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This paper presents a new dynamic one equation eddy viscosity model for LES of com-
pressible flows. Based on the compressible version of dynamic Smagorinsky model (DSM),
the transport equation for sub-grid scale (SGS) kinetic energy (KE) is introduced to predict
SGS KE, instead of the commonly used Yoshizawa’s model. The SGS KE transport equa-
tion for compressible flow is derived, and the unclosed terms in the compressible energy
equation are modeled and dynamically closed using the Germano identity. The proposed
model is then incorporated into the parallel finite volume Navier-Stokes solver on un-
structured grids developed by Park & Mahesh (2007) and applied to decaying isotropic
turbulence and normal shock/isotropic turbulence interaction.

Nomenclature

k = Sub-grid scale kinetic energy
τij = Sub-grid scale stress tensor
σij = Viscous stress tensor
Sij = Rate of strain tensor
δij = Kronecker delta
R = Specific gas constant
Cp = Specific heat at constant pressure
µ = Viscosity
Pr = Prandtl number
λ = Taylor micro scale
ϵ = Dissipation
M = Mach number
Re = Reynolds number

I. Introduction

Large-eddy simulations directly calculate the large-scale motions of the flow fields from the filtered
Navier-Stokes equations, and model the unresolved motions. The dynamic Smagorinsky model (DSM),

introduced by Germano et al.,1 has been successfully applied to the LES of incompressible flows. It provides
a systematic method (Germano identity) of obtaining the closure coefficient Cs in the Smagorinsky’s eddy
viscosity model.2 Moin et al.3 extended the DSM model to compressible flows. Different from incompress-
ible flows, the sub-grid scale kinetic energy has to be modeled explicitly. For compressible LES, Moin et
al. use Yoshizawa’s model4 for SGS KE. However, it is well known5,6 that Yoshizawa’s model tends to
under-predict the magnitude of SGS KE. Obtaining the SGS KE from its transport equation has shown
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improved performance for incompressible flows.7,8 Therefore, we develop a compressible version of the DSM
model with SGS KE equation. The SGS KE transport equation for compressible flow is derived, and the
unclosed terms in the compressible KE equation are modeled and dynamically closed using the Germano’s
identity. The proposed model is incorporated with the parallel finite volume Navier-Stokes solver on unstruc-
tured grids developed by Park & Mahesh6 (2007) and applied to decaying isotropic turbulence and normal
shock/isotropic turbulence interaction.

II. LES Modeling Background

LES is based on the concept of decomposing flow variables into the resolved (filtered) terms and the
subgrid scale (residual) ones. For example, any flow variable can be decomposed as

ϕ (x) = ϕ̄ (x) + ϕ′ (x) (1)

where,

ϕ̄ (x) =

∫
Ω

G∆ (x, y)ϕ (y) dy (2)

denotes the spatial filtering of ϕ (x). G∆ (x, y) is called the kernel of the filter which satisfies the normalization
condition ∫

Ω

G∆ (x, y) dy = 1. (3)

In practice, the filter is usually the grid filter with unknown filter width ∆ and kernel G, especially for
unstructured grids. The filtered quantities are solved numerically from the filtered governing equations,
which provides an approximation to the large-scale motions in the flow fields. Within the filtered governing
equations, there are subgrid scale stress terms representing the influence of subgrid scale motions on the
resolved field. These subgrid scale terms can not be calculated directly and thus are modeled in terms of
resolved quantities, for closure.

A. The Filtered Navier-Stokes Equations

For compressible flow, the density weighted (Favre) filtering is applied, i.e., for any quantities, the Favre-
filtering is defined as

ϕ̃ =
ρϕ

ρ̄
. (4)

When Favre-filtered, the spatially filtered compressible Navier-Stokes equations take the form of

∂ρ̄

∂t
= −∂ (ρ̄ũj)

∂xj
,

∂ (ρ̄ũi)

∂t
= − ∂

∂xj
(ρ̄ũiũj + p̄δij − σ̃ij + τij) , (5)

∂

∂t

(
ρ̄Ẽ
)

