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ABSTRACT
We discuss development of a numerical algorithm, and

solver capable of performing large-eddy simulation (LES) in
geometries as complex as the combustor of a gas-turbine en-
gine. The algorithm is developed for unstructured grids, is
non-dissipative, yet robust at high Reynolds numbers on highly
skewed grids. Results from validation in simple geometries is
shown along with simulation results in the exceedingly complex
geometry of a Pratt & Whitney gas turbine combustor.

NOMENCLATURE
A f face area
cv1, cv2 cells that have in common a particular face f; the out-

ward normal n points always from cv1 to cv2
k time level
le length of edge
ni components of unit vector

�
n normal to the face

NL convective term in Navier Stokes equations
ui velocity components defined at cell centers
ûi predicted velocity components defined at cell centers
p pressure potential
V cell volume
VISC viscous term in Navier Stokes equations
vn normal velocity component defined at face centers
vt tangential velocity component along the edge in 2D
v̂ predicted normal velocity component defined at face centers
φ scalar defined at cell centers

�
Address all correspondence to this author.

ω vorticity

INTRODUCTION
The Navier-Stokes equations for incompressible flow are

∂ui

∂t
� ∂uiu j

∂x j

��� ∂p
∂xi

� ν
∂2ui

∂x jx j
;

∂ui

∂xi

� 0 � (1)

Large-eddy simulation (LES) is a computational approach where
one filters the unsteady Navier-Stokes equations in space, and
then numerically solves for the large-scales of motion, while
modeling the effect of the filtered scales. Assuming that the spa-
tial filter commutes with the spatial and temporal derivatives, the
LES equations for the filtered velocity and pressure are
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where τi j
� uiu j

� uiu j is the subgrid stress, and is modeled.
There is considerable general incentive to develop LES on

unstructured grids. However, LES on unstructured grids requires
development of the appropriate numerical methods. Specifically,
the numerical methods used to solve the RANS equations are
not directly applicable to LES. RANS typically uses upwinded
numerical methods; upwinding provides numerical dissipation,
which makes the solution-procedure robust. However, when used
for LES, upwinding severely compromises accuracy (e.g. [1]) ,
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since the numerical dissipation competes with, and often over-
whelms the physical dissipation of the subgrid model.

By definition, the dissipative scales are not resolved by the
grid in a LES. In practice this leads to numerical instability if
straight-forward non-dissipative central-difference schemes are
used. One solution to this problem is to develop non-dissipative
numerical schemes that discretely conserve not only first order
quantities such as momentum, but also second - order quanti-
ties such as kinetic energy [2–5] . Discrete energy conservation
ensures that the flux of kinetic energy, ∑cvs ui∂ 
 uiu j �
� ∂x j only
has contributions from the boundary faces. This makes the so-
lution robust without the use of numerical dissipation. Note that
satisfying one constraint discretely, does not ensure the other -
both constraints have to be simultaneously enforced when deriv-
ing the algorithm. The Harlow-Welch algorithm [6] possesses
this property on structured grids, and has therefore been widely
used for LES on structured grids in simple geometries. We have
developed a numerical method suitable for LES on unstructured
grids that has been implemented on massively parallel computers
[7–9]. The development was evolutionary and is summarized be-
low. First, the Harlow-Welch formulation was generalized to un-
structured grids using a rotational form of the convection terms.
While elegant, this formulationwas found lacking when extended
to three-dimensions. In particular its restriction to tetrahedral el-
ements, and lack of robustness on skewed grids were serious lim-
itations. An alternative formulation was therefore derived which
can be applied to arbitrary elements. Robust yet accurate solu-
tions are now obtained at high Reynolds numbers in very com-
plex geometries on highly skewed grids. Details follow.

STAGGERED ROTATIONAL FORMULATION
We describe below the spatial discretization of the two-

dimensional incompressible Navier-Stokes equations on an un-
structured grid of triangles. The formulation is a conceptual ex-
tension of the popular staggered formulation on structured grids
[6]. Figure 1 shows a single triangular element. Note that the
pressure is stored inside the element (at the circumcenter), while
the velocities normal to the edges of the triangle are stored at the
edge-centers.

