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Abstract: A sharp interface approach for modeling cavitation phenomena in incompressible viscous flows 
is presented. We utilize the incompressible Navier-Stokes equations with a modified Poisson equation. 
The modification to the Poisson equation accounts for phase change taking place at the phase boundary. 
We adopt a one-fluid formulation for the liquid-vapor two-phase flow and the interface is tracked using 
a modified volume-of-fluid (VOF) methodology. The modification to VOF is at the level of the advection 
step whereby the interface is advected with two velocity components, the first one originating from the 
incompressible flow field, and the second emerging as a result of phase change. The phase change model 
is extended to account for multiple bubbles via a tagging procedure. The original model and its extension 
are validated and compared through a Rayleigh-Plesset (RP) bubble collapse. 
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1. Introduction 

Cavitation is the term used to describe the phase transition of a fluid from liquid to vapor in regions 
of significant pressure drop. It is observed in vortex cores, turbulent shear flows, and marine propeller 
applications. Although cavitation can be useful under certain circumstances such as lithotripsy, it is highly 
undesirable in applications involving lifting surfaces as it is a source of instability and noise. There is 
complexity associated in the simplest of cavitating flows. This is evident when looking at free-surface and 
contact line dynamics and studying inception and the mechanisms that sustain cavitation. Ram et. al [1] 
examined the mechanisms that sustain the inception of attached cavitation. They have found that under 
certain flow conditions, namely the presence of low momentum zones, microbubbles originating from a 
collapsed cavity can slowly migrate upstream for a few milliseconds where they either become nuclei for 
new attached cavitation events or they are swept downstream. The types of events observed in [1] pose 
several numerical challenges that are required to model and capture the complicated physics involved.  

The numerical simulation of cavitating flows has shown rapid progress in the past two decades, 
however, there are key challenges to be tackled. The principal challenges in the numerical modeling of 
cavitating flows include sharp changes in density, existence of a moving boundary, and the requirement of 
accurate modeling of phase change [2]. Earlier work in cavitation modeling has relied primarily on 
homogeneous mixture modeling which typically requires a phase change model. Amongst the most 
common phase change models utilized are those developed in [3-4]. A more involved phase change model 
was later developed in [5] where the effect of non-condensable gas within the vapor cavities was 
incorporated. The models in [3-4-5] are all based on semi-analytical equations. Other cavitation models are 
based on a simplification of the classical Rayleigh-Plesset (RP) equation [6-7]. In this work, the focus will 
be on the development of a numerical method utilizing the latter models [6-7]. 

Given the presence of a moving boundary in free-surface and multiphase flows, it is common to 
observe undesirable interface diffusion due to advection, therefore, using a sharp interface computational 
method to advect the interface is required. Mass conservation, the ability to compute vigorous interface 
deformation, and the ability to capture topology changes due to break-up and coalescence are collectively 
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desirable features in the simulation of multiphase flows [8]. The volume-of-fluid (VOF) [9], an interface 
capturing method, has the intrinsic capability of capturing interfacial topology changes directly and can 
conserve mass exactly given an adequate advection scheme.  This method will be utilized in our model for 
fluid advection. 

The objective of this paper is the development of a numerical method based on the incompressible 
Navier-Stokes equations, that is capable of simulating cavitation phenomena via the addition of a phase 
change model that is consistent with a sharp interface method. A unique, VOF-based advection scheme is 
used to move the phase boundary in the presence of phase change. The phase change model is extended to 
multiple cavities using a Lagrangian tagging procedure following the algorithm in [10]. Finally, we validate 
the method by simulating a single bubble collapse and the results are compared to the solution of the 
Rayleigh-Plesset (RP) equation. 

2. Materials and Methods 

Assuming that the liquid and the vapor phase are incompressible and mono-component, and that 
thermal effects are negligible, the Navier-Stokes equations for incompressible viscous flow are written as: 

𝜌 "
𝜕𝒖
𝜕𝑡 + (𝒖. ∇)𝒖+ = −∇𝑝 + ∇. /𝜇(∇𝒖 + ∇𝒖!)1 + 𝑭𝒔𝒕 + 𝛿(𝑛)𝑲𝒃𝒐𝒅𝒚							𝑎𝑛𝑑								∇. 𝒖 = 0					 (1) 

where 𝝆 denotes density, 𝒖 is the velocity vector, 𝒑 denotes pressure, 𝝁 is the dynamic viscosity, 𝑭𝒔𝒕 is the 
surface tension force, 𝜹(𝒏) is the Dirac delta function, and 𝑲𝒃𝒐𝒅𝒚 is the body force which is only active in 
the liquid phase. We utilize the finite volume algorithm developed in [11] for solving the incompressible 
Navier-Stokes equations on unstructured grids. 