= − ∂

∂xj

(
ρ̄Ẽũj + p̄ũj − σ̃ij ũi −Qj + qj

)
+H, (6)

p̄ = ρ̄RT̃

where ρ, ui, p, E are density, velocity, pressure and specific total energy, respectively. The viscous stress σ̃ij

and heat flux Qj are given by
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σ̃ij = µ

(
∂ũi

∂xj
+

∂ũj

∂xi
− 2

3

∂ũk

∂xk
δij

)
, (7)

Qj = κ
∂T̃

∂xj
(8)

here µ is the molecular viscosity and κ is the thermal conductivity. And

τij = ρ̄ (ũiuj − ũiũj) , (9)

qj = Cp

(
ρ̄T̃ uj − ρ̄T̃ ũj

)
, (10)

are the SGS stress and SGS heat flux, respectively. The expression for H in equation (6) is

H =
∂

∂xj

[
1

2

(
ρ̄ũiuiũj − ρ̄ũiuiuj

)]
+

∂

∂xj

[
µ̃
∂k

∂xj

]
+

[
µ
∂ui

∂xj

∂uj

∂xi
− µ̃

∂ũi

∂xj

∂ũj

∂xi

]

+
∂

∂xj

[
1

3

(
µuj

∂uk

∂xk
− µ̃ũj

∂ũk

∂x̃k

)]
−

[
µ

(
∂uk

∂xk

)2

− µ̃

(
∂ũk

∂xk

)2
] (11)

where, k in equation (11) is the SGS kinetic energy defined by

ρ̄k =
1

2
τkk =

1

2
ρ̄
(
ũkuk − ũkũk

)
. (12)

Several assumptions have been made to derive the above equations. Firstly, the filtering operations and
derivatives are assumed to be commutable. Secondly, the viscosity µ and thermal conductivity κ are insen-
sitive to filters of different levels, and are taken out of the filtering operations.

All of the SGS stress, SGS heat flux and most of the terms in equation (11) can not be computed directly
from the resolved quantities. Models for these terms are discussed below.

B. Dynamic Smagorinsky Model (DSM)

In the compressible version of DSM, the H term defined by equation (11) is omitted. The SGS stress and
SGS heat flux terms are modeled by

τij −
δij
3
τkk = −2Csρ̄∆

2|S̃|S̃∗
ij (13)

qj = −ρ̄
Cs∆

2|S̃|
PrT

∂T̄

∂xj
(14)

and Yoshizawa’s formula is used to model τkk or SGS kinetic energy, k, effectively. Namely,

τkk = 2CI ρ̄∆
2|S̃|2 (15)

where |S| =
√
2SijSij and S∗

ij = Sij − 1
3Skkδij . Model coefficients Cs, CI , PrT are determined dynamically

by the Germano identity, which assumes similarities of SGS quantities between the grid filter level and test
filter level. To be exact, for any terms that take the form of a = αβ − ᾱβ̄, we assume that, on the test filter

level, A = α̂β − ̂̄α̂̄β holds. The Germano identity is then defined by L = A − â = ̂̄αβ̄ − ̂̄α̂̄β, which can be
calculated from the resolved variables. Assume the model for a is a = C ·m, where m is a function of the
resolved (grid filter level) quantities; then in the test filter level, A = C ·M , where M takes similar form as
m but is a function of the test-filtered quantities. Plug in the models for A and a, Germano identity becomes

L = ̂̄αβ̄ − ̂̄α̂̄β = C (M − m̂) . (16)
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Both sides of equation (16) are directly calculable from the resolved variables, thus the model coefficient C
can be solved dynamically as

C =
̂̄αβ̄ − ̂̄α̂̄β
(M − m̂)

, (17)

making C adaptable to time and space. Finally, to avoid computational instability, C is regularized using a
combination of least-square10 and volume averaging, e.g. the formula for the model coefficient of SGS stress
Cs is

Cs∆
2 =

1

2

⟨
L∗
ijM

∗
ij

⟩⟨
M∗

ijM
∗
ij

⟩
where

Lij =
̂(
ρui ρuj

ρ̄

)
− ρ̂ui ρ̂uj

ˆ̄ρ
(18)

L∗
ij = Lij − Lkkδij

M∗
ij = ρ̄|̂S̃S̃∗

ij | − ˆ̄ρ

(
∆̂

∆

)2

|̂̃S| ̂̃S∗
ij .

