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An Algorithm for DNS/LES of Compressible Reacting
Flows
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A non—dissipative, implicit, all Mach number algorithm for direct numerical and large
eddy simulation of compressible reacting flows, is described. The compressible Navier—
Stokes equations are rescaled so that the zero Mach number reacting equations are dis-
cretely recovered in the limit of zero Mach number. The dependent variables are co—located
in space, and thermodynamic variables are staggered from velocity in time. The algorithm
discretely conserves kinetic energy in the incompressible, inviscid, non—reacting limit. The
species equations are implicit to allow for stiff chemical mechanisms, and are readily ap-
plied to complex chemistry. Numerical examples ranging from one-step chemistry to a
nine species, nineteen reaction mechanism for H2 and O2 are presented.

I. Introduction

The direct numerical simulation (DNS) and large—eddy simulation (LES) of turbulent reacting flows are
extremely challenging. Combustion involves a large number of chemical species, and associated chemical
reactions. Different chemical reactions possess different time—scales, and different reaction zone thicknesses.
Turbulence introduces its own range of length and time-scales. Turbulent combustion can occur at very low
Mach numbers (e.g. gas—turbine combustors at low pressures) or very high Mach numbers (e.g. scramjets).
Very low Mach numbers imply numerical stiffness because of a large difference between the speed of sound
and flow velocities, while very high Mach numbers result in shock waves, and their attendant problems.
Therefore, the desired requirements for direct numerical simulation and large eddy simulation for reacting
compressible flows are: i) the ability to simulate compressible reacting flows without loss of robustness
and accuracy at high Reynolds numbers, ii) the ability to effectively compute flows in both subsonic and
supersonic regions, iii) the ability to handle stiffness resulting from chemical mechanisms, and iv) accurately
simulate flows with shocks. This paper presently addresses the first three requirements.

Most DNS/LES of turbulent reacting flows appear to either use the compressible Navier—Stokes equations
with Pade spatial discretization, and explicit time-advancement (e.g. Poinsot* -, Lele,” Pantano®), or the
zero Mach number equations along with a pressure—projection approach (e.g. Majda & Sethian,® Mont-
gomery & Riley,'° Rutland & Ferziger!!-,'2 Pierce & Moin,'®> Pember et al,'* Mahesh et al.!%). However,
the Pade schemes become unstable at high Reynolds numbers; when explicit time—advancement is used,
they require very small time—step at low Mach numbers, and for stiff chemical mechanisms. The zero Mach
number equations are very efficient at low Mach numbers because they analytically project acoustic waves
out; also along with implicit time—advancement they can resolve chemical stiffness efficiently. However, due
to the complete absence of acoustic effects, they are not applicable to finite Mach number flows.
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This paper therefore extends the non-reacting Hou & Mahesh! algorithm to include the effects of chemical
reaction. The resulting algorithm treats the chemical source terms implicitly, solves the species equations in
a segregated manner, which allows easy extension to multiple species and chemical reactions, and reduces to
the zero Mach number equations in the limit of very small Mach number. The paper is organized as follows.
Section IT describes the non—dimensional governing equations, and their behavior in the limit of very small
Mach number. The discrete scheme is described in section III. The positioning of variables, and details of
the pressure—correction approach are discussed. Section IV presents some numerical examples. Results are
shown for a laminar premixed flame, laminar unstrained diffusion flame, laminar reacting two—dimensional
jet, a turbulent non—premixed flame and an extension to complex chemistry incorporating a H2—-O2 nine
species, nineteen reaction mechanism. A brief summary in section V concludes the paper.