A mass-conserving volume-of-fluid (VOF) methodology is used to track the liquid-vapor interface. 
The volume fraction is represented by a color function 𝑐 that varies between a constant value of 1 in a liquid 
cell to 0 in a vapor cell, with an intermediate value between 0 and 1 to define the phase boundary. The 
volume of each fluid cell is tracked in a two-step process for each time iteration, reconstruction then 
advection; the reconstruction and advection steps are based on the analytic relations described in [12]. 
Given the volume fraction in each cell, the reconstruction of the interface shape uses the local normal vector 
and a piecewise linear interface calculation (PLIC) to approximate the shape of the interface. The color 
function 𝑐 is then advected with the fluid velocity field using a directionally split flux scheme.  The scalar 
transport equation which governs the color function 𝑐 is given by ()

(*
+ 𝒖. ∇𝑐 = 0. Further details on VOF 

implementation and validation can be found in [13-14-15]. 
In the presence of phase change, the standard VOF method described above needs to be modified. 

Phase change implies the addition of an interfacial velocity to the incompressible flow field velocity such 
that 𝒖 = 𝒖𝒇 + 𝒖𝒑𝒄 where 𝒖 is the total fluid velocity, 𝒖𝒇 is the incompressible flow field velocity, and 𝒖𝒑𝒄 is 
the velocity due to phase change. Starting from the Rankine-Hugoniot jump condition at a phase boundary, 
we can derive an expression for the total normal interfacial velocity such that 𝑢. =

/
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(𝑢1 + 𝑢2)ABBCBBD

3!,#

− 4̇
0
E /
6$
+ /

6%
FABBCBBD

3!,&'

, 

where Γ denotes the interface, 𝑣 denotes vapor, 𝑙 denotes liquid, and �̇� is the mass flux between the two 
phases per unit volume. Two approaches were followed to determine the ideal advection scheme for the 
phase change velocity in order to maintain interface sharpness. In the first approach, the color function is 
updated using the phase change velocity as a source term such that ()

(*
= − 4̇

0
E /
6$
+ /

6%
F |∇𝑐|. In the second 

approach, the color function is updated based on the calculated face normals (i.e., sweeping technique) 
such that ()

(*
+ 𝒖𝚪,𝒇. ∇𝑐 + 𝒖𝚪,𝒑𝒄. ∇𝑐 = 0 where 
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In the presence of phase change, a volumetric source term is required due to the difference in density 

across the interface. The source term is only active at the interface between the two phases; hence the 
divergence of the velocity field becomes ∇. 𝒖 = 0⏟

∇.𝒖𝒇

+ �̇� E /
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∇.𝒖𝒑𝒄

 and the Poisson equation in semi- 

discrete form becomes ∇0𝑝CD/ = 6
E*
/∇. 𝒖𝒑𝒄1

C. 
For an incompressible flow solver that follows a predictor-corrector methodology, the divergence of 

the velocity field converges to zero such that the velocity field is divergence-free at the end of every time 
iteration, this however will not be the case at the phase boundary where the volumetric source term is 
active. Hence, the Poisson equation needs careful treatment since improper discretization of the source 
term leads to numerical instabilities. In the absence of surface tension, non-condensable gas (NCG), and 

inertial effects the Rayleigh-Plesset (RP) equation gives  �̇� such that �̇� = 𝜌2�̇� = X06%(G$+,HG-)
J

Y1 − EK.
K
F
J
Z. 