Here, ⟨·⟩ denotes spatial average over homogeneous directions and ·̂ denotes the test filtering. For the formula
of Prt in the SGS heat flux qj and any other details about the compressible DSM please refer to Moin et
al.’s work.3

III. Dynamic SGS k-Equation Model

Instead of using Yoshizawa’s model (Eq. (15)) for SGS KE, its transport equation is introduced in the
dynamic SGS k-equation model. It has been shown7,8 that DSM with SGS k-equation model gives better
performance in LES of incompressible flows. Thus, we extend this idea to compressible flows. Consider the
SGS KE transport equation first.

A. SGS KE Transport Equation

The SGS KE equation can be derived by subtracting the product of filtered velocity and the filtered mo-
mentum equation from the filtered product of velocity and momentum equation, i.e.,

˜[ui × (momentum equation)]− ũi × ˜(momentum equation)

After reduction and rearrangement of the above equation, the SGS KE equation can be obtained as
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∂ρ̄k

∂t
= −∂ρ̄kũj

∂xj
−R

∂qj
∂xj

+
∂τij ũi

∂xj
− τijS̃ij +

∂

∂xj

[
µ̃
∂k

∂xj

]

+
∂

∂xj

[
1

2
ρ̄
(
ũiuiũj − ũiuiuj

)
+

1

3

(
µuj

∂uk

∂xk
− µ̃ũj

∂ũk

∂x̃k

)]

−
(
µ
∂ui

∂xj

∂ui

∂xj
− µ̃

∂ũi

∂xj

∂ũi

∂xj

)
− 1

3

[
µ

(
∂uk

∂xk

)2

− µ̃

(
∂ũk

∂xk

)2
]

+

(
p
∂uk

∂xk
− p̄

∂ũk

∂xk

)
+

∂

∂xj

[
µ
∂
(
1
2uiui

)
∂xj

− µ̃
∂
(
1
2 ũiui

)
∂xj

]

+

[(
ui

∂uj

∂xi
− uj

∂uk

∂xk

)
∂µ

∂xj
−
(
ũi

∂ũj

∂xi
− ũj

∂ũk

∂xk

)
∂µ̃

∂xj

]

. (19)

where k, τij , qj are SGS kinetic energy, SGS stress and SGS heat flux defined by equation (12), (9) and (10),
respectively. Sij is rate of strain tensor. Equation (19) is the exact form of the SGS KE equation. The only
assumption has been made is the commutability of derivative and filtering operations. For simplicity, the
last two terms are neglected. The resulting SGS KE equation is

∂ρ̄k

∂t
= −∂ρ̄kũj

∂xj
−R

∂qj
∂xj

+
∂τij ũi

∂xj
− τijS̃ij +

∂

∂xj

[
µ̃
∂k

∂xj

]

+
∂fj
∂xj

− ϵs − ϵc +Π

(20)

where

fj =
1

2
ρ̄
(
ũiuiũj − ũiuiuj

)
+

1

3

(
µuj

∂uk

∂xk
− µ̃ũj

∂ũk

∂x̃k

)
, (21)

ϵs = µ
∂ui

∂xj

∂ui

∂xj
− µ̃

∂ũi

∂xj

∂ũi

∂xj
, (22)

ϵc =
1

3

[
µ

(
∂uk

∂xk

)2

− µ̃

(
∂ũk

∂xk

)2
]
, (23)

Π = p
∂uk

∂xk
− p̄

∂ũk

∂xk
, (24)

are transport (triple correlation + dilatational diffusion), SGS dissipation, dilatational dissipation, pressure
dilatation terms. These terms are to be modeled for closure.

