obtained from the
linear theory discussed in Leweke et al. (2016). The mesh
is finer in the inner region (−3.5b ≤ x,y ≤ 1.5b) and is
stretched in the outer region. 32 cells are used to discretize
the smaller core radius (grid convergence established).
The time step convergence has been established and
the non-dimensional time step used for the current
simulation is ∆t = 2.5e−4 (non-dimensionalization based
on the reference distance (b) and the reference velocity
(Γ/2πb)). The parametric setup used is same as Case 1 of
Chang et al. (2012).

Γ =
Γs

Γp
=−0.25,

rs

b
= 0.176

rp

b
= 0.286, ReΓp = 200,000

(4)
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Results

To understand inception during a vortex–pair interaction
where the base pressure of each core is much higher than
the vapor pressure, it is essential to understand the factors
responsible for causing changes in the core pressure and
other core properties such as its shape, size, vorticity
etc. It is known that inception in such cases generally
occurs during the later stages of interaction when the
cores are very close to each other (Chang et al., 2012).
Hence the investigation of the later stages of evolution
i.e. the non-linear regime is the focus of this section.
The non–linear regime can be broken down into three
phases. Phase A is mostly governed by the changes in the
secondary core properties whereas in phase B the primary
core undergoes significant changes in its shape and size.
In Phase C, both the cores completely break–up i.e., they
undergo drastic changes.

Phase A:

(a)

d
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t
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A -

B
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C

(b)

Figure 8: (a) Q–criterion plots of the vortex filaments
colored with ωz (blue – secondary, red – primary), (b)
Distance between the core centers normalized w.r.t the
initial separation b.
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Figure 9: Minimum pressure in the secondary core and
the primary core.

Prior to Phase A, the secondary core develops
large curvature while the primary core remains almost
columnar (Figure 8(a)). This is because of the large

strength difference between the filaments i.e. the strain
exerted by the secondary core is not sufficient to deform
the primary core. From the Biot–Savart law it can be
intuitively understood that a large curvature causes a large
self–induced velocity pushing the secondary core towards
the primary core at a faster rate. This can be seen in
Figure 8(b) where the distance between the core centers
reduces sharply in this phase. The minimum pressure in
both cores is tracked separately and this is shown in Figure
9. It can be seen that the secondary core pressure (blue
curve) decreases and also, significant reduction in its size
is observed (Figure 10). These changes in the secondary
core’s size and pressure are seen to be

Cp(t ∼ 60)
Cpo

∼ 4,
r(t ∼ 60)

ro
∼ 0.5 (5)

where t is the non-dimensional time (non-dimensionalized
with Γp

b2 ), Cpo and r0 are the unperturbed secondary core
pressure and size respectively. The pressure behavior
follows the Euler–n equation for a single vortex filament.

Cp(t) ∝
Γ

r(t)2 (6)

The shape of the secondary core initially transforms
from circular to elliptical due to the higher strain exerted
by the primary core (seen in Figure 10(a)). The stretching
of the secondary filament causes its size to decrease
and its vorticity to increase. As a result, it exerts a
large strain on the primary core and hence the primary
core’s shape flattens (Figure 10(c)). Since there is no
significant change in the primary core’s size, its pressure
and vorticity mostly remain unchanged during this phase
(Figure 9).
Phase B:

As the cores approach close to each other at the
end of phase A, the secondary core’s velocity due to
mutual strain will be large and more dominant than its
self-induced velocity. This results in both the cores
rotating in almost concentric circular paths. Hence,
the distance between the core centers is almost constant
(Figure 8(b)). Also, the dominance of the mutual
strain leads to reduced stretching rate of the secondary
filament. This causes a smaller reduction in the secondary
core’s pressure and size (pressure reduces by 20%
approximately (Figure 9) and its size reduces by 10%).
These changes in the core pressure and core size still
follow the Euler–n equation discussed in the previous
section. Also, it is important to distinguish the behavior
of the vortex cores in this phase for lower and higher
Re. For low Re (O(103)), the high vorticity gradients
coupled with high viscosity lead to rapid decay in the
circulation of each of the cores (Marshall et al. (2001)).
This would in turn decrease the core vorticity and increase
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the core pressure making inception difficult. But for high
Re flows (O(105)), the large viscous diffusion time scales
keep the circulation of each core unchanged during this
phase; hence preserving the high core vorticity and low
core pressure.