Denoting the edge-normal velocity by vn , we have:

∂vn

∂t � 
��u � �ω ��� �n � ∂
∂n

� �u � �u
2 ����� 1

ρ
∂p
∂n
� ν � ∇2 �u � � �n (3)

We have ∇2 �u ��� ∇ � �ω � ∇ 
 ∇ � �u ��� Also in two dimensions,
��u � �ω ��� �n � ωvt .
If the velocity field is divergence-free, this implies that�

∇2 �u � �n �!� ∂ω
∂st

. where ∂
st

denotes the tangential derivative.
To time-advance the momentum equation, we therefore need the
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Figure 1. THE STAGGERED POSITIONING OF VARIABLES ON AN

UNSTRUCTURED MESH OF TRIANGLES IS CONTRASTED WITH

THAT ON A STRUCTURED MESH.
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Figure 2. ILLUSTRATION OF THE DUAL MESH USED TO COMPUTE

THE VORTICITY AT THE NODES.

vorticity at the nodes and the edge-centers, tangential velocity at
edge centers, total kinetic energy and pressure at the cell-centers.

The vorticity at the nodes is computed using Green’s the-
orem i.e. / A ωdA � / C �u � d �l � The area over which the integra-
tion is performed is shown in Fig. 2, and is obtained by join-
ing the circumcenters of the triangles that surround the node. It
is easily seen that the velocity components parallel to the edges
of this area are normal to the edges of the triangles that make up
the area. The vorticity at the node ‘n’ is therefore computed as
ω � 1

Adual
∑edges vnle 0 dual. where the length of the edges of the

dual mesh is the distance between the circumcenters of the trian-
gles that constitute the dual mesh.

Once the nodal vorticities are known, the vorticity at the
edge-centers may be computed as the average of the vorticity at
the corresponding nodes. Also the tangential derivative of the
vorticity at the edge-center may be computed as the difference of
the nodal vorticities divided by the edge length. These approx-
imations are second-order accurate in the edge length. The tan-
gential velocities at the edges are obtained by interpolating from
neighboring edges. A fractional step approach for the pressure is
derived as follows. Denote the nonlinear terms by NL and the vis-
cous terms by V , and use the Adams-Bashforth method for both.
Ignoring the pressure p in the first fractional step, we get1

v � vk
n

∆t � 1
2 2 3 
 NL � VISC � k � 
 NL � VISC � k 0 1 3 (4)
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vk 5 1
n 687v

∆t 9 6 ∂pk 5 1

∂n
(5)

We require that the divergence of the velocity field at tk 5 1 be zero;
i.e Av∇ :<;u 9 ∑e vnele 9 0. Equation (5) therefore implies that

1
∆t ∑e

vk 5 1
n le 6 1

∆t ∑
e
7vle 9 6 ∑

e

∂pk 5 1

∂n
le (6)

which along with the continuity constraint requires that the pres-
sure p ( more exactly the pressure potential) satisfy

∑
e

∂pk 5 1

∂n
le 9 1

∆t ∑e
7vle (7)

Since p is stored at the circumcenter of the volume, its gradient
normal to the edge is easily computed. This yields a set of discrete
equations for p that are then solved. These discrete equations are
of the form,

c = i > φ = i >�? 3

∑
j @ 1

c = i A j > φ = j > 9 rhs = i > (8)

where the sum over j is a sum over the three volumes (faces in
2D) that are neighbors of volume, ‘i’. Equation (8) is easily writ-
ten for the interior volumes. However, when it is applied to a
boundary volume, it appears that the gradient of p at the boundary
is required. However this is not the case [10]; this requirement
can be circumvented as follows. The divergence-free condition
requires that

∑
edgeso fCV

vnele 9 0; i B e B ∑
interior edges

vnele 9 6 vnb leb B (9)

where the subscript ’b’ refers to the boundary faces. This implies
that the pressure equation for the boundary elements may be ob-
tained by summing Eqn. (8) over the interior edges alone, and us-
ing Eqn. (9) to relate the interior sum of the velocity to the normal
velocity at the boundary; i.e.

