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1 Introduction

Recent direct numerical simulation (DNS) of large number of solid parti-
cles interacting through a fluid medium by Joseph and collaborators [1, 2]
show that a layer of heavy particles with fluid streaming above it can develop
Kelvin-Helmholtz (K-H) instability waves whereas a layer of particles above
a lighter fluid develops Rayleigh-Taylor instability. However, performing full
DNS of millions of dispersed particles in a turbulent flow (e.g. spray com-
bustion, liquid atomization, spray coating, fluidized bed combustion, aerosol
transport) is computationally intensive. For such applications, the particle
size is typically smaller than the grid-resolution used for the computation of
the continuum fluid. Under these conditions, the particles are subgrid and
some sort of subgrid modeling is necessary to simulate their motion.

The “point-particle” assumption is commonly employed where forces on
the dispersed phase are computed through model coefficients. The effect of the
particles on the carrier phase is represented by a force applied at the centroid
of the particle. For dilute particle loadings with swirling, separated flows in
a coaxial combustor computed using LES of point-particles, Apte et al. [3]
indicated good agreement with the experimental data. However, for moder-
ate loadings and wall-bounded flows, Segura et al. [4] have shown that the
point-particle approximation fails to predict the turbulence modulation com-
pared to experimental values. In order to capture the same level of turbulence
modulation observed in experiments, it was required to artificially increase
the particle loadings by an order of magnitude when using the point-particle
approach [4]. In addition, if the particle size is greater than Kolmogorov scale,
simple drag/lift laws used in this approach do not capture the unsteady wake
effects [5, 6].

In this work we attempt to extend the point-particle approximation by
accounting for the finite-size of the particles and the corresponding volume
displacement (@) of the carrier phase. Accordingly, the carrier phase conti-
nuity and momentum equations are modified to include ©¢. The formulation
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was originally put forth by Dukowicz [7] in the context of spray simulations.
However, the particle volume fractions are often neglected owing to the in-
creased complexity of the governing equations as well as numerical stiffness
they impose in the dense spray regime. Several studies on dense granular
flows [8, 9, 10] use this model for laminar flows. Similar formulation has been
applied for bubbly flows at low bubble concentrations to investigate the effect
of bubbles on drag reduction in turbulent flows [11]. However, these studies do
not identify the effects of the fluid displacement by dispersed phase compared
to the point-particles. In the following sections, the mathematical model and
numerical scheme are described in brief. The model is applied to simulate
gravitational settling and fluidization by jet to validate the numerical scheme.
Next we compute plane Poisuille flow with rigid spheres at the bottom to
show particle dispersal and lift.

2 Mathematical Formulation

The formulation described below consists of the Eulerian fluid and Lagrangian
particle equations, and accounts for the displacement of the fluid by the par-
ticles as well as the momentum exchange between them [12].

2.1 Gas-Phase Equations

The fluid mass for unit volume satisfies a continuity equation,

0
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where p¢, O, and uy are the fluid density, volume fraction, and velocity, re-
spectively. This indicates that the average velocity field of the fluid phase does
not satisfy the divergence-free condition even if we consider an incompressible
suspending fluid. The particle volume fraction, @, = 1 — @y is defined as
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where the summation is over all particles N,. Here @' is the particle location,
7 the centroid of a control volume, V,, ;, the volume of a particle, and V,,, the
volume of the grid cell containing the particle centroid. The interpolation
function effectively transfers Lagrangian quantity to give an Eulerian field
on the underlying grid and is defined later. The fluid momentum equation is
given as

0
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where p is the average pressure, py is the viscosity of the fluid, and D, =
vu. + vul the average deformation-rate of the fluid-particle composite, u.
the composite velocity of the mixture [12], and F the force per unit volume
exerted on the fluid by particles.