x

y(a)

x

y(b)

x

y(c)

Figure 10: Axial vorticity (ωz) contour plots in the closest
plane of approach (z = 0) during phase A at (a) T = 50, (b)
T = 55 and (c) T = 60.

The secondary filament’s stretching in this phase
results in further increase in its vorticity. Hence it exerts
higher strain on the primary core resulting in further
deformation of the primary core’s shape (Figure 11(a)).
The primary filament’s negligible stretching coupled with
its core shape deformation results in its core pressure to
increase during this phase (Figure 9).
Phase C:

In this phase both the cores eventually breakup. At the
end of phase B (Figure 11(b)), it can be seen that a sheet
like structure is developed at the top of the primary core
due to the strong strain imposed by the secondary core.
This sheet continues to get stretched, and it wraps around
the secondary core. During this stretching process, the
sheet’s vorticity and strain increase thus imposing higher
strain on the periphery of the nearby secondary core.

Moore and Saffman (1971) have analytically studied the
effect of uniform irrotational strain on a Rankine vortex
and have established that the core becomes unstable and
can breakup for ε(S/ω) > 0.15. But for a core with
non-uniform vorticity, this stability is a local behavior
i.e. it would depend on the local ε (Hurst et al., 2018).
For the current simulations where the vorticity has an
axisymmetric Gaussian profile, the periphery of the core
starts to break up first as it has lower vorticity compared
to the core center (Figure 12(b)). This process would
proceed towards the core center and the entire core would
break up leaving behind a region of small scale structures.

x
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x
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���

Stretching of
sheet
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Figure 11: Contour plots of vorticity (ωz) in the closest
plane of approach (z = 0) during phase B displaying the
flattening process of primary core at (a) T = 62.5 and (b)
T = 65.

The pressure minima (Cpmin(t)) for both the cores
occur during this phase (Figure 9). Figure 13(a) shows
the variation of Cp(t) and the corresponding axial velocity
(w) and Figure 13(b) shows the variation of Cp(t) and
the corresponding axial vorticity (ωz) for the secondary
core. Preliminary observations reveal Cpmin(t) occuring
at two different instants of time. At t ∼ 71.6 a small axial
velocity can be seen (Figure 13(a)) and huge increase
in vorticity (Figure 13(b)) can be observed. This axial
jet is not sufficient to produce the observed drop in
pressure. This probably could mean a strong local
stretching of the small scale structures occurs causing
a sharp spike in vorticity and resulting in a sharp drop
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in pressure. Soon, the pressure recovers to a value
of -0.5 and a second dip is observed at t ∼ 73. At
this instance, a strong axial jet is observed. Pressure
reduction due to generation of axial jets during such
vortex pair interactions was hypothesized by Chang et al.
(2012). Such mechanism could serve as explanation
in the present study. However, further investigation is
required to ascertain the relationship between the axial
jets and corresponding drop in pressure, and to establish
the source of such axial jets and local stretching of the
unorganized small–scale vorticity structures.
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Secondary
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Figure 12: Contour plots of axial vorticity (ωz) in the
closest plane of approach (z = 0) in phase C displaying
the breaking up process at a) T = 67.5 and b) T = 70.
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Figure 13: a) Variation of Cp(red) and corresponding
axial velocity w (blue) for the secondary core. b) Variation
of Cp(red) and corresponding axial vorticity ωz(blue) for
the secondary core.