B. Residual Term H in Filtered Total Energy Equation

In almost all of the LES modeling of compressible flows, the residual term H in the filtered energy equation
(6) is omitted, partially because there are too many unclosed terms in H adding the complexity of modeling.
However, for the SGS k-equation model, we can take into account all of the terms of H without adding extra
computation and modeling cost. Recall equation (11) for the expression of H,
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H =
∂

∂xj

[
1

2

(
ρ̄ũiuiũj − ρ̄ũiuiuj

)]
+

∂

∂xj

[
µ̃
∂k

∂xj

]
+

[
µ
∂ui

∂xj

∂uj

∂xi
− µ̃

∂ũi

∂xj

∂ũj

∂xi

]

+
∂

∂xj

[
1

3

(
µuj

∂uk

∂xk
− µ̃ũj

∂ũk

∂x̃k

)]
−

[
µ

(
∂uk

∂xk

)2

− µ̃

(
∂ũk

∂xk

)2
]
.

H has a lot of terms common with the SGS KE tranport equation (20). All terms, except the third one,

ϵ∗ = µ
∂ui

∂xj

∂uj

∂xi
− µ̃

∂ũi

∂xj

∂ũj

∂xi
, (25)

reappear in the SGS KE transport equation. Note that ϵ∗ has very similar form as ϵs in equation (22), and
will be modeled similarly. The filtered total energy equation can be re-written as

∂

∂t

(
ρ̄Ẽ
)
= − ∂

∂xj

(
ρ̄Ẽũj + p̄ũj − σ̃ij ũi −Qj + qj

)
+

∂

∂xj

[
µ̃
∂k

∂xj

]
+

∂fj
∂xj

− ϵ∗ − 3ϵc (26)

C. SGS Modeling

Similar to the standard dynamic Smagorinsky model, eddy viscosity and eddy diffusivity models are used
for the SGS tress τij and the SGS heat flux qj , respectively. However, with the SGS KE equation,

√
k is

chosen as the velocity scale instead of ∆|S̃|, i.e.

τij −
2

3
ρ̄kδij = −2Cs∆ρ̄

√
k

(
S̃ij −

1

3
S̃kkδij

)
, (27)

qj = − µt

Prt

∂T̃

∂xj
= −Cs∆ρ̄

√
k

Prt

∂T̃

∂xj
. (28)

Here, again, Cs and Prt are the model coefficients that are determined dynamically by Germano’s identity.
The closure of energy equations requires models for fj , ϵs, ϵ

∗, ϵc and Π. We propose the following models
for these terms.

fj = Cf ρ̄∆
√
k
∂k

∂xj
, (29)

ϵs = Cϵsρ̄k
3/2∆−1, (30)

ϵ∗ = Cϵ∗ρ̄k
3/2∆−1, (31)

ϵc = CϵcM
2
t ρ̄k

3/2∆−1, (32)

Π = CΠ∆
2 ∂p̄

∂xj

∂2ũk

∂xj∂xk
(33)

where Cf , Cϵs, Cϵ∗, Cϵc, CΠ are closure coefficients to be determined dynamically; ∆ is the nominal filter

width; Mt =
√
2k
a is the SGS turbulent Mach number, where a is the mean speed of sound. The above models

mostly originate from RANS models for turbulent kinetic energy. Models for fj , ϵs are adapted from the
models of corresponding terms for incompressible SGS KE equations,7 while ϵ∗ is modeled analogously to ϵs.
Model for dilatational dissipation term ϵc is from Sakar et al.,11,12 and the model for pressure dilatational
term Π is based on series expansion. For any term that has the structure of fg − f̄ ḡ, on a uniform grid
(dx = dy = dz), Bedford and Yeo13 show that
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fg − f̄ ḡ = 2α
∂f̄

∂xk

∂ḡ

∂xk
+

1

2!
(2α)

2 ∂2f̄

∂xk∂xl

∂2ḡ

∂xk∂xl

+
1

3!
(2α)

2 ∂3f̄

∂xk∂xl∂xm

∂2ḡ

∂xk∂xl∂xm
+ ...

(34)

where

α(y) =

∫ ∞

−∞
x2G(x, y) dx (35)

and G(x, y) is the kernel of the filter. For a box filter, α = ∆2/24. In practice, α is approximated by
α = C∆2, and C is absorbed in the model coefficient CΠ.