II. Governing Equations

The governing equations are the compressible, reacting Navier—Stokes equation for an ideal gas:
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where the superscript ‘d’ denotes the dimensional value. The variables p, p, Yz and u; denote the density,
pressure, mass fraction of species k and velocities respectively. E = ¢, T% + ufuf /2 denotes the total energy

. ul | oul ud . .
per unit mass and 7;; = p? ( oo + 5k — %a—zgéij is the viscous stress tensor. D¢, c,, and Pr denote the
j i k

diffusion coefficient of the k' species, specific heat at constant pressure, and the Prandtl number. For the
source term, QZ is the heat of reaction per unit mass and Q%w¢ is the heat release due to combustion for
the ‘n*®’ reaction. @y is the mass reaction rate for the k*P species. The source term is modeled using the
Arrhenius law in this paper.

The reacting governing equation are non—dimensionalized as follows. Let p,, Y;., L, & T, denote the ref-
erence density, mass fraction, length and temperature respectively. The reference velocity, dynamic viscosity

and pressure are denoted by u., 4, and p, respectively. This yields the following non—-dimensional variables:
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Note that pressure is non—dimensionalized using an incompressible scaling. This non—-dimensionalization is
motivated by Thompson,? Bijl & Wesseling,®> Van der Heul et al.'® and Hou & Mahesh.! Therefore, the
non—dimensional governing equations for reacting flows are:
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where Scy, is the Schmidt number for the k" species. When the Mach number is zero, the non-dimensional
reacting governing equations reduce to:
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Notice that the divergence of velocity equals the sum of the terms involving thermal conduction and heat
release. If the density is constant and there is no heat release, the energy equation reduces to the incom-
pressible continuity equation. In the presence of heat release, the zero Mach number reacting equations
(Majda & Sethian®) are obtained. Most projection methods for the zero Mach number equations project
the momentum pu; to satisfy the momentum equation. Here, the velocity is projected to satisfy the energy
equation. The reaction source term can be quite complicated for multiple species, and is discussed in more
detail in section A.

ITI. Discretization

Density, pressure, and temperature are staggered in time from velocity by Hou and Mahesh [3]. The mass
fraction of species k are similarly staggered in time here. The thermodynamic variables and mass fraction
of species k are advanced in time from ¢+ % tot+ %, illustrated in figure 1. The variables are co—located in
space, to allow easy application to unstructured grids.
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Figure 1. Storage of variables.

Integrating over the control volume and applying Gauss’s theorem yields the discrete governing equations.
The discrete continuity and species equations are
pt+g _ pt+% 1
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where p., denotes p; j and ) Faces denotes summation over all the faces of the control volume. pqces and
vy denotes the density and normal face velocity at each face. Note that Sy = pYk. The variables (Sk) f,ces
denotes the species at the face and NN; is the outward normal vector at the face. The variables V and Afqc.
denote the volume of the control volume and the area of the face. The discrete momentum equation is:
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Here, g; = pu; denotes the momentum in the ¢ direction and 7;; is the stress tensor. The discrete energy
equation is given by:
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The algorithm solves each equation separately. This allows one to add multiple species with relative
ease, which allows easy extension to complex chemistry. Note that the chemical source term is handled
implicitly. Details of the implicit procedure are described in section A. The algorithm is a pressure—correction
method. An important feature is that the face—normal velocities are projected to satisfy the constraint on
the divergence which is determined by the energy equation. At small Mach number, this feature ensures
that the velocity field is discretely divergence free. This is in contrast to most approaches that project the
momentum which is constrained by the continuity equation. A predictor—corrector approach is used to solve
the momentum and energy equation:

prERHL = pitk 4 gy, (23)

The corrector step is the difference between the predictor equation and the exact equation which is defined
as:
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Substituting equation (25) into the nonlinear term w;u; converts kinetic energy into an equation for ép which

is:
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Equation (26) is then substituted into equation (22), and yields a discrete energy equation in terms of dp.
Note that dp is the difference between iterations, which implies that dp converges to zero at each time—step.
This allows the high order terms in equation (26) to be neglected.