DEVELOPED CAVITATION

Numerical method
Developed cavitation is studied using the

homogeneous mixture model. In the homogeneous
mixture model, the mixture of water, vapor and
non–condensable gas (NCG) is treated as a single
compressible fluid. The mixture is assumed to be in
thermodynamic and mechanical equilibrium among its
constituent phases. The governing equations are the
compressible Navier–Stokes equations solved for mixture
quantities along with the transport equation for vapor
mass transfer employing finite rate mass transfer between
the phases. The equations are spatially Favre filtered for
LES and given as;

∂ρ

∂ t
=− ∂

∂xk
(ρ ũk) ,

∂ρ ũi

∂ t
=− ∂

∂xk
(ρ ũiũk + pδik− σ̃ik− τik) , (7)

∂ρỸv

∂ t
=− ∂

∂xk

(
ρỸvũk− tk

)
+ S̃e− S̃c

∂ρỸg

∂ t
=− ∂

∂xk

(
ρỸgũk− tk

)
and

∂ρ ẽs

∂ t
=− ∂

∂xk

(
ρ ẽsũk− Q̃k−qk

)
− p

∂ ũk

∂xk
+ σ̃ik

∂ ũi

∂xk
.

Here, the tilde quantities are Favre averaged quantities and
τik, qk and tk are subgrid scale (SGS) terms namely: SGS
stress, SGS heat flux and SGS scalar flux. These terms are
modeled using the Dynamic Smagorinsky model (DSM)
(Moin et al., 1991). ρ , ui, es and p are density, velocity,
internal energy and pressure respectively, of the mixture.
Yv is the vapor mass fraction and Yg is the NCG mass
fraction. σi j and Qk are the viscous stress tensor and the
heat flux vector respectively. Se and Sc are evaporation
and condensation source terms given by Saito et al.
(2007).

The system is closed by a non–barotropic mixture
equation of state given by the stiffened equation of state
in water and ideal gas equation of states in both vapor
and NCG. The speed of sound of the mixture is derived
from the mixture equation of state and the Gibbs equation,
which compares well with measured frozen sound speed
in literature (Brandao et al., 2020).

The numerical method is based on a
predictor–corrector approach, where the predictor step
uses non–dissipative finite volume scheme and corrector
step uses a characteristic based filter in the vicinity of
discontinuities. Time integration is performed by the
explicit Adams–Bashforth method. A detailed description
of physical modeling and numerical methodology are
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given in Gnanaskandan and Mahesh (2015). The
methodology is extended to include NCG by Brandao
et al. (2020).

a) Sheet to cloud transition
Sheet to cloud cavitation over a wedge is simulated

using compressible homogeneous mixture approach with
LES. The inflow/outflow conditions of the experimental
sharp wedge configuration (Ganesh et al., 2016) is
matched to study diverse cavitation regimes in the
computations. The details are given in Bhatt and
Mahesh (2020). Here, only the developed cavitation
in the transitory and periodic regimes is discussed.
The computational mesh consists of approximately 3
million hexahederal cells. The mesh is refined in the
convergent–divergent section of the wedge with minimum
spacing of 0.005h (∼ 0.125 mm) in both the stream–wise
and the wall–normal directions. Here h (1 inch) is the
wedge height. The boundary-layer refinement is not
considered for the top and the side walls, since it allows
significant reduction in the mesh-size without affecting
the overall confinement. Also, the relevant flow features
are expected to be in the vicinity of the bottom-wall.
For the bottom-wall, the normal spacing of 0.005h is
chosen to sufficiently capture the re-entrant jet. Also, the
incoming boundary layer profiles at the bottom-wall are
compared to the experimental measurements of Ganesh
et al. (2016), see Bhatt and Mahesh (2020) for the details.
The flow is simulated at Reynolds number Re = ρ∞u∞h

µ∞
=

203000, where the subscript ‘∞’ represents free stream
values. Back cavitation number σb is defined as σb =
p−pv(T )
1/2ρ∞u2

I
. Here, uI is the inflow velocity. σb is reduced

to progress from the transitory to the periodic regime.
Transitory regime is simulated at σb = 1.89 and periodic
regime is simulated at σb = 1.78.