Most of the model coefficients can be dynamically computed through Germano identity. The detailed
formulations are omitted here, please refer to section II - B for the generalized procedures. However, since
the model for SGS dissipation ϵs does not scale well across filters, the Germano identity for ϵs yields very
small values of Cϵs which considerably under-predicts the magnitude of ϵs causing incorrect evolution of SGS
kinetic energy. To circumvent this problem, instead of using Germano identity, which assumes similarity of
SGS stresses between the grid filter level and the test filter level, we use the analogy between the grid-filter-
level SGS stress and Leonard stress Lij across the test filter level.8 Specifically, in Germano identity, the
SGS stress in the test filter level is assumed to be

Tij = ûiuj − ûi ûj . (36)

However, Menon et al. use
Tij = ûi uj − ûi ûj , (37)

which is the Leonard term Lij in Germano identity. The counterpart of Lij for compressible flow is defined
by equation (18). We apply similar dynamic procedures to the calculation of coefficient Cϵs in the model of
ϵs, and obtain reasonable values of Cϵs and correct decaying rate of SGS kinetic energy of temporal decaying
isotropic turbulence. Note that this method is only for Cϵs and Cϵ∗, the Germano identity is used for all the
other terms.

IV. Results and Discussion

The dynamic SGS k-equation model is incorporated into the parallel finite volume Navier-Stokes solver
on unstructured grids developed by Park & Mahesh6 (2007) and applied to decaying isotropic turbulence
and normal shock/isotropic turbulence interaction problems.

A. Decaying Isotropic Turbulence

Spatial averaging over homogeneous directions are applied during the dynamic procedures. Two cases are
considered here, both of which are simulated on a 323 periodic cubical domain.

Case 1:

The initial spectrum obeys

E(k) = 16

√
2

π

u2
0

k0

(
k

k0

)4

exp
(
−2k2/k20

)
(38)

where k0 = 5 and u0 = 1. The initial micro-scale Reynolds number Reλ = urmsλ/ν = 100, where λ is the
Taylor microscale. The initial turbulent Mach number is set to be Mt = 0.1. The initial condition for SGS
kinetic energy is calculated from Yoshizawa’s model. Figure 1 compares the total kinetic energy decay and
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Figure 1. Resolved total energy decay (a) and energy spectrum (b) at t = 4te.

the energy spectrum at time t = 4te from k-equation model with those from compressible DSM and dealiased
pseudo-spectral code for incompressible flow. Here, te is the eddy turn-over time defined as te = λ/urms. In
the figure the resolved kinetic energy is normalized with its initial value, while the time is scaled with the
eddy turn-over time te.

The new dynamic k-equation model shows slightly better result than DSM which is known to be a good
model for decaying isotropic turbulence problems. Since Yoshizawa’s model under-predict the SGS kinetic
energy which is taken as the initial value for k-equation, at the beginning, the dynamic k-equation model
gives slightly slower decay rate of KE due to lower eddy viscosity modeled through the under-predicted SGS
KE. Afterwards, the SGS KE adapts to the correct value and the decay rate of the resolve kinetic energy
agrees well with the pseudo spectral code results.

Case 2: CBC

Comte-Bellot & Corrsin’s9 (CBC) experiment is simulated with dynamic k-equation model. The initial
spectrum is obtained from the experimental data. SGS KE is again initialized with the help of DSM,
however, the magnitude is scaled so that the mean value of SGS KE matches the experimental SGS KE
which can be estimated by integrating the energy spectrum over wave numbers that are higher than the
cutoff wave number. The performance of the proposed dynamic k-equation model are compared with that of
standard DSM and the experimental data in figure 2, where figure 2 (a) shows the temporal decay of kinetic
energy, while figure 2 (b) shows the energy spectrum at different time instances which correspond to the three
different locations of U0t/M = 42, 98, 171 in CBC experiment. As shown in figure 2, the results from the new
dynamic k-equation model is very encouraging that the kinetic energy decay, especially the SGS KE, agree
with the experiment better than DSM. The cusp of energy spectrum is reduced and postponed to higher
wave numbers by the dynamic k-equation model, too. Again, Yoshizawa’s Model in DSM under-predicts the
SGS KE.