The implementation to solve the following discrete equations are to initialize the outer loop:

RO gt E RO gt RO Sl 0 gt g0 _ gthd (27)

P =p ; i = Uy, = y Un UNs k

The next procedure is to advance the continuity equation (19), and then advance the species equation (20).
Once the species is advanced, advance the momentum equation (21), then obtain v}, by interpolation. After
obtaining v};, the next step is to solve the pressure correction equation (22). Use the corrector steps to
update pressure (23), momentum (24) and the velocities (25), then check the convergence for the pressure,
momentum, density, and species between outer loop iterations.

A. Implicit source term

Consider a chemical system of N species reacting through M reactions denoted as (Poinsot & Veynante®):

N M
D kb =Y v (28)
i=1 =1

for j = 1, M where py, is a symbol for species k. v, ; and vy ;are the stoichiometric coefficients of species k
for j reactions. The reaction term is defined as:

M
ar=Wi > vk;Q; (29)
j=1
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Figure 2. (a) is a comparison of computed solution to analytical solution for a laminar premixed flame. 3 = 10,
a = 0.8, Sc = Re = Pr =1, M, = 0.01. 0 analytic solution, numerical solution. (b) is a comparison of the
asymptotic solution to the numerical solution for a laminar diffusion flame comparing temperature profiles at
a non—dimensional time of 64. 0 asymptotic solution, numerical solution, S¢, =1, Pr =1, M, = 0.001.

where

k=1 , k=1
forward‘;eaction reverse;action
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Therefore, the source term is:
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The discrete form of equation 32 is:
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Figure 3. (a) is contour plot of temperature for a diffusion jet flame. (b) is the center line profile of the mixture
fraction ¢. 0 asymptotic solution from Poinsot & Veynante,* numerical solution. Re = 500, S¢,, = Pr =1,
M, = 0.01.

Substituting equation (33) into equation (20) for wi™" yields:
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Equation (34) can be represented as:
3 3
apSen >+ anySpy? = RHS. (35)

nb

where nb are the neighbors of the cv. A parallel, algebraic multi—grid approach is used to solve the system
of algebraic equations. The structured grid interface of the Hypre library (Lawrence Livermore National
Laboratory 2003) is used.

Two examples will illustrate how to handle the source term if it is either linear or nonlinear. If the
stoichiometric coefficients are one, then the source term is linear. For example, consider a two—step reaction

from Chen?? and Mahalingam?® where the stoichiometric coefficients are one. The reaction mechanism is
given by:
A+B—1
A+T1— P. (36)
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T T

Figure 4. Part (a) is the scalar dissipation rate x and part (b) is the reaction rate w at z = 4. Notice that
scalar dissipation is high where the reaction rate is low. Holes occur where the reaction rate is low which is
from Chen & Mahalingam. Re =935, S¢y = Pr =1, M, =0.1.

Here A is the fuel, B is the oxidizer, I is the intermediate step, and P is the product. The source term for
species A is defined as:

. T, T,
Wy, = B1pYpYp exp (— Tl) + BypY A pY7 exp (—?2) . (37)

The discrete form is:

t+3 t+1
SA,cv + SA,cv St+1 (_ Ta1 >

wy = By 3 Byev ®¥P | ~ it
3 t+1
Sf4+c2v + SA c21; T,
By A A i e (- e ) (38)

This implicit source term is used in section C. Note that the other species are handled in a similar manner.
The second example handles the source term if it is nonlinear. Consider one—step reaction used in section
IV A and B denoted as:

T
W = —Aprrtro YpF Y © exp (—?a) . (39)
Let vp = 2 and vp = 1. This implies:
. 241y2v/1 Ta 2 o1 Ta
WwE = —Ap YFYO €exp —? = _ASFSO exp _? (40)

where F is the fuel and O is the oxidizer. The discrete equation for the fuel species is:

t+3 t+3
d)]tj—l —_A SF,cv + SF,cv (

t+1 t+1
9 SF,cv SO,cv exp

Nal N )
(1)

_:/%H) . (41)

cv

8 of 15

American Institute of Aeronautics and Astronautics Paper 2007-1415



08 0.8

0.6

Yr

0.4

0.2

Yo
LB E e B B B A B

)

Figure 5. Scatter plot of (a) fuel mass fraction and (b) oxidizer mass fraction from DNS of one—step, turbu-
lent/diffusion flame interaction. Re =935, S¢, = Pr =1, M, =0.1.