Results

Re-entrant jet and bubbly shock waves
We present LES results for transitory and periodic

regimes in the flow over a sharp wedge. This section
illustrates how LES captures both instability mechanisms;
i.e. re–entrant jet and bubbly shock waves, in these
developed cavitation regimes. Figure 14 shows the
instantaneous solution using LES at σb = 1.89. Note
the liquid re–entrant jet at the mid–cavity (figure 14(b)).
Intermittent nature of pressure waves and mid-cavity
detachment of sheet cavity into the cloud is visualized in
figure 14(a). 〈αv〉 within the cavity remains in the range
∼ 0.4–0.6 and vapor production is observed intermittently
inside the cavity and shear layer. With reduction in σb,
the sheet to cloud transition exhibits periodic behavior.
We consider periodic shedding at σb = 1.78. Figure
15 shows an instant of cavity retraction. Bubbly shock

waves are visualized by a void fraction discontinuity in
the span-wise averaged vapor volume fractions (〈αv〉) in
figure 15(b). High values of 〈αv〉 (∼0.8–0.9) are observed
inside the entire cavity (also observed in the experiments
of Ganesh et al. (2016)). Complete collapse of the vapor
cloud and the pressure regions due to the cloud collapse
are noticeable on the side plane in figure 15(a).

Comparison to the experiments

a)

Intermittent
pressure waves

Reverse
flow

p
1
2 ρ∞u2

∞

Mid-cavity
detachment

b)

y/h

〈αv〉

Figure 14: Transitory regime showing re-entrant jet
cycle. (a) Iso–contour level αv = 0.1 with pressure
plotted on side plane (x − y plane at z = 2.9h). (b)
Spanwise averaged vapor volume fraction (〈αv〉) for the
same instant.

a)

p
1
2 ρ∞u2

∞

collapse-induced
pressure wave

Extremely high
pressures by
cloud collapse

Cavity
retraction

b)
〈αv〉

Figure 15: Periodic regime showing bubbly shock cycle.
(a) Iso-contour level αv = 0.1 with pressure plotted on
side plane (x−y plane at z= 2.9h). (b) Spanwise averaged
vapor volume fraction (〈αv〉) for the same instant.

We compare the mean volume fraction data to the
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X-ray measurements of (Ganesh et al., 2016). In
addition, we consider the time evolution of instantaneous
vapor volume fraction, condensation front speed and the
frequency of periodic shedding for comparison to the
experimental data. The mean vapor volume fraction
is compared to experiments in figures 16 and 17 for
transitory and periodic regimes respectively. For each
case, contours of time average of spanwise averaged vapor
volume fractions (〈αv〉) obtained from LES are plotted
alongside the time averaged X-ray measurement data.
Here ‘ ¯ ’ denotes time average. The field of view of
the X-ray measurement is matched to LES and contour
levels are identical. In addition, profiles of 〈αv 〉 extracted
along the y axis from the wedge surface at various axial
locations are plotted in figures 16(c) and 17(c). For
each case, LES statistics are sampled at 0.005tu∞/h (∼
0.015 ms), which provides sufficient temporal resolution
to capture variations in cavity size over a given cycle for
comparison to the X–ray measurements sampled at 1 ms.
Statistics are averaged over approximately 10 shedding
cycles (which corresponds to the physical time of 0.5s for
the periodic shedding case) to capture the low frequency
of cloud shedding. Experimental results are taken for
total time of 0.79s, which corresponds to approximately
16 shedding cycle for periodic shedding.

a) LES Exp.b)

x/h x/h
c)

y/Lw

〈αv〉

Figure 16: Transitory regime : a) Contours of 〈αv〉
from LES at σb = 1.89, b) time average of X-ray
measurements at σb = 1.82± 0.06 (data obtained from
direct communication with H.Ganesh) and c) comparison
of the profiles extracted at s/Lw = 0.1,0.2,0.3,0.4 and
0.5, indicated by the dashed lines. Black and blue lines
respectively indicate experimental and LES profiles.