∑
interior edges

∂pk 5 1

∂n
le 9 1

∆t ∑
interior edges

7vle ? 1
∆t

vnbleb B (10)

This eliminates the need for boundary conditions on p.
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Figure 3. UNSTRUCTURED RESULTS (SOLID LINES) ARE COM-

PARED TO RESULTS FROM GHIA ET AL. (symbols). THE REYNOLDS

NUMBER IS 5,000. (a) VERTICAL PROFILE OF STREAMWISE VELOC-

ITY AT X C D 9 0 B 5 (b) STREAMWISE PROFILE OF VERTICAL VELOC-

ITY COMPONENT AT Y C D 9 0 B 5 (c) VORTICITY AT THE TOP BOUND-

ARY.

Validation

We consider the steady laminar flow in a two-dimensional
driven cavity at a Reynolds number of 5,000. Results from [11]
are used for validation in Fig. 3. The quantities validated in-
clude velocity profiles and the vorticity at the center of the pri-
mary vortex. The unstructured grid is seen to allow fewer points
to be used; at a Reynolds number of 5,000, comparable results
were obtained using 10576 nodes (30,925 triangles) as compared
to 66,049 nodes (65,536 Cartesian elements) in Ghia et al’s com-
putations. Very good agreement with Ghia’s results is observed.
No attempt was made to optimize the unstructured grids.
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Extension to three-dimensions

The algorithm is extended to tetrahedral elements as follows.
The pressure and any scalars are stored at the circumcenter of the
tetrahedron. The velocity component normal to each face, vn is
stored at the circumcenter of each face. The convection term is
computed in rotational form as E�Fu G Fω H�IJFn K vt I�E ωt GLFn H�M The tan-
gential velocity component vt is obtained by interpolating from
the neighboring faces, and there are two steps to obtaining the
vorticity components in the plane of each face. First, the circu-
lation theorem is invoked to obtain the vorticity along each edge
of the face. This vorticity is then projected along the tangential
basis vectors on the face, and averaged to obtain ωt at the face
circumcenter. The circulation theorem is applied on a closed cir-
cuit around each edge. This circuit is obtained by joining the cir-
cumcenters of the tetrahedra to which this edge belongs. This is
made possible by the fact that the property of the circumcenter
that all such segments will lie in the same plane. The circulation
theorem Adualω K ∑dual edges vnle dual yields the vorticity compo-
nent along the edge. The edge-vorticities are interpolated to ob-
tain the tangential vorticity components at the face circumcenter.
The viscous term is obtained from the edge-vorticities using the

identity, Af N F∇ G Fω OLIPFn K ∑e ωle, where ω is the vorticity com-

ponent along the edges previously computed, and le denotes the
length of the edges of the face.

Problems with formulation

While elegant, the above formulation has some limitations.
It is restrictive in that pressure (and scalars if any) is stored at the
circumcenter of the triangular elements. This restricts the grid to
elements whose circumcenter lies within them. For example, in
two-dimensions, consider right-triangles. Their circumcenter lies
on the hypotenuse, making it impossible to determine the pres-
sure gradient normal to the hypotenuse. Highly skewed elements
are another source of problem since the circumcenter will now lie
outside the element. Although projection of the velocity field is
still possible in this situation, the inaccurate computation of the
pressure gradient is cause for concern.

Another more fundamental limitation concerns the restric-
tion of the algorithm essentially to tetrahedra. While well-suited
to grid very complex geometries, experience shows that hexahe-
dral elements are better suited for unsteady computations since
(i) hexahedral elements are more easily aligned with flow gradi-
ents such as boundary layers, and (ii) it takes fewer hexahedral
elements to fill space than comparable tetrahedra. For example,
a three-dimensional grid generated for a Pratt and Whitney gas-
turbine combustor required a tetrahedral grid with approximately
600,000 nodes and 6.35 million faces (normal velocities to be
solved) while a hexahedral grid with only 1.5 million nodes and
faces yielded significantly higher resolution near the walls.