B. Normal Shock/Isotropic Turbulence Interaction

The schematic of the problem is shown in figure 3. Isotropic turbulence is introduced at the inflow, decays
spatially over a short distance then interacts with a statistically stationary normal shock. A sponge layer
is used at the end of the computational domain to absorb reflected acoustic oscillations. Spatial averaging
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Figure 2. LES with k-equation model and DSM model for the CBC decaying isotropic turbulence on 323

resolution.

over homogeneous directions (y − z planes) is applied during the dynamic procedures.

Figure 3. Schematic of shock/turbulence interaction problem.

Again, two cases are considered here. The first case has low Re which corresponds to Mahesh it et al.’s14

DNS, where the inflow Mach number is M = 1.29, the turbulent Mach number of the inflow is Mt = 0.14,
and the micro-scale Reynolds number is Reλ = 19.1. The second case corresponds to Larsson’s15 DNS,
which has higher Re, freestream Mach number M and turbulent Mach number Mt (M = 1.5, Mt = 0.221,
Reλ = 40.0). The two simulations are carried out on the same computation domain with exactly the same
mesh. The domain has the dimension of Lx = 10 in streamwise direction, Ly = Lz = 2π in the transverse
directions. The mesh has 180× 322 CVs, which is uniform in the transverse directions and clustered in the
vicinity of the shock in streamwise direction.

The inflow isotropic turbulence are generated using similar method as Mahesh et al’s. An isotropic
turbulence, which has the initial energy spectrum of equation (38), is allowed to decay temporally until
the designated Mt and Reλ are reached. Then, the snapshot of the flow field is taken and used as the
inflow of shock/turbulent interaction problem based on Taylor’s hypothesis. However, since the length
of the domain, Lx, for shock/turbulent interaction is larger than the width, Lz, and the height, Ly, the
simulation of the isotropic turbulence is performed on a uniformly meshed long periodic box which has the
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dimension of nπ × 2π × 2π (figure 4), to avoid periodic input of inflow information. n is chosen big enough
to generate inflow data sequence that is long enough to provide unduplicated isotropic inflow turbulence for
several flow-over time, so that converged statistics can be achieved. For current case, n is thus chosen as 16,
which will provide around 5 flow-over time of inflow data and is proven to be enough for the statistics to
converge. This methodology is validated by temporally and spatially decaying isotropic turbulence as shown
in figure 5, where (a) compares the temporal decay of kinetic energy for isotropic turbulence in a periodic
cube and a long periodic box, starting with the same energy spectrum. Figure 5 (b) compares the energy
decay rate of the temporally decaying isotropic turbulence and the spatially decaying one where the inflow
isotropic turbulence is extracted from the temporal case at time t/te = 1.58. Good agreement is observed
for both cases. Then, the isotropic turbulent inflow is allowed to convect into the computational domain of
shock/turbulence interaction.

Figure 4. Decaying isotropic turbulence in long periodic box.

Figure 5. Validation of inflow turbulence generation and implementation.

1. Low Re case

Figure 6 compares the distribution of averaged turbulent intensities calculated from the k-equation model
and the standard DSM model with DNS results. In figure 6 (a) and (b), the resolved and the SGS turbulent
intensities are normalized by the values of the resolved one immediately upstream of the shock, to compare
with the DNS results.14 Here, the SGS turbulent intensities are estimated based on the hypothesis of eddy

10 of 13

American Institute of Aeronautics and Astronautics



k0x

<
u’

u’
>

10 20 30 40
0

0.5

1

1.5

2

DNS, unfiltered
k-equation, resolved
k-equation, SGS
DSM, resolved
DSM, SGS

(a)

k0x

<
v’

v’
>

10 20 30 40
0

0.5

1

1.5

2

DNS, unfiltered
k-equation, resolved
k-equation, SGS
DSM, resolved
DSM, SGS

(b)

Figure 6. Distribution of averaged turbulent intensities. All curves have been normalized by their values
immediately upstream of the shock.

viscosity and the analogy between the Reynolds stress in the RANS equation and the average SGS stress in
the time-averaged filtered momentum equation, i.e.,

⟨
u′
iu

′
j

⟩
SGS

=

⟨
2µtS̃∗

ij +
2

3
δijk

⟩
. (39)