In both regimes, overall larger regions of vapor are
formed (e.g. a sheet cavity of vapor over a wedge
surface and cloud shedding downstream). Considering

cycle to cycle variation in sheet/cloud cavitation in each
regime (also observed in Ganesh et al. (2016)) and the
unsteady nature of the flow, the comparison in the overall
cavity length and thickness is encouraging. In addition,
distribution of vapor volume fraction in the divergent
section of the wedge show very good comparison in the
free stream, within the cavity and also near the surface of
the wedge. This is indicated by 〈αv〉 profiles in figures
16(c) and 17(c).

a) LES Exp.b)

x/h x/h
c)

y/Lw

〈αv〉

Figure 17: Periodic regime: a) Contours of 〈αv〉
from LES at σb = 1.78, b) time average of X-ray
measurements at σb = 1.73± 0.11 (data obtained from
direct communication with H.Ganesh) and c) comparison
of the profiles extracted at s/Lw = 0.1,0.2,0.3,0.4 and
0.5, indicated by the dashed lines. Black line and blue
line respectively indicate experimental and LES profiles.

The frequency of periodic shedding of the cloud at
σb = 1.784 is computed from Fast Fourier Transform
(FFT) of the time-varying void fraction and pressure
signal at (3h,1.5h,1.5h) inside the cavity. The signals for
the pressure and the void fraction are shown in figures
18(a) and 18(b) respectively. The corresponding FFT is
shown in figure 18(c). The signal shows periodic pressure
pulses followed by low pressure (vapor pressure ∼ 2 kPa)
regions spanning approximately 10 cycles taken over 0.5s.
FFT of both the signals (α and p) show peaks at identical
values of f = 20.13Hz, indicating that the cavity shedding
mechanism is associated with the propagation of pressure
pulses. Shedding frequency of f = 20.13Hz compares
very well to the experimental shedding frequency of f =
20.00Hz.

9



a)

p(kPa)

b)

α

t(s)

c)

FFT

f(Hz)

Figure 18: Frequency of shedding. a) p(t), b) α(t) taken
at (3h,1.5h,1.5h) and c) corresponding FFT (p -, α -).

We construct an s− t diagram to compute the bubbly
shock speed. We consider a line parallel to the wedge
surface at a normal distance n = 4 mm and stack the
solution for multiple time instances, constructing an s− t
diagram. Figure 19 shows time evolution of 〈αv〉. The
triangular region of 〈αv〉 indicates one cycle of cavity
shedding. The cavity growth and collapse within the cycle
is indicated by white arrows. The slopes of iso-contour
lines during cavity growth and retraction can be used
to compute the respective speeds. The inverse of the
slope in the s− t diagram (figure 19) for cavity retraction
indicates bubbly shock speed in the laboratory frame of
reference. Bubbly shock speed thus obtained is averaged
over 10 shedding cycles for both the experiment and the
simulation. The shock speed obtained from LES is 5.0
m/s showing good comparison to the experimental value
of 4.5 m/s. The frozen sound speed of this high volume
fraction mixture is 3.34 m/s. Mach number computed
based on the frozen speed of sound is 1.49. This indicates
that the void fraction discontinuity is supersonic and
accordingly a “bubbly shock wave”. Detailed analyses of
the conditions that lead to the formation of re-entrant jet
and bubbly shock wave mechanisms using the LES results
are provided in Bhatt and Mahesh (2020).