2.2 Dispersed-Phase Equations

The individual particle positions and velocities can be obtained by solving the
ordinary differential equations in Lagrangian framework for each particle p :

d d
at (xp) = up; mpa (up) = Fp (4)

where x,, is the particle position, u, the particle velocity, F, = mpA, the
total force acting on the particle of mass m,, and A, is the particle accelera-
tion. This consists of the standard hydrodynamic drag force, dynamic pressure
gradient, gradient of viscous stress in the fluid phase, a generalized buoyancy
force, inter-particle collision and external body forces (gravity). In the present
work, we assume that the particle forces consist of drag, collision and gravi-
tational acceleration, and neglect all other terms in order to investigate the
effect of the particle volume fraction. For high density ratios (pp/p, ~ 1000),
these assumptions are valid [3]:

A, =D, (uy —u,) — (1 — Z—f> g+ A, (5)
p

Here A, is the acceleration due to inter-particle forces. The standard expres-
sion for drag force, D,, is used

3, pyluy —uy
D, = 20, M~ Ul 6
p 8 dpp Rp ’ ( )

where Cy is the drag coefficient [13],

24
Cy= = (140.15Rey®™") ©,2%,  for Re, < 1000 (7)
=0.440;%%, for Re, > 1000 (8)

R, = (3V, /47r)1/ % is the particle radius. The particle Reynolds number (Re,,)
is given as, Re, = 2p;O¢|uy — u,|R,/ps. There is an indirect collective effect
in this drag term: when there is a dense collection of particles passing through
the fluid, the interphase momentum exchange term in equation (3) will cause
u, to approach the particle velocity, u,, thus decreasing the drag on a particle,
a drafting effect. The inter-particle collision scheme is based on the discrete
element approach of Cundall & Strack as given in [9]. This is necessary to keep
the particle centroids from overlapping each other. The interphase momentum
transfer function per unit volume in equation (3) is given as
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N.
1 p
F= Vw;v,k@,(uf—up) 9)

3 Numerical Method

In this work, we modify the numerical scheme for unstructured, arbitrary
shaped elements developed by Mahesh et al. [14] to take into account the fluid
volume fraction. On Cartesian grids in three-dimensions, bilinear interpolation
functions utilizing 26 neighboring grid cells to interpolate Eulerian fields from
the Lagrangian quantities have been used [8, 10]. In an effort to generalize
these interpolations to unstructured, arbitrary shaped elements, we make use
of a Gaussian distribution function centered at the particle centroid as an
interpolation function and is given by,

3
_ Zk:1 (mk - mp,k)2
202

Go(x,%p) = ————exp (10)
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Here we assume that V1 < Ve, and set the filter width to be equal to the
longest diagonal of the control volume (CV) containing the particle. The in-
terpolation operator is applied to all the neighbors of the CV (having at least
one grid node common). Similar interpolation function has been used in the
context of resolved simulations of particles [15]. In addition, G is normalized to
satisfy wa Go (x — xpk)dV = 1, where the integration is performed over all
the neighbors of CV. The final step is necessary to enforce mass (or volume)
conservation. The resulting ©,, will be smooth and mass-conserving as the par-
ticles move from one CV to another. We use an implicit scheme for the fluid
solver, however, the interphase momentum exchange terms are treated ex-
plicitly. The particle equations are integrated using third-order Runge-Kutta
schemes for ode-solvers. At each Runge-Kutta step, the particles were re-
located and the collision force was re-computed. We use the Lagrangian par-
ticle tracking algorithm developed in [3].

4 Results

4.1 Case 1: Gravitational Settling

We first simulate sedimentation of solid particles under gravity in a rectangu-
lar box. Details of this case are given in Table 1. The initial parcel positions
are generated randomly over the box length. These particles are then allowed
to settle through the gas-medium under gravity. The dominant forces on the
particles include gravity and inter-particle/particle-wall collision. As the par-
ticles hit the bottom wall of the box, they bounce back and stop the incoming
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Table 1. Parameter description for gravity-dominated sedimentation.