The nonlinear source term is linearized by only solving for term (1) and treating term (2) as a coefficient.
The outer loop ensures that the nonlinear corrections converge to zero. Note that the source terms in section
D are linearized in the same manner.

IV. Results

The properties of the algorithm are first illustrated for a one dimensional steady laminar premixed flame
and a unsteady laminar diffusion flame. These two examples will illustrate the ability to handle large heat
release at low Mach number. The next validating case is a two dimensional laminar diffusion jet flame with
large heat release at low Mach number. A three dimensional turbulent non—premixed flames with finite rate
chemistry is then simulated. This problem accounts for turbulence at finite Mach number. The last case is
the extension to complex chemistry incorporating a H2-0O2 nine species, nineteen reaction mechanism.

A. 1D Laminar Premixed Flame and Laminar Diffusion Flame

The first reacting problem is a irreversible one—step laminar premixed flame. This problem tests the prop-
erties of large heat release and nearly incompressible reacting flow. For a premixed flame, the reaction is
denoted as R — P where R is the reactant and P is the product.

For the laminar premixed flame, two source terms are considered. The Arrhenius model given by
Williams!” defined as:

w=A~Ap(1—0O)exp (%) . (42)

The definition for a and B from Williams are a = TZT;le, B = % and A = Bexp —g .

The second source term is Echekki & Ferziger source term. The purpose of the Echekki and Feriger
source term is that it approaches the Arrhenius source term, and is useful for validation, in that it permits
analytical solution. Thus, Echekki & Ferziger'® source term is defined as:

(43)

p=140 for © < O,
B(B—1)(©—1) otherwise .
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Figure 6. (a) This is a comparison between chemkin and the Code for a well-stirred reactor. (a) is a
comparison between H>O for a major species and (b) is a comparison between H>0O; for a minor species.
o Chemkin, numerical solution.

Therefore, the analytical solution is defined as:

o (1 —571) exp (z) for z <0, (44)
1-Btexp[(1—-pB)z] forz>0.

Note that a good value for 3 is around ten for a hydrocarbon reaction (Echekki & Ferziger!8).

Figure 2 (a) is a comparison of the computed solution and the analytical solution where the Mach number
is 0.01. Note that the computed and analytical solution agree well. Simulations were also performed for
Arrhenius source term and similar results were obtained.

The next reacting case is a unstrained diffusion flame with a high Damkohler number (Da = 50 x 105).
A one-step irreversible diffusion flame developed by Cuenot & Poinsot [1] is modeled. The chemistry model
is a one—step reaction defined as:

veYr +voYo > vpYp (45)

where Yr, Yo and Yp are the mass fractions of the fuel, oxidizer and products.

Cuenot & Poinsot [1] used an asymptotic method to derive expressions for the temperature and species
profiles. This method can handle a diffusion flame with variable density, nonuniform Lewis number and
finite rate chemistry. They studied unsteady unstrained, steady strained and unsteady strained Hy — O2
flames. Case 2 was the candidate to study because it has variable density and is an unsteady unstrained
flame. Table 1 lists the condition for case 2.