〈αv〉

t(s)

s/Lw

Cavity growth

Cavity retraction

Shed cloud

s/Lw

Figure 19: Temporal evolution of 〈αv〉 taken on a line
parallel to the wedge surface at a normal distance n = 4
mm for 0.25s showing approximately 5 cavity shedding
cycles.

b) Flow over a circular cylinder
Cylinder cavitation is simulated for Re = 200 and

Re = 3900 (based on cylinder diameter) at different σ

covering cyclic and transitional regimes, as well as a
non–cavitating regime. The domain is cylindrical with
two– and three–dimensional grids for the laminar and
turbulent cases, respectively. The grid and domain size
are the same as employed in Brandao et al. (2020):
near the cylinder surface both cases use a mesh with
spacing 0.005D × 0.01D in the radial and azimuthal
directions respectively, with 80 points being employed in
the spanwise direction for the Re = 3900 case. Vapor
and NCG are uniformly introduced in the free–stream
in terms of volume fraction in the quantities of αv =
1× 10−9 and αg = 1× 10−6, respectively. Acoustically
absorbing sponge layers are applied at the boundaries to
avoid reflection of pressure waves from the boundaries.

Results

Developed cavitation in flow over cylinder is divided into
cyclic and transitional regimes as explained in Brandao
et al. (2020). The cyclic regime is characterised by
the periodic shedding of the cavitating vortices that
originate at the surface and is observed for high values
of σ as seen in figure 20(a). These vortices, filled
with vapor, collapse as they move downstream producing
pressure waves. With the reduction in σ , the flow enters
into the transitional regime and the shedding process
alternates between two phenomena. The first is similar
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to cyclic cavitation, but the vortex cores cavitate further
downstream and the cavity formed is not attached to
the cylinder, as shown in figure 20(b). During this
part of the cycle, the cylinder surface and the near
wake remain cavitation free. A second phenomenon
follows where the instantaneous pressure in the near wake
drops below vapor pressure. A cavity forms in the
region symmetrically spanning the entire aft–body of the
cylinder, as seen in figure 20(c). The closure region then
collapses generating a bubbly shock that travels upstream
detaching the cavity. Due to this, the Strouhal number
of the shedding frequency of drag time history based on
the cylinder diameter (St = f D/U∞) shows a sharp jump
between regimes of one order of magnitude, as visible in
figure 21

(a)

y/D

x/D

Attached
cavity

@
@I

Cavitation in vortex core

@@R

(b)

y/D

x/D

Cavity detached from the body
���

(c)

y/D

x/D

Attached cavity
@
@I

Condensation front

��	

Figure 20: Instantaneous total void fraction contour for
the cyclic regime (a) and for the transitional regime (b,c).

St

σ

Figure 21: Value of St for different σ . Transition
between cyclic and transitional regime is at σ = 0.85
approximately.

For a better understanding of this sharp jump,
we perform dynamic mode decomposition (DMD) and
extract the modes corresponding to the peak frequency
in drag time history. We use a novel DMD algorithm
developed by Anantharamu and Mahesh (2019) that has
low computational cost and low memory requirements.

Figure 22 displays the mode shapes of axial velocity
where it can be observed that they are substantially
altered when σ is reduced from cyclic (σ = 1.0) to
the transitional regime (σ = 0.7). For the transitional
regime, the mode shapes are horizontally stretched and
their length scale is about one order of magnitude larger
than for the cyclic regime, explaining the sharp jump
in shedding frequency. In addition, in the transitional
regime, the near–wake of the cylinder is dominated by
regions of negative velocity indicating the reverse flow
due the bubbly shock propagation.