Computational domain, 0.2 x 0.6 x 0.0275m|Grid, 10 x 30 x 5

Fluid density, 1.254kg/m?> Particle Density, 2500kg/m?
Number of Parcels, 1000 Particles per parcel, 3375
Diameter of particles, 500um Initial particle concentration, 0.2
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Fig. 1. Temporal evolution of particle distribution during gravity-dominated sedi-
mentation.

layer of particles, and finally settle to a close pack limit. The upper mix-
ture interface between the particles and the fluid is closely approximated by
h = gt?/2 [10]. As the particles settle the fluid in the bottom half of the box
starts to move upward giving resistance to the settling particles. The evo-
lution of the mixture interface closely follows the analytical estimate in our
computation.

4.2 Case 2 : Fluidization by Jet

Table 2. Parameter description for the simulation of fluidization by a gas jet.

Computational domain, 0.2 x 0.6 x 0.0275m|Grid, 10 x 30 x 5

Gas jet velocity, 9m/s Jet diameter, 0.04m

Fluid density, 1.254kg/m® Particle Density, 2500kg/m®
Number of Parcels, 2880 Particles per parcel, 3375
Diameter of particles, 500um Initial particle concentration, 0.4

We consider the problem of fluidization of solid particles arranged in an
array at the bottom of a rectangular box. Fluidization is achieved by a jet of
gas from the bottom of the box. The flow parameters are given in Table 2.
The particle motion is mostly dominated by the hydrodynamic drag force
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Fig. 2. Temporal evolution of particle distribution during fluidization by a gas
jet. Initially all particles are uniformly arranged in layers at the bottom of the
rectangular box. Air is injected through a rectangular slot at the bottom wall. Air
bubbles are trapped within the particles and the growth and pattern of these bubbles
are in agreement with simulations by Patankar & Joseph citePatankarJosephO1b.

and collision model should not affect the overall particle motion. The collision
model, however, is important in governing the particle behavior near the walls
and helps prevent the volume fraction from exceeding the close-pack limit.

Figure 2 shows the position of parcels at different times during bubbling
fluidization. The jet issued from the bottom wall pushes the particles away
from the center region and creates a gas-bubble in the center. The particles
collide with each other, against the wall and are pushed back towards the
central jet along the bottom wall. They are then entrained by the jet and
are levitated. This eventually divides the central bubble to form two bub-
bles. The particles tend to move upward and collide with the upper wall
and remain levitated during future times. The computational results are in
good agreement with the simulations of [9]. Similar results are reported using
Eulerian-Eulerian approach in two-dimensions [16].

4.3 Case 3: Fluidization by Lift

Table 3. Parameter description for the simulation of fluidization of spherical par-
ticles in a plane Poisuille flow.

Computational domain, 63 x 12 x 12¢m|Grid, 20 x 11 x 10

Fluid density, 1g/cm? Fluid viscosity, 1poise

Particle Density, 10.0g/cm® Diameter of particles, 0.95¢m
Number of Parcels, 3780 Particles per parcel, 1

Initial array height, 4.75cm, Initial centerline velocity, 360cm/s
Pressure gradient, 20dyne/cm?
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Fig. 3. Temporal evolution of axial velocity contours in a plane Poisuille flow with
particles in the bottom half of the channel.

The transport of particles by fluids in coal-water slurries, hydraulically
fractured rocks in oil-bearing reservoirs, bed-load transport in rivers and
canals and their overall effect on the river bed erosion etc., are important
scientific and industrial issues in particulate flows. In order to understand
fluidization/sedimentation in such conduits, Choi & Joseph [1] performed a
DNS study of fluidization of circular cylinders (300 particles) arranged at the
bottom of a channel in plane Poisuille flow. They observed that with sufficient
pressure gradient across the channel, the particles initially at rest in the lower
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half of the channel start moving and roll over the wall. Particle rotation in a
shear flow generates lift and the channel is fluidized after some time.