Here, S̃∗
ij has the same expression as in equation (13), k is the SGS kinetic energy, and ⟨�⟩ denotes the

ensemble averaging. For shock/turbulence interaction problem, S̃∗
ij is very small, so the SGS intensities are

dominated by the second term in equation (39), and hence is a good representation of SGS kinetic energy.
Thus, the evolution of the SGS kinetic energy is not plotted here. As shown in figure 6, both of the DSM and
k-equation model predict ⟨v′v′⟩ very well, while both under-predict ⟨u′u′⟩ a little compared to the unfiltered
DNS result. In terms of the resolved turbulent intensities, the difference between the DSM results and
that of k-equation model are almost indiscernible for current simulation. However, the SGS scale turbulent
intensities differ a lot. In DSM model, the magnitude of SGS turbulent intensities (or kinetic energy) is
smaller with random oscillations in the vicinity of the shock and becomes larger on both windward and
leeward sides of the shock. This is because Yoshizawa’s model used in the standard DSM does not take into
account the history of the SGS kinetic energy, which make it more sensitive to the grid resolution. Intuitively,
the coarser the grid the higher the SGS KE, and vice verse. The distribution pattern of the SGS KE from
the DSM model is the joint effect of clustering mesh near the shock and the spatial decaying of SGS KE.
The dynamic k-equation model circumvents this problem by using SGS KE transport equation and yields
more reasonable evolution of SGS turbulent intensities across the shock, where the SGS turbulent intensities
jump across the shock, then decay spatially afterwards.

2. High Re case

Figure 7 shows the comparisons of the distribution of averaged turbulent strength calculated from the k-
equation model, the standard DSM model and DNS of Larsson. Different from the low Reynolds number
case, the difference between the k-equation model and DSM calculation of the resolved turbulent intensities
is noticeable. Note that the k-equation model is closer to the unfiltered DNS over both the near and the far
field. Interestingly, the DSM predicts higher values than unfiltered DNS in the far field. Again, the evolution
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of SGS KE is more reasonably predicted by k-equation model. However, the behavior of SGS KE is a lot
different from the low Reynolds number case(figure 6). The magnitude of the jump of SGS KE within the
shock is further intensified for high Re flow, while the SGS KE does not relax as quickly as the low Re case.
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Figure 7. Distribution of averaged turbulent intensities. All curves are normalized by their values immediately
upstream of the shock. The shock position has been shifted to x = 0 for comparison with DNS of Larsson.

The new dynamic k-equation model has another advantage: it is stable during the use of local averaging
over the neighboring CVs for the dynamic procedures, while the DSM model is not. Figure 8 compares the
results of k-equation model derived from local averaging and averaging over homogeneous directions. The
difference is indiscernible until far downstream of the shock, where the local averaging gives slower decay
rate of turbulent intensities. Similar under-predictions of decay rate of kinetic energy are also observed in
simulations of temporal and spatial decaying isotropic turbulence using local averaging, Such localization of
the dynamic k-equation model facilitates its application to simulations of complex flow fields on unstructured
grids.
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Figure 8. Comparison of local averaging and averaging over homogeneous directions.
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V. Conclusions

A new dynamic Smagorinsky model with SGS kinetic energy equation for compressible LES is proposed.
The SGS kinetic energy transport equation is derived, and the residual terms in the filtered total energy
equation that are omitted by previous works have been revisited. The unclosed terms in the filtered govern-
ing equations and the SGS k-equation are modeled, and the model coefficients are determined dynamically.
A new algebraic model based on series expansion is proposed for the pressure dilatation term. A different
dynamic procedure for SGS dissipation model is suggested and proven to work well. The new k-equation
model is incorporated into a parellel finite volume Navier-Stokes solver on unstructured grids6 and success-
fully applied to the decaying isotropic turbulence and isotropic turbulence and normal shock interaction
problems. Compared with available experimental and DNS results, current LES results show great agree-
ments for both problems. The proposed the k-equation model outperforms the standard DSM model in
the simulations of general turbulence flows by giving better prediction of resolved variables and much more
accurate estimation of SGS quantities. In addition, compared with DSM, k-equation model also has the
feature of easy localization, even for challenging problems, which will facilitate its application to the flow
field with complex geometries as well as N-S solvers on unstructured grids.
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