
XXII ICTAM, 25–29 August 2008, Adelaide, Australia

A DYNAMIC WALL MODEL CONSTRAINED BY EXTERNAL REYNOLDS STRESS

Noma Park∗ & Krishnan Mahesh∗
∗Aerospace Engineering and Mechanics, University of Minnesota, 107 Akermal Hall, 110 Union St. SE,

Minneapolis 55455, U.S.A.

Summary A new wall model for LES is proposed. Unlike conventional zonal approaches, given Reynolds stresses are not imposed
as the solution, but used as constraints on the SGS stress so that the given Reynolds stress closely matches the computed one only in
the mean sense. Also, since LES in general outperforms RANS even at coarse resolution except very near the wall, RANS constraints
are limited to the points where the LES solution is expected to be erroneous. We use the Germano–identity error as an indicator of
LES quality so that the RANS constraints are activated only where the Germano–identity error exceeds a certain bound. The proposed
model is applied to LES of turbulent channel flow at various Reynolds numbers and grid resolutions to obtain significant improvement
over the dynamic Smagorinsky model, especially at coarse resolutions.

INTRODUCTION: IDEAL ZONAL SIMULATION

In order to highlight the main concern of RANS–LES zonal simulations, an idealized version of such simulations for
turbulent channel flow at Reτ = 590 is performed to obtain statistics shown in Fig. 1. In this simulation, mean velocity
from DNS is enforced in an arbitrarily chosen RANS region y+ ≤ 60 with all turbulence fluctuations suppressed, while
DNS is performed in the outer region y+ > 60 so that a perfect LES is obtained by filtering the solution in this region. As
shown in Fig. 1, the mean velocity profile in the outer layer rises above the log law significantly, consistent with previous
observations in DES computations (Nikitin et al. 2000). Also, this approach creates false wall–turbulence starting at the
zonal interface that has striking similarity with true wall–turbulence (Fig. 1(b)).

CONSTRAINED DYNAMIC SMAGORINSKY MODEL

From the ensemble average of the spatially filtered Navier–Stokes equations, we obtain the following equality for the SGS
stress τij = uiuj − uiuj :

〈τij〉+ rij = Rij (1)

under the assumption that
〈
φ
〉

= 〈φ〉, where rij = 〈uiuj〉 − 〈ui〉 〈uj〉 and Rij = 〈uiuj〉 − 〈ui〉 〈uj〉 are respectively,
resolved and exact Reynolds stress and 〈·〉 denotes the ensemble average. Invoking the SGS model τM

ij − 1
3τkkδij =

−2Cs∆2|S|Sij , one can define an error εRij as εRij =
〈
τM
ij

〉
+ rij − Rij . On the other hand, the well known Germano

identity error is defined as εG
ij = TM

ij − τ̂M
ij −Lij , where Tij is the subtest scale stress model, Lij is resolved scale stress

and hat denotes test filtering.
Although the dynamic model coefficient Cs is obtained by the minimization of εG

ijε
G
ij , such a procedure does not guarantee

small absolute error. Fig. 2(b) shows normalized Germano–identity error from LES of channel flow with dynamic
Smagorinsky model at Reτ = 1000. A 323 uniform grid is used on πδ(x)×2δ(y)×0.5πδ(z) domain. Fourier expansion
and the fourth-order compact difference scheme are used for discretization of homogeneous directions and the wall–
normal direction, respectively. It is surprising to see that the error is orders of magnitude larger than SGS term especially
near the wall. This shows the failure of the scale–similarity assumption that single model coefficient is valid across
different scales. This suggests that we discard the Germano–identity where the error is unacceptably large, and use
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Figure 1. Mean statistics from turbulent channel flow at Reτ = 590: (a) mean velocity, (b) RMS velocity fluctuations. Dotted line,
Moser et al. (1999); Solid line, ideal RANS–LES zonal simulation.
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Figure 2. LES of turbulent channel flow at Reτ = 1000: (a) Germao–identity error with dynamic Smagorinsky model; (b) time
evolution of cost function (2); (c) mean velocity profiles; (d) RMS velocity fluctuations. Solid lines in (c) & (d), the proposed model;
dotted lines in (c) & (d), dynamic Smagorinsky model; open circle, Kravchenko and Moin (1997); solid triangle, Spalart–Allmaras
model simulation.

RANS–based condition (1) to determine SGS eddy viscosity. We consider the following cost function:

J =
∫

Ω0

[〈
εG
ijε

G
ij

〉
h

+ ωRεRij ε
R
ij

]
dx, (2)

where Ω0 is the domain without homogeneous direction(s), and 〈·〉h denotes average over homogeneous direction(s). ωR

denotes the weight for RANS–based condition, and can be a function of local Germano–identity error. In this study, we
use ωR = max (E − Et, 0), where E =

〈
εG
ijε

G
ij

〉
/

〈
τM
ij τM

ij

〉
, and Et is the threshold value. Et = 100 is chosen from

EDQNM analysis on isotropic turbulence.
For a practical model implementation, we use a simple procedure to obtain Cs that minimizes J . We introduce Cg

s

which is obtained instantaneously from ∂
〈
εG
ijε

G
ij

〉
h
/∂Cg

s = 0. Then at each time step, Cs is obtained by the following
penalty-like correction:

Cs = Cg
s + SλωRεRij ε

R
ij , (3)

where S is a sign factor to determine whether to add or subtract dissipation. S = 1 when the absolute value of the
production of mean kinetic energy, (〈τij〉+ rij) 〈Sij〉 is greater than that from prescribed Reynolds stress Rij 〈Sij〉, and
S = −1 when the opposite is true. λ = λ0/

(
1
V

∫
Ω

εRij ε
R
ijdx

)
is a dimensional relaxation factor, where λ0 is an adjustable

relaxation constant chosen to be the computational time step, and V is the volume of the entire computational domain Ω.
The proposed model is applied to LES of turbulent channel flow at Reτ = 1000 with 323 uniform grid as described
above. The Spalart–Allmaras model (1994) is used to provide the external Reynolds stress Rij . As shown in Fig. 2(b)
the proposed procedure actually reduces the cost function J , and a steady value of ∂J /∂Cs ≈ 0 is reached at t+ > 12.
Mean statistics from the proposed model and the dynamic Smagorinsky model are shown in Figs. 2(c) and (d). Results
from the proposed model compare well with RANS model prediction and LES data of Kravchenko & Moin (1997), while
those from the dynamic Smagorinsky model underestimate the mean velocity in wall units and overpredict RMS velocity
fluctuations.
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