NON-STAGGERED FORMULATION
An alternative approach was therefore derived. The basic

idea is that the robustness at high Reynolds numbers is deter-
mined essentially by the convection term, while robustness on
skewed grids is determined by both convection and the pressure
gradient term. A formulation is derived that emphasizes energy
conservation for the convection term on arbitrary grids. Accord-
ingly, the cell velocities ui and the face-normal velocities vn are
treated as essentially independent variables. This storage is sim-
ilar to that used in [12] to suppress odd-even decoupling in a
colocated formulation. Then, one can construct a formulation in
which the convective term is discretely energy conserving. The
concept can be illustrated for a scalar φ defined at the cell centers.
The velocity components ui will play the role of the scalar φ. It
is readily shown that if the passive scalar φ satisfies the equation

∂φ
∂t Q ∂

∂xi
φui K 0 (11)

then φ2 satisfies the same equation

∂φ2

∂t Q ∂
∂xi

φ2ui K 0 M (12)

if the velocity field is divergence-free. We would like to have the
same property for the discrete case. Integrating Eqn. (12), we
get V dφcv

dt Q ∑faces φfvnA f K 0 where V denotes the cell volume.
This discrete equation has the same conservative property for φ2

if φf KRE φcv1 Q φcv2 S 2 H and ∑facesofcv vnA f K 0. Here cv1 and cv2
are the two cells that shear a particular face. This observation is
extended to the Navier-Stokes equations by computing the con-
vection term in a similar manner. Note that the symmetry of the
interpolation is retained even on non-uniform grids. This makes
the solution robust on skewed grids since the discretization does
not ‘see’ the underlying rough grid. As the results will show, this
robustness results in no visible degradation of accuracy.

The convection term computed in the above manner yields a
predicted value for the cell velocities Tui. These predicted veloci-
ties are interpolated to obtain a prediction for the face-normal ve-
locities Tv. The face-normal velocities are projected using vn U Tv KU ∂p

∂n and the pressure (p is in fact the pressure multiplied by the
time step) is obtained from the discrete Poisson equation that re-
sults. The gradient of p at the cell-centers is then used to update
the cell velocities; i.e. ui K�Tui U ∂p

∂xi
.

It turns out that the details of how ∂p
∂xi

are computed, affect
the robustness of the solution on highly skewed grids. An obvi-
ous approach to computing the gradient at cell-centers is to use
the gradient theorem; ∂p

∂xi
K 1

V ∑faces pfA f ni. When applied to
flows such as homogeneous turbulence, turbulent channel flow
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and even a coaxial combustor for which the grids are very regu-
lar, very accurate results are obtained. However when applied to
highly skewed grids such as those in the Pratt & Whitney com-
bustor, unstable solutions are obtained. This behavior is found at
both high and low Reynolds numbers, pointing to the pressure-
gradient as the source of the problem. It is readily seen that for
a staggered formulation the pressure term in the discrete kinetic
energy equation, in which we performed summation over all the
cells of the computational domain, can be written as:W ∑

CV
∑

f aces o f cv1

vnA f X pcv1
W p f ace Y[Z

∑
CV

∑
f aces o f cv1

vnA f p f
W ∑

CV

pcv1 ∑
f aces o f cv1

vnA f

The second term in the last expression is zero due to the continuity
equation that is satisfied in discrete form, while in the first term
we are left only with contributions from the boundary faces, as
for the interior faces each face is counted twice, once as a face of
cv1 and once as a face of cv2, vn changes sign and p f is just a
scalar. So the pressure term contains only contributions from the
boundary faces:

∑
boundary f aces

vnA f p f ace (13)