It is important to distinguish vortex shedding from
cavity shedding. For cavitating flows, flow variables
in the near wake can reveal both the vortex and/or
cavity shedding frequency. In the cyclic regime, the
dominant frequency indicates the regular shedding of a
single cavitated vortex from the surface into the wake.
In the transitional regime, it is observed that the growth
of a cavity spanning the whole near wake region and
the subsequent bubbly shock propagation, interrupts this
regular vortex shedding. Consequently, an irregular and
regular vortex shedding are periodically present in the
cylinder wake. The dominant shedding frequency in the
transitional regime indicates the cavity shedding after the
passage of the condensation front and the recurrence of
irregular and regular vortex shedding processes. The
frequency of individual vortex shedding from the surface
becomes secondary.
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(a)

y/D

x/D
(b)

y/D

x/D

Figure 22: Modes corresponding to drag peak frequency
at σ = 1.0 (a) and σ = 0.7 (b) colored by axial velocity.

(a)

x/D

y/D
� -

Primary Kármán shedding

� -
Two–layered
vortices

(b)

x/D

y/D

(c)

x/D

y/D

Figure 23: Most energetic modes colored by spanwise
vorticity at σ = 5.0 (a), σ = 1.0 (b) and σ = 0.85 (c).

For single–phase flow over bluff bodies, the vortices
shed periodically from the surface and form the classical
primary Kármán vortex street in the near wake. In
the intermediate wake, a transition into a two–layered
vortex street is observed and its location is Re dependent.
Durgin and Karlsson (1971) used a model in which the
concentration of vorticity is strained into an elliptical
shape by the nearby vortices to explain the first vortex
street transition. The distorted vortex is then rotated,
aligning its major axis with the streamwise direction. This
process eventually results in distorted vortices merging
and becoming shear layers on either side of the street. It is
reported by Durgin and Karlsson (1971) that the spacing
ratio, defined as the ratio between the cross–wake distance
of differently signed vortices to the longitudinal distance
between same sign vortices, is an important parameter that
indicates the straining of the vortices and their merging.
In their experiments, the authors report a spacing ratio
greater than 0.366 as an indicative of the transition. In
the present work, we show that this transition is delayed to
further positions downstream when σ is reduced. For this,
we apply DMD and extract the most dominant modes,
corresponding to peak frequencies in lift time history
which determine the shedding frequency of individual
vortices. A non–cavitating case at σ = 5.0 is compared to
the cyclic regime at σ = 1.0 and σ = 0.85. These modes
are shown in figure 23 colored by spanwise vorticity.

For the non–cavitating case (figure 23(a)), the mode
clearly reveal that the transition of the Kármán vortex
street starts at x = 23D downstream of the cylinder.
A comparison with the cyclic regime shows that this
transition is delayed to a position close to x = 30D at
σ = 1.0 (figure 23(b)) and to even farther distances at
σ = 0.85 (figure 23(c)). This indicates that cavitation
delays the transition of the Kármán vortex street and that
its distance from the cylinder grows with decreasing σ .
The vortex street is shown in figure 24(a) and 24(b) at
σ = 5.0 and σ = 1.0 respectively. The vortices inside
the boxes are used to compute the spacing ratio, as
defined before, at two streamwise locations: the first
position is the closest possible to the cylinder and the
second is just before the vortex street transition. Table
1 shows that for σ = 5.0, the spacing ratio more than
doubles in a short distance, surpassing the limit of 0.366
estimated by Durgin and Karlsson (1971). For σ =
1.0, however, the spacing ratio grows slower with axial
distance and it is slightly higher than the threshold once
the transition initiates. For the spacing ratio to be larger
in the non–cavitating case, either the cross–wake distance
(h) has to be higher or the longitudinal distance (a) has
to be smaller. From table 1, it can be observed that it is
the longitudinal distance between same sign vortices that
is smaller for σ = 5.0 at the two different axial positions.
This parameter is inversely proportional to the shedding
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frequency of individual vortices, which is reduced from
0.193 to 0.175, based on lift history, when the cavitation
number is lowered from σ = 5.0 to σ = 1.0. Thus, we can
conclude that the reduction of shedding frequency due to
cavitation plays a major role in delaying the first vortex
street transition.