The flow parameters are given in Table 3. As opposed to [1], we are per-
forming three-dimensional simulations. The particles initially at rest, acceler-
ate and setup instability waves between the fluid and particle layers. Figure 3
shows the time-evolution of axial velocity contours in the fluid as well as par-
ticle locations in the z = 0 plane. As the fluid is pushed out of the control
volume by motion of particles a vertical pressure gradient is created impart-
ing vertical velocity to the particles and the channel gets fluidized. We also
did several test cases, with higher grid resolution, increased density ratios to
obtain similar results. With increased particle density, the inter-phase mo-
mentum exchange decelerates the fluid in the bottom half of a channel and an
inflection point is created in the axial velocity profile. This eventually causes
lift and particle dispersal. It should be noted that, the mechanism of lift ob-
served in the DNS simulations is different from the one given by the model.
In the model, we do not consider the changes in volume fraction due to par-
ticle rotation, however, the unsteady effects of particle motion are captured
entirely through the particle volume fraction.

5 Discussion

We also simulated all the above cases using the point-particle approach with
collisions [17]. For the first case (gravitational settling), the particle evolution
obtained from point-particles and the finite-size model are similar. This is
mainly because, the flow is gravity and collision dominated and there is no
mean fluid flow. In the cases of fluidization, however, the particle evolutions
are completely different. The patterns observed in figure 2 are absent when
simulated using point-particles. Also, for the Poisuille flow, point-particles do
not predict any lift and fluidization. This indicates that two-way coupling
modeled using point-particles is not sufficient to produce the effects observed
in direct numerical simulations of these flows. In the present formulation where
we account for the volume displacement, the particle volume fraction alters
the flow evolution in three-different ways: a) continuity equation, b) the mo-
mentum equation, and c) the drag force. The blocking effect of particles on
the fluid phase, modeled by the continuity equation alters the fluid flow in
regions of high gradients in volume fraction.

These findings have several implications on LES/DNS of two-phase flows.
As mentioned earlier, the point-particle approach does not reproduce the tur-
bulence attenuation obtained by solid particles in a channel flow even at mod-
erate loadings compared to the experimental observations [4]. For such wall-
bounded flows, the particles near the wall, tend to move slowly due to their
inertia thus increasing their residence time near the wall. Inter-particle and
particle-wall collisions play an important role. The grid resolution in the wall-
normal direction is such that the particle diameter is typically occupied by
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4-5 grid cells near the wall. In addition, due to increased residence times near
the wall, the local particle volume fractions become high and gradients in the
volume fraction field can alter the fluid flow. Prosperetti & Zhang [18] argued
that the effect of volume fraction may be more important than inter-particle
collisions in the near wall regions. As shown in the above case studies, con-
sidering the fluid displaced by the particles in the continuity and momentum
equations has an indirect effect of increased particle loading on the fluid phase.
Segura et al. [4] had to artificially increase the particle loading to match the
experimental data on turbulence modulation. This suggests that the gradients
in volume fraction field near the wall could account for these effects.

Furthermore, applications involving dense flows such as liquid-fuel atom-
ization in automotive and aircraft engines, coal-fired combustion chambers,
and fluidized beds, should account for the finite-size of the droplets/particles
in order to predict the evolution of the fuel mass fractions correctly. As demon-
strated by the last case above, instability waves created by dense fuel flowing
in a lighter fluid can be captured by this model and will allow us to better
represent the important features of primary atomization often neglected in
these simulations [19].

6 Conclusions

In the present study we extend the point-particle approach typically employed
in multiphase flows by accounting for the finite-size of the particles. The pres-
ence of particles affects the fluid phase continuity and momentum equations
through the volume fraction field. Efficient interpolation scheme to obtain Eu-
lerian fields from Lagrangian points on arbitrary shaped, unstructured meshes
has been developed. The numerical technique has been applied to dense par-
ticulate flows such as gravitational settling and fluidization by a gaseous jet.
Finally, we have shown that the present model can predict lift and fluidization
of a plane channel flow with heavy particles arranged in layers at the bottom
of the channel. These effects were captured entirely due to the fluid volume
displaced by the particles and were not observed using the point-particle ap-
proach. Based on this study, we propose that for moderate loadings, the stan-
dard point-particle approach should be modified to account for the finite-size
of the particles. Further investigations on turbulent flows at moderate to high
particle loadings are necessary.
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