However in the collocated formulation this is not necessarily
true,

ui
W]\ui Z W ∂p

∂xi ^
∑
cv

ui ∑
faces of cv1 _ pcv1 ` pcv2

2 a niA f Z
∑
cv

ui

2 ∑
faces of cv

pcv2A f ni

as the last term does not reduce to summation over the bound-
ary cells. This is because pressure is not obtained by taking the
discrete divergence of the above equation; doing so will result in

odd-even decoupling. As a result, 1
2 b ∂pcv1

∂xi
` ∂pcv2

∂xi c ni dZ ∂p
∂n at the

faces. The pressure gradient term is therefore no longer discretely
energy conserving. We therefore developed the following solu-
tion. Once p is known, ∂p

∂xi
is computed such that for each cell,

∂p
∂xi

ni at the faces equals ∂p
∂n in a least squares sense. The result-

ing algorithm is found to be both robust on highly skewed grids
as well as accurate.

Results
Flow over a circular cylinder The flow over a circular

cylinder is chosen as an example of external flow. DNS was per-
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Figure 4. VERTICAL PROFILES AT STREAMWISE STATIONS BE-

HIND A CYLINDER AT Re Z 300. THE UNSTRUCTURED SOLU-

TIONS ( ) ARE COMPARED TO THE B-SPLINE-FOURIER SIM-

ULATIONS OF KRAVCHENKO AND MOIN ( e ) AND SPECTRAL SIMU-

LATIONS OF MITTAL AND BALACHANDAR ( f ).

formed at a cylinder Reynolds number of 300, and LES was per-
formed at a Reynolds number of 3,900. Only the Re = 300 DNS is
shown here in the interest of brevity. An unstructured grid of 1.2
millionhexahedral control volumes was generated. The spanwise
domain was πD in extent, and was spanned by 32 volumes. The
unstructured capability was used to cluster points in the bound-
ary layer and the wake. The simulation results (mean velocity
and components of the Reynolds stress tensor at different sec-
tions downstream of the cylinder) are compared in Fig. 4 to the
B-spline-Fourier computations by Kravchenko and Moin [14],
and the spectral computations of Mittal and Balachandar [13] and
good agreement is observed.

5 Copyright c
g

2003 by ASME



Pratt & Whitney gas turbine combustor Simulations
were performed in the exceedingly complex geometry of a com-
bustor corresponding to a Pratt & Whitney gas-turbine engine.
The geometry was provided in IGES format. Experimental data
for mass-splits and pressure drop across the injector was used for
validation. The Reynolds number in the pre-diffuser based on
the bulk velocity and cross-section was 500 h 000; values in in the
main (core) swirler channel were 150 h 000. Turbulent fluctuations
from a separate calculations in a pipe sector of identical shape as
the pre-diffuser inlet section were fed at the inlet. Figure 5 shows
the very complex flow pattern inside the main combustion cham-
ber due to the interactions among the swirling jets exiting the in-
jector and the jets entering the combustion chamber through the
inner and outer dilutionholes. Table 1 compares LES predictions
of the flow splits to experiment; good agreement is observed.

Location LES Error LES Error

% wrt expt. % wrt inlet

OD dilution hole 3.1 0.8

ID dilution hole 3.5 0.5

Core (main swirler) 10.3 0.14

Second (OD) swirler 7.5 0.35

Third (Guide) swirler 0.4 0.02

Table 1. COMPARISON TO EXPERIMENT OF MASS FLOW SPLITS IN

THE PRATT & WHITNEY COMBUSTOR GEOMETRY.

Summary

We have discussed development of a numerical algorithm,
and solver capable of performing large-eddy simulation (LES)
in geometries as complex as the combustor of a gas-turbine en-
gine. The algorithm is developed for unstructured grids, has non-
dissipative convection, and yet is robust at high Reynolds num-
bers on highly skewed grids. Results from validation in simple
geometries is shown along with simulation results in the exceed-
ingly complex geometry of a Pratt & Whitney gas turbine com-
bustor.

Figure 5. INSTANTANEOUS VELOCITY MAGNITUDE CONTOURS IN

THE COMBUSTOR GEOMETRY.
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