(a)

x/D

y/D

box 1 box 2

(b)

x/D

y/D

box 1 box 2

Figure 24: Vortex street colored by density for σ = 5.0
(a), σ = 1.0 (b). White boxes indicate the region where
spacing ratio is computed.

For Re = 3900, vorticity production is investigated in
the near wake for both cyclic and transitional regimes.
Neglecting viscous diffusion, the vorticity transport
equation reads as:

Dω

Dt
=−ω(∇ ·V)+

(∇ρ×∇p)
ρ2 +(ω ·∇)V. (8)

Table 1: Cross wake distance between different sign
vortices (h), longitudinal distance between same sign
vortices (a) and their ratio at two different wake positions
for σ = 5.0 and σ = 1.0.

h a h/a

σ = 5.0
box 1 0.845 4.421 0.191

box 2 1.633 4.027 0.406

σ = 1.0
box 1 1.147 5.026 0.228

box 2 1.751 4.724 0.371

The terms on the right–hand side of equation 8 are,
respectively: vorticity dilatation, baroclinic torque and
vortex stretching/tilting. Figure 25 shows instantaneous

plots of the terms in equation 8 and reveals that the
term most affected by the reduction in σ is the vortex
stretching/tilting. This is due to the fact that in the
transitional regime, a nearly two–dimensional cavity
remains attached to the body during considerable part of
the cycle (which can be observed by the black lines).
Note that for the transitional regime, vortex stretching
is only significant downstream of the cavity closure,
in the intermediate wake. In addition, due to the
three–dimensionality of the flow in the cyclic regime,
some vorticity production is observed in the near wake
due to the misalignment of density gradients and pressure
gradient generated by cavity collapse. Vorticity dilatation,
however, seems to increase as σ is lowered. This can be
explained by the fact that by reducing σ , more vapor is
generated in the near wake, increasing the compressibility
of the flow.

SUMMARY

Cavitation inception is studied for two problems; shear
layer of a backward–facing step and counter-rotating
vortex pair interaction. For the shear layer problem,
velocity profiles show very good agreement with
experimental data and we confirm that elongated axial
vortical structures in the shear layer are responsible for the
first random sites of inception. For the vortex interaction
problem, three phases of interaction have been identified
based on the behavior of pressure in each core. Prior
to the cores breaking apart, stretching is the main factor
causing a drop in size and pressure for the secondary core
and vorticity stripping is the main factor causing drop in
pressure for the primary core. Post breaking apart, axial
jet and local stretching of small structures occur probably
causing the observed changes in secondary core pressure.

LES is used to investigate developed cavitation for
two problems: flow over a wedge in the transitory and
periodic regimes matching the experiments of Ganesh
et al. (2016) and flow over a circular cylinder at two
different Re and for different cavitation regimes. For the
wedge problem, LES captures both the re–entrant jet and
the bubbly shock wave induced sheet to cloud transition
in their respective regimes. Comparison to X–ray
densitometry reveals that in the developed cavitation
regimes, large regions of vapor in the sheet/cloud and
the resulting volume fraction field are accurately captured
in the current simulations. In addition, bubbly shock
propagation speed and shedding frequency show very
good comparison to the experiments. For the cylinder
problem, dynamic mode decomposition reveals that
cavitation delays the transition of the Kármán vortex
street. It also reveals that the dominant mode in the
transitional regime have a length scale one order of
magnitude larger than in the cyclic regime, explaining
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the sharp drop in cavity shedding frequency. At high Re,
we observed that vortex stretching/tilting and baroclinic
torque are reduced in the near wake with decreasing σ .
Vorticity dilatation, however, increases.

(a)

y/D

(b)

y/D

(c)

x/D

y/D

x/D

Figure 25: Vorticity transport at σ = 1.0 (left) and σ =
0.7 (right). Vortex stretching (a), baroclinic torque (b)
and voriticy dilatation (c) are shown. Black lines are
isolines of total void fraction of 0.1 and represent the
cavity interface.
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