Because a local pressure will be used instead of a far-field pressure, a correlation factor is needed to correct 

the mass flux such that �̇� = 𝛼L,) \𝑝1MG − 𝑝ABBCBBD
*N	PL	2QCLMRQSLT
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]	where 𝛼L,)  represents the evaporation and 

condensation constants, respectively based on the sign of 𝑝1MG − 𝑝. Following the linearization in [16], the 
semi-discrete Poisson equation is finally written as: 
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where 𝛽 = 𝛼L,)X
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The method described uses the color function 𝑐 to calculate the cavity radius 𝑅, however since VOF is 

Eulerian in nature and is incapable of supplying information about each cavity separately, the method will 
not be useful for a system with multiple cavities. Therefore, we assign a unique identifier id for each 
separate cavity via a parallel, Lagrangian tagging procedure following [10] and we re-write  �̇� in terms of 

cavity volume such that �̇� = 𝛼L,)\𝑝1MG − 𝑝X
0
J
𝜌2 h1 − E

W.
W
Fh	. Writing  �̇� in terms of cavity volume showed 

better agreement with the RP solution as per the discussion in Section 3.  
 

3. Results 

3.1. Interface advection with phase change 
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Two approaches for interface advection were discussed in Section 2. We choose a constant 
value of -1 for  �̇� to initiate bubble collapse on a 256 by 256 uniform grid. Note here that only the scalar 
transport equation for 𝑐 is solved.  

 
(a) 

 
(b) 

Figure 1.  Color function contour for an artificial bubble collapse (a) using phase change velocity as a source 
term (b) updating the color function based on the calculated normals (sweeping technique) 

The results in Figure 1 indicate that advecting the color function 𝑐 with an additional source term 
causes undesirable diffusion of the interface while the sweeping technique preserves the sharpness of 
the interface. The sweeping technique was then utilized to validate the RP bubble collapse. This was 
done through advecting the color function 𝑐 via  �̇� obtained from the RP solution.  

 
 

Figure 2.  Nondimensional radius versus nondimensional time for a single bubble collapse using VOF 
advection 

The advection scheme used recovers the analytic solution. 

3.2. Bubble collapse 

Computations have been made for a two-dimensional bubble collapse. Given the enforcement of a 
Dirichlet boundary condition on pressure at the boundaries of the computational domain, it is of interest 
to investigate the implications of the choice of domain size. Far-field pressure was chosen to be 𝑝X =
100000 and vapor pressure (pressure inside the bubble) was chosen to be 𝑝1MG = 2000. Bubble radius 𝑅(𝑡) 
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was nondimensionalized with the initial bubble radius 𝑅N  and time t was nondimensionalized with 
collapse time 𝜏. Figure 3 shows the variation of nondimensional radius with respect to nondimensional 
time for different domain sizes. 

 

 
 

Figure 3.  Nondimensional radius versus nondimensional time for a single bubble collapse showing the 
effect of domain size.  

The numerical results presented in Figure 3 show good agreement with the RP solution. There is no 
appreciable influence of domain size. 

3.3. Bubble tagging 

The phase change model was extended to multiple bubbles/cavities via the addition of a parallel 
tagging procedure. The tagging procedure was validated in 2D and in 3D across multiple processors. 

 
(a) 

 
(b) 

Figure 4.  Tagging of 1000 bubbles in 2D on multiple processors on a 512 by 512 uniform grid. (a) color 
function contour; and (b) tag id contour. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 5.  Tagging of 70 bubbles on multiple processors in 3D on a 128x128x128 uniform grid. (a) tag id 
contour in x-y plane; (b) tag id contour in x-z plane; and (c) tag id contour in y-z plane. 

3.4.  Radius formulation vs. Volume formulation 

 After applying the Lagrangian tagging, the RP collapse problem is simulated using the volume 
formulation and is compared with the results obtained from the radius formulation. The domain size is 
𝐿 = 12.5 and the grid resolution is 128 by 128. 

 
 

Figure 6.  Nondimensional radius versus nondimensional time for a single bubble collapse showing a 
comparison between the radius formulation and volume formulation. 

The volume formulation gives more accurate results than the radius formulation as indicated by Figure 6. 

4. Conclusions 

In this work, a sharp interface method for the computation of cavitation phenomena was 
developed. A phase change model was derived from the Rayleigh-Plesset (RP) equation and extended to 
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simulate multiple cavities via a Lagrangian bubble tagging procedure. The sweeping technique for 
advection using the phase change velocity was shown to conserve sharpness of the interface. The radius 
formulation of the phase change model showed good agreement the RP solution for a two-dimensional 
bubble collapse, however, the volume formulation of the model with bubble tagging presented better 
agreement. It is foreseen that the phase change model has potential to provide high-fidelity cavitation 
calculations via the addition of physical effects like gas diffusion and surface tension. 
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