Table 1. Test condition.

case LBF TF,O Leo TO,O (] 125 Vo A Ta Q/Cp Re
2 1 300 K 1 300K 8 2 1 10® 3600 K 6000 K 10000

Note that Ler and Leo denote the lewis number for fuel and oxidizer. T and Tp are the initial
temperatures of the fuel and oxidizer. ® is the equivalence ratio which is defined as:
Yro voWo Yrp

P=s = 46
Yoo vFrWrYop (46)
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Figure 7. (a) is a slice in the middle of the flame showing the contour of the formation of H2O and (b) is a
contour plot of H,O showing the entire computational domain

where s is the stoichiometric ratio. The equivalence ratio is used to determine if the mixture is rich, lean or
stoichiometric. If ® > 1, the fuel mixture is rich and if & < 1, then the mixture is lean.

For our test case, the Cuenot & Poinsot [1] asymptotic method was used for our initial condition where
the time is initially at a non—dimensional time of 20. The simulations was advanced to a non—-dimensional
time of 64. Figure 2 (b) is a comparison of the computed solution to the asymptotic solution of oxidizer. The
Mach number is 0.001 for this simulation and the grid is 512. Note that reasonable agreement is obtained
between the computed and asymptotic solution.

B. 2D Laminar Diffusion Jet Flame

A steady two dimensional reacting laminar jet flame from Poinsot & Veynante® is computed. This problem
illustrates the ability to handle large heat release and nearly incompressible flow. If one assumes constant
mass flow rate (pu =constant), v = w = 0 and pD = constant then the mixture fraction ¢ becomes the heat
diffusion balance equation:

a¢ 82¢
PRUfZ = PFDF@-

A similarity solution is obtained:

_ 1 v’
C(z,y) - 2\/@ exp <_M)

where o = 5—;. A Hydrogen and Oxygen diffusion flame with Damkohler number of (50 x 10¢) was simulated.
Figure 3 (a) shows the temperature contours of the simulation and figure 3 (b) is a comparison of the similarity
solution to our simulation. The Mach number for this simulation is 0.01 and the grid is 128 by 128 where

reasonable agreement is obtained.

C. 3D Turbulent non—premixed flames modeled with one-step chemistry

This example simulates a one—step diffusion flame interacting with three dimensional isotropic turbulence.
The purpose of this calculation is to simulate isotropic turbulence interacting with one—step diffusion flames
at finite Mach number. The results are compared to results from Mahalingam?® and Chen.?! The turbulence
problem was simulated on a cubic domain with inflow and outflow boundary condition in the x—direction
and periodic boundary condition in the y and z direction. The initial condition and parameters for the
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Figure 8. (a) is a 3D contour plot of O and (b) is a contour plot of H202
1

simulation are given in the table below. From table 3, z,; is defined as z5 = where @ is the equivalence

1+9
Table 2. Parameters for turbulence and flame.
L i 1
a va v Zg Rey I, 3n  3n Da

8§ 08 1 1 05 &0 6 2 02 1

ratio. v4 and vg are the stoichiometric coefficients. A is the pre-exponential factor.
The initial turbulent kinetic energy spectrum is defined as:

BE(k) = COZ_§ (%)4exp l—z (kﬁoﬂ (47)

and the initial global Damkohler number is defined as:

Da:l—lt i/ wl. (48)
Uo 6fl 3n

The diffusion flame was first advanced in time to remove the initial acoustic transients. Once the transients
were removed, the turbulent velocity field was superimposed on the diffusion flame. The solution was
advanced in time from 0 to 2.0 eddy turnover times and analyzed at each 0.1 eddy turnover time. The
results show local extinction in the reaction rate. Holes occur in the reaction zones where pure mixing exists
and from laminar flamelet theory, the holes location corresponds to a high rate of scalar dissipation rate
(figure 4). Figure 5 shows two—dimensional mass concentration distribution of fuel mass fraction and oxidizer
mass fraction. Reasonable agreement is obtained with Chen?! (figure 2 (a) in their paper).

D. Modeling Complex Chemistry

This problem extends the algorithm to complex chemistry. The kinetic mechanism involving Hy and O; is
from Mueller at el,'® and involves, 9 species and 19 reaction mechanism. Table 3 briefly lists the reaction
mechanism. The solver was compared to Chemkin?® for a well-stirred reactor problem to validate the
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extension to complex chemistry. Figure 6 (a) is a comparison between H>O mass fraction of our simulation
to Chemkin for a major species and figure 6 (b) is a comparison of a minor species (H202). Note that good
agreement is obtained. Also, this problem illustrates the purpose of handling the source terms implicitly.
Comparison to explicit time advancement using the explicit euler method shows that dt was 1.0e — 7 for
the explicit source term and 1.0e — 2 for implicit source term. For a large time step, the algorithm provided
reasonable solution allowing one to take large time step while maintaining accuracy.

Table 3. Chemical Scheme: Mueller®

Reaction Ag; Bj E;
1 H+0,=0+0H 1.910E14 0.0 16.44
2 O+Hy,=H+OH 5.080E04  2.67 6.29
3 H,+OH+= H,O+H 2.160E08  1.51 3.43
4 O+ H,O+=OH+OH 2.970E06  2.02 13.4
5 H+M<-=H+H+M 4.580FE19 —1.40 104.38
6 O+0+M=0,+M 6.160E15 —0.5 0
7 O+H+M<—=OH+M 4.710F18 -1.0 0
8 H+OH+M+=H,O+M 2210E22 -2.0 0
9 H+0Ox+M<=HO;+M 3.50EK16 —0.41 —-1.12
10 HO; + H = Hy + Oy 1.660E13 0.0 0.82
11 HO;+ H <+~ OH +0OH 7.080E13 0.0 0.3
12 HO2+ O = OH + 04 3.250E13 0.0 0

13 HO;+ OH = Hy0 + 0O, 2.890E13 0.0 —0.50
14 HO; + HO3 = Hy02 + O, 4.200E14 0.0 11.98
15 HyO+M<=0OH+OH+ M 120E17 0.0 45.5

16 H,0, + H+ H,O+ OH 2.410E13 0.0 3.97

17 Hy;02+H = Hy + HO, 4.820E13 0.0 7.95

18 H;0,+0 = 0OH+ HO, 9.550E06 2.0 3.97

19 Hy0,+OH = H,O+ HO, 1.000E12 0.0 0

Some preliminary results are shown in figure 7 extending section IV C to complex chemistry. The
purpose of this problem is to study the effects of many time scales, and length scales associated with
complex chemistry. Some preliminary results are shown in figures 7 and 8. Figure 7 (a) is slice in the middle
of the flame showing the contour of the formation of H>O and figure 7 (b) is a contour plot of H>O showing
the entire computational domain. Figure 8 (a) is a 3D contour plot of O and (b) is a contour plot of a minor
species (H05).

V. Summary

This paper presents a non—dissipative, implicit, robust algorithm for direct numerical and large eddy
simulation of compressible reacting flows. The method co-locates variables in space and time to allow easy
extension to unstructured grids. The Navier—Stokes equations are non—dimensionalized using an incompress-
ible scaling for pressure. From this scaling, the incompressible equations are recovered in the limit of zero
Mach number and constant density. When the density varies, the zero Mach number equations for reacting
flow are obtained. The discrete governing equations are discretely energy—conserving in the incompressible
constant density limit (Hou & Mahesh'). The pressure, temperature, species and density are staggered in
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time from the velocity. This allows the algorithm to be symmetric in time. The face normal velocity is ob-
tained by projecting it to satisfy the energy equation. A pressure—projection approach is used. The energy
equation therefore becomes an equation for the pressure correction. The algorithm uses central differences
in time and space and is second order accurate. The species equations are implicit, and are solved separately
to allow for easy extension to complex chemistry. Results are shown for premixed, diffusion flames and
turbulent non—premixed flames. The numerical examples show the ability to handle chemical reaction in the
limit of zero Mach number reacting flows and finite Mach number flows. The proposed method has attractive
features for direct numerical and large eddy simulation of compressible reacting